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Abstract— In this paper, a design of a controller based on
the NN-SANARX (Neural Network based Simplified Additive
Autoregressive eXogenous) model is considered on the basis of
a prototype of a real liquid level tank system. Structure of the
neural network is chosen using two different methods of genetic
algorithms with multi-objective optimization. The goal of the
control algorithm is to track the desired level of the liquid in
the upper tank.

I. INTRODUCTION

THE main contribution of this paper is devoted to ap-
plication of the non-analytical control method to the

liquid level control problem. Design of the controller is based
on the parameters of neural network of specific structure.
Thus, ”black-box” or the ”gray-box” approach could be
implemented, where some parameters of the process may
be known.

While control of the liquid level is very well know prob-
lem, it is still urgent issue at the present days. In many cases
the problem is managed by means of PI [1], PID [2], and
fractional-order PID [3] controllers. Despite its popularity,
the main drawback of PI control is that it does not by it self
guarantee the same level of control accuracy on the whole
operating range. Finally, methods based on computational
intelligence have started to gain popularity [4].

Techniques proposed in this paper allow to automate the
design of the controller and implement it in the form of
software to a control laboratory plant. The main idea of
the control algorithm is based on the input-output feedback
linearization.

The rest of this paper is organized as follows. Section
II derives description of the neural network the parameters
of which are used in control design. Section III introduces
two genetic algorithms used to solve the problem of multi-
objective optimization. Further, implemented control tech-
nique is described. Next section gives overview of the con-
trolled plant parameters. The simulation results are presented
in Section VI to validate theoretical results. Finally, Section
VII concludes the paper.

II. PRELIMINARIES

Hereinafter, if ξ : Z→ R and k ∈ N, then ξ[k] stands for
k-th step forward time shift of ξ and is defined by ξ[k] :=
ξ(t+k). The same is for backward shift. Moreover, to make
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the presentation of the material more intuitive, we restrict
our attention to the case of SISO systems.

Nonlinear control systems can be represented by the
discrete-time Nonlinear AutoRegressive eXogenous (NARX)
models. In fact, model can be derived as governing physical
laws described by the Newton equations, as well one can
start from the measured i/o data of the process. In the letter
case mathematical relation between variables can be found
without going into the details what is actually happening
inside the system. In other words new value of the output
signal y[n] is based on the m previous values of independent
input signal and its own n− 1 previous values, i.e.

y[n] = ϕ
(
y[n−1], . . . , y, u[m], . . . , u

)
. (1)

Thus, usage of neural network approach is an obvious choice.
Mathematically, neural network representation of the

NARX system can be given as follows

y[n] =
l∑
i=1

ciφ
(
wi,1y + · · ·+ wi,ny

[n−1]+

+ wi,n+1u+ · · ·+ wi,n+mu
[m]
)
, (2)

where u ∈ R is a real-valued scalar input, y ∈ R is a
real-valued scalar output, φ(·) is a saturation-type smooth
nonlinear function, l is the number of hidden neurons and
ci, wi are synaptic weights.

Usually we need a model of the process for the controller
design. In order to identify the plant and obtain the state-
space representation, one can use different methods. One
of the possibilities is given by a subclass of NN-NARX
models—Neural Network based Additive Autoregressive eX-
ogenous models (NN-ANARX) [5]. This class of networks
has a restricted connectivity: a hidden layer consists of n
parallel sublayers corresponding to the nth order of the
system, see [6], [7]. Such representation gives us flexibility
to change easily the order of the model during identification,
and write down the state-space model without additional cal-
culations. In addition, such structure of the model guarantees
linearizability via dynamic output feedback [8]. Mathemati-
cally, neural network representation of ANARX model can
be formulated as follows:

y[n] =
n∑
i=1

Ci · φi
(
Wi · [y[n−i] u[n−i]]T

)
, (3)

where φi(·) is an activation function of the ith sublayer
neurons, Ci and Wi are 1 × li and li × 2 dimensional ma-
trices of the ith sublayer output and input synaptic weights,
respectively. The number of neurons on hidden layer is li.
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A schematic diagram of neural networks based represen-
tation of 3 can be seen in Fig. 5.
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Fig. 1. Representation of NN-ANARX structure

On the other hand, while choosing the model structure one
should consider not only the factors affecting the quality of
identification, but also the conditions imposed by the further
usage of identified model. Some applications do not require
a very precise model, but the number of the parameters
involved can be crucial. Therefore, the reduction of the model
parameters is preferable. In that case neural network structure
must undergo further transformations. Relying on available
information about the regressors of the system, all redundant
interconnections between hidden layers and output should be
eliminated [9]. In this case Eq. (3) can be transformed to the
form

y[k] =

max(np)∑
i=1

Ci · φi
(
Wi · [{y[i−1]dyi

}dyi∈Dyi

{u[i−1]dui
}dui∈Dui

]T
)

(4)

where

max(np) - maximal order considered in application;
dyi - index of the previous output y on the ith layer;
Dyi - set of indexes dyi;
dui - index of the previous input u on the ith layer;
Dui - set of indexes dui;

and i = 1, . . . ,m.

It is known that relying on using NN-ANARX structure we
can design a controller based on the reduced number of the
parameters of the neural network using feedback lineariza-
tion. The issue here is how to select the optimal structure.
As it was mentioned earlier at least two objectives should be
taken into account: accuracy of the control and the number of
the parameters. A proven approach for the multiple-objective
optimization problems are Genetic Algorithms (GA) which
will be considered in the next section.

III. MULTIPLE-OBJECTIVE OPTIMIZATION

Being a population-based approach, GA suits well to solve
multi-criteria problems. For multiple-objective problems the
criteria are generally conflicting, preventing simultaneous
optimization of each objective. As it can be seen in our
case minimization of the model parameters can decrease the
control performance and vice versa.

In general, there are two different approaches to GA based
optimization. One of them is to join the criteria into one
composite function, for example, the weighted sum method.
In that case the full attention should be drawn to the proper
selection of the weights to characterize the decision maker
preferences. On one hand that requires the level of expertise
for accurate weight selection. On the other hand, it gives
more flexibility to choose what is preferable in the current
control application. In addition to the above mentioned
scaling among objectives is needed.

The second approach provides the entire Pareto optimal
set of solutions which are non-dominated with respect to
each other. In other words, solution cannot be improved with
respect to any objective without worsening at least one other
objective [10].

In order to design a controller both techniques were taken
into consideration.

A. Weighted sum approach

This method is a classical technique to solve a multi-
objective optimization problem. First, we need to assign a
weight ki to each normalized objective function zi.

min z =
∑
i=1

ki · zi, (5)

where
∑
ki = 1 and zi is normalized objective function.

In the context of this framework those functions are

z1 = |1− e−mae·c|, (6)

where mae is a mean absolute error of the control, c is a
scaling coefficient. Normalized order function

z2 = 1−
max(np)∑
i=1

i

maxnp
. (7)

As it can be seen from Eq. (5), one can find a single solution
for specific ki. However, if multiple solutions are desired,
the problem should be solved several times with different
combinations of weights. In this case we face choices—either
rely on the level of expertise of a decision maker or use some
extended technique called MOGA (Multi-Objective GA).
Hence, normalized weight vector ki is randomly generated
for each solution. The main drawback of this approach is a
prolongation of the chromosome, which in turn leads to slow
convergence.

Based on the above discussion we came to the conclusion
that in our specific case with small number of the criteria,
and clear understanding of the control application purpose
oriented toward the practical applications, preferences of
the decision-maker should be applied. Moreover, as single
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objective is used to assign the fitness function, GA algorithm
can be implemented with minimum modifications. In this
case, general description of the procedure is not presented
and could be found in [10], [11], [12], [13].

B. NSGA-II approach

The previous technique has difficulty in finding solutions
uniformly distributed over a non-convex trade-off surface.
One of the possible ways to overcome this obstacle is to use
crowding distance approaches. The main idea is to achieve a
uniform spread of solutions among best-known Pareto front,
see Fig. 2. It means that fitness sharing parameter will not
be used. Thus, among many variations of multi-objective GA
Fast Non-dominated Sorting Genetic Algorithm (NSGA-II)
was chosen. Additional points in favor of this method are:
usage of the single parameter N and its efficiency [10] and
[14]. The complete procedure of the NSGA-II technique is

z2 

z1

x1

x2

xn

Pareto Frontier

F1
F2

Fig. 2. Pareto Optimal set with two conflicting objectives

given below
Step 1 : Create a random initial population P0 of size N .

Set t = 0.
Step 2 : Apply crossover and mutation to P0 to create

offspring population Q0 of size N .
Step 3 : Stop and return to Pt, if stopping criterion is

satisfied.
Step 4 : Set Rt = Pt ∪Qt.
Step 5 : Identify and sort the non-dominated fronts

F1, F2, . . . Fk ∈ Rt.
Step 6 : For i = 1, . . . , k do the following:

a) For each objective function sort the so-
lutions in Fi in the ascending order. Let
l = |Fi|. Assign cdk(x[1,k]) = ∞ and
cdk(x[l,k]) =∞, and for i = 2, . . . , l − 1

cdk(x[i,k]) =
zk(x[i+1,k])− zk(x[i−1,k])

zmax
k − zmin

k

.

(8)
b) Total crowding distance cd(x) of a solu-

tion x is the cd(x) =
∑
k cdk(x).

c) Create Pt+1.
Case 1: If |Pt+1|+|Fi| ≤ N , then Pt+1 = Pt+1∪

Fi;

Case 2: If |Pt+1|+ |Fi| > N , then least crowded
solutions from Fi to Pt+1.

Step 7 : Use binary tournament selection to select parents
from Pt+1. Apply crossover and mutation to Pt+1

to create offspring Qt+1.
Step 8 : Set t := t+ 1, goto Step 3.

IV. CONTROL TECHNIQUE

If during the simulations obtained model meets the control
requirements, its parameters can be used in control of the
plant. As it was mentioned earlier in Section II ANARX
representation guaranties linearizability via output feedback.

Dynamic output feedback can be written by using param-
eters of the neural network as [15]

η1 = C1φ1

(
W1

[
y u

]T)
(9)

and

η
[1]
1 = η2 − C2φ2

(
W2

[
y u

]T)
...

η
[1]
n−2 = ηn−1 − Cn−1φn−1

(
Wn−1

[
y u

]T)
η
[1]
n−1 = v − Cnφn

(
Wn

[
y u

]T)
.

(10)

Here v ∈ R is a reference signal (desired output). As it can
be seen, the application of the dynamic feedback (9) and (10)
to the model (3) or (4) results in the closed-loop system that
can be described by the linear model y[n] = v.

Further, control signal u from (10) should be extracted.
There are several ways how to do that, but the simplest
is to assume like in [16] that φ1(·) is a linear function.
It follows from the requirements of the control algorithm
(9)-(10) that the model has to be at least of the second
order. Moreover, subsequent sublayer of the neural network
should have nonlinear activation function in order to capture
the nonlinear behavior of the plant. Thus, dynamics of the
controller can be described as follows. First, define the
following matrix T

T := C1 ·W1. (11)

Next, it can be divided into 2 parts as

C1 ·W1 · z1 = T · z = T1 · y + T2 · u. (12)

Finally, control signal takes the form

u = T−12

(
η1 − T1y

)
η
[1]
1 = v − C2φ2

(
W2

[
y u

]T)
.

(13)

Note that in the case of SISO systems T ∈ R2 is a 2 × 1
vector and, as a result, T1, T2 ∈ R are real numbers. On that
basis we can arrive to conclusion that described technique
can be applied only if T2 6= 0.
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Fig. 3. Model of the Multi Tank system

V. DESCRIPTION OF THE PLANT

A model of the Multi Tank system in Fig. 3 was provided
by INTECO [17]. In the continuous time domain the dynam-
ical behavior of the plant can be expressed by the following
differential equation

ẋ1 =
1

aw

(
u− C1x

α1
1

)
(14)

where u = q, x1 = H1. Additionally, x1 and u are limited
by the physical parameters of the system and the power of
the plant. Moreover, dead zone of the control signal can be
an issue that should not be neglected.

TABLE I
NOMENCLATURE

Parameter Physical description
Hi fluid level in the ith tank
w width of a tank
a length of the upper tank
Ci resistance of the output orifice of the ith tank
αi flow coefficient for the ith tank

It can be seen from Fig. 3 that all tanks are equipped
with valves and piezoresistive level sensors. Also system is
provided with 12 V DC pump which delivers liquid from
the reservoir to the upper tank. Thus, inflow of the first tank
can be controlled by the power of the pump with PWM
control signal. Valves between tanks can be controlled, and
therefore, change the outflows of the upper tanks and/or
considered as the inputs for the lower tanks. Thus, this
particular laboratory plant is reconfigurable according to
the requirements. Given plant is designed to operate with
an external PC-based controller, which communicates with
valves, motor and sensor via RT-DAC I/O internal PCI cart.
The I/O board itself is controlled by the real-time software
which runs in Simulink using MATLAB Real-Time Windows
Target environment.

It should be mentioned that in this particular paper, we
focus on the control of the water level in the upper tank. From

the above mentioned it can be easily found that in the current
case we are dealing with SISO system. Physical parameters
of the laboratory plant are given next w = 0.035 m, a =
0.25 m, α1 = 0.2497, and the maximal inflow provided by
the pump is 1.0284·10−4 m3/s. For a full picture a resistance
of the output orifice of the first tank should be known. It was
determined experimentally as C1 = 11.08 ·10−5 m2/s, using
MATLAB routine provided with the installation package.

VI. SIMULATION RESULTS

The simulation results obtained applying the proposed
control technique to the laboratory plant available in the
Department of Computer Control, Tallinn University of Tech-
nology [18]. Parameters and structure of the neural network
were found off-line a priori.

From the description of the object, as the task is to
control the level of the liquid in the first (upper) tank,
the order of the model should be two. Thus, the usage
of the genetic algorithm is not strictly necessary in the
context of the structure selection problem. Moreover, manual
(trial-and-error) selection of the neural network structure is
obvious choice in the particular case. However, that situation
allows us to test completely the proposed controller design
algorithm on a plant. So, further implementation to the more
complex processes where manual selection of the structure
computationally ineffective.

First, as we deal with destructive method, the maximal
possible order of the model np should be proposed, see (4).
So, in order to test efficiency of the algorithm but not waste
the time, np = 5 was chosen. That leads to the fact that
neural network structure representing chromosome length
[19] is

l = np · (n+m) ·m = 5 · (1 + 1) · 1 = 10, (15)

where l is the length of the individual, n and m are numbers
of inputs and outputs of the system, respectively. Thus, for a
fully connected NN-ANARX chromosome will be as follows

chr = [1 1 1 1 1 1 1 1 1 1]. (16)

If connection between input and output is absent, then
1 has to be replaced by 0. Continuing the above men-
tioned if both input and output at the same time instance
are eliminated, for example u[n−1] and y[n−1], then order
of the model decreases. Chromosome, representing it is
chr = [1 1 1 1 1 0 0 1 0 0], and the order is np = 4.

When decoding method is known, the next stages of the
controller design procedure are described in Fig. 4. For more
detailed description of finding neural networks weights and
initial GA parameters see [20], [21].

Sigmoidal tangent function was taken as activation func-
tion of the sublayers, excluding the first one which is linear.
Numbers of the neurons are l1 = 2 and li = 4, for i =
2, . . . , np. To perform a training the Levenberg-Marquardt
(LM) algorithm was used. Both GA methods were applied
for the neural network structure selection. For both cases
number of the chromosomes in population is specified. This
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parameter remains the same during the whole process. The
same individual can represent neural networks with the same
structure but different weights. In other words, if perfor-
mance of the controller is good, and we would like to choose
that representative for future selection and/or crossover in
order to form the next generation both chromosome and the
neural network should be saved. Further each GA algorithm
has its own preferences.

Model
Estimation

Initial
population

modified
randomly but

adding at
least one fully
connected NN

NN-Training

NN-SANARX
with tangent

sigmoid
activation

finction using
LM algorithm

Controller
design

see (10), (13)

Control
performance

testing

finding MAE
of the control
and order of
the model,

evaluation of
the population

Required
generation/

required error

Output
solution

New
population
formation

by selection,
crossing and

mutation
functions

yes

no

Fig. 4. Controller design conceptual algorithm

For the weighted sum approach percentage of crossover
rate equal to 70% was chosen, mutation rate - 2%, addition-
ally to avoid the premature convergence of the algorithm 1%

of the new blood (randomly generated individual) were used.
In order not to lose a good neural network at least 2 parents
from the previous generation were written directly to the next
one. Several combinations of weights of objective functions
were tried, but the most suitable solutions were provided as
follows

min z = 0.45 · z1 + 0.55 · z2.

The scaling coefficient in the first objective function (6)
c = 10. After 25 generations the next chromosome were
obtained chr = [1 1 1 0 0 0 0 0 0 0]. According to
the previously described decoding this individual represents
the next structure of the neural network, see Fig. 5.
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Fig. 5. Structure found with weighted sum approach

Results of the control are shown in Fig. 6. As it can be seen
designed controller a capable of reference signal tracking.

Fig. 6. Control with weighted sum method

Second GA uses a tournament selection. NSGA-II com-
bines previous population with offspring population, so
elitism strategy is also maintained here. After 25 generations
Pareto frontier was found. As this approach gives multiple
solutions, then the main problem is to find the optimal one
among them. This could be a problem if Pareto frontier is
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large enough and solutions with cd = ∞ are not best ones.
First ten representatives of the Pareto front were studied
in the final generation. The best control performance was
presented by the fifth neural network with chromosome
chr = [1 1 1 1 0 0 0 0 0 0]. In that case output of the
system depends on both inputs at time instance t = n− 2.

Control performance is shown in Fig. 7. Particular de-

Fig. 7. Control with NSGA-II method

signed controller showed a little bit better performance than
the previous one, but some overregulation and offset were
obtained then reference signal decreased drastically.

VII. CONCLUSIONS

Experiments showed that both methods of neural network
structure selection for controller design have good control
performance of a liquid level tank system. It should be noted
that initially mse function was used as one of the objectives.
Previously carried out computer simulations showed satis-
factory results. Unfortunately, in practice oscillations were
increased by the dead zone of the motor. So, in order to
avoid oscillations of the output signal, mae criterion was
used. Moreover, if during simulation offset was larger than
σ > 10%, chromosome representing that neural network was
given the maximal value of the z1 = 50 function, and thus
excluded the possibility to produce offsprings.

If number of objective functions is not large and level of
expertise of decision maker is high enough then weighed sum
approach could be preferable. Otherwise, with larger number
of the criteria choice of the objective function weights
becomes more complex, therefore NSGA-II approach could
be used.
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