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Abstract— We are organizing a challenge to reverse engineer
the structure of neuronal networks from patterns of activity
recorded with calcium fluorescence imaging. Unraveling the
brain structure at the neuronal level at a large scale is an
important step in brain science, with many ramifications in the
comprehension of animal and human intelligence and learning
capabilities, as well as understanding and curing neuronal
diseases and injuries. However, uncovering the anatomy of the
brain by disentangling the neural wiring with its very fine and
intertwined dendrites and axons, making both local and far
reaching synapses, is a very arduous task: traditional methods
of axonal tracing are tedious, difficult, and time consuming. This
challenge proposes to approach the problem from a different
angle, by reconstructing the effective connectivity of a neuronal
network from observations of neuronal activity of thousands of
neurons, which can be obtained with state-of-the-art fluores-
cence calcium imaging. To evaluate the effectiveness of proposed
algorithms, we will use data obtained with a realistic simulator
of real neurons for which we have ground truth of the neuronal
connections. We produced simulated calcium imaging data,
taking into account a model of fluorescence and light scattering.
The task of the participants is to reconstruct a network of 1000
neurons from time series of neuronal activities obtained with
this model. This challenge is part of the official selection of the
WCCI 2014 competition program.

I. INTRODUCTION

Understanding the brain structure and some of its al-
terations caused by disease, is key to accompany research
on the treatment of epilepsy, Alzeimer’s disorder and other
neuropathologies [1], as well as gaining understanding of the
general functioning of the brain and its learning capabilities.
At the neuronal level, recovering the exact wiring of the brain
(connectome) including nearly 100 billion neurons, having
on average 7000 synaptic connections to other neurons,
is a daunting task. Traditional neuroanatomic methods of
axonal tracing cannot scale up to very large networks. Could
there be alternative methods for recovering neuronal network
structures from patterns of neuronal activity? Today’s cutting
edge neurophysiology multi-electrode recording tools are
capable of recording (and even stimulating) of the order of
100 neurons [2]. Optical imaging of neuronal activity using
fluorescent calcium indicator molecules (calcium imaging)
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provide a tool to increase the number of neurons recorded
by three orders of magnitude (see [3], for a review). Recently,
researchers have been able to record activity of the brain of
a zebrafish embryo in 80% of its 100,000 neurons [4]. There
is an ever increasing set of tools to image the brain with
various fluorescent reporters [5]. The rapid improvements
of optogenetics methods for shutting down or switching on
neurons by shining laser light already allows stimulating up
to 1000 neurons (see Refs. [6, 7] for reviews). Mathematical
algorithms capable of discovering network structures are
faced with the challenge of solving a new inverse problem:
recover the neuronal network structure of a living system
given the observation of a very large number of neurons, with
the possibility of stimulating a subset of them. Monitoring
changes in effective connectivity patterns of a network in ac-
tion during behavior promises to advance our understanding
of learning and intelligence.

Challenges in bioinformatics to reverse engineer gene
networks such as DREAM1 and “SBV improver”2 do not
have yet their parallel in neuroscience. We are organizing
a challenge to stimulate the advancement of research on
neuronal network structure reconstruction algorithms from
neurophysiological data, including causal discovery meth-
ods. This challenge makes use of realistic simulations of
real networks of neurons observed via calcium fluorescence
recordings. The winning methods will be used to analyze real
data recorded from in vitro cultures of neurons (Figure 1) and
the proposed structure will be verified in part by experiments
conducted in a wetlab.

Fig. 1. Network reconstruction of in vitro neuronal cultures. White circular
objects are neurons. Arrows are “effective” connections between neurons
inferred from the analysis of their fluorescent calcium traces, as described
in Ref. [8].

1http://www.the-dream-project.org/
2https://www.sbvimprover.com/challenge-3/
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Our challenge makes available to the research community
simulated fluorescence recordings of neuronal activity, in
a format that does not require detailed understanding of
neurobiology, and therefore will give an opportunity to
computational intelligence scientists to make a contribution.
Our simulated data [8] includes variations in dynamical
regimes, as observed in living neuronal networks. In neuronal
cultures, for instance, it is known that network activity may
switch from a regime of synchronous activation (bursts) to
another one of quieter, incoherent dynamics. This switching
dynamics is a major challenge to network reconstruction,
since directed “effective” connectivity can be very different
during bursting and inter-burst phases [8]. It can bear a
resemblance to the underlying anatomical synaptic connec-
tivity only in selected dynamical regimes, in which causal
influences reflect dominantly mono-synaptic interactions.

It is anticipated that our challenge will also help advance
the state-of-the-art in inferring the structure of directed net-
works of units in general, beyond the neuronal connectomics
applications. The goal of this challenge is to infer directed
connections (synapses) of neuronal networks from patterns of
neuronal activity. Such an oriented network can be thought of
as a causal network. Neurons have complex temporal patterns
of activity. The problem can therefore be thought of as a
causal structure reconstruction problem from time series data.
Other instances of such problems are found in genomics,
climatology, epidemiology, engineering, and econometrics.

II. MOTIVATIONS

Although neuroanatomy is a very old science, connec-
tomics is a relatively new, but fast emerging, field. If sta-
tistical knowledge about connectivity patterns has been long
available (e.g. [9]), the aim of connectomics is to derive
the detailed structure of whole large-scale neuronal systems.
The first complete nervous system wiring diagram was
accomplished with the 300 cell nervous system of a model
organism: C. Elegans, a nematode worm, in the 1980’s. It
was deduced from reconstructions of electron micrographs
of serial sections [10]. Partial connectomes for larger ner-
vous systems including the fruit fly and the mouse have
since been produced with a combination of neuroanatomical
techniques [11]. But even the most advanced techniques for
labeling individual neurons with distinguishable colors via
a method called Brainbow [12] require a difficult tracing of
neuron ramifications, and the resolution of optical micro-
scopes is insufficient to reliably visualize synapses. Electron
microscopy provides sufficient resolution, but no color cod-
ing, and yields voluminous amounts of data that is being
analyzed very slowly with a combination of informatics
methods and human labor. In 2012, a Citizen science project
called EyeWire began attempting to crowdsource this task
through an interactive game [11].

Another type of approach consists in reconstructing net-
works of interaction between neurons from patterns of ac-
tivity to obtain an “effective topology”. Inferring network
topology from patterns of neuronal activity is not new. There
have been active research efforts in the recent years to

produce and analyze connectomic databases at the mesoscale
and macroscale level, based on non-invasive imaging tech-
niques of brain activity such as functional magnetic reso-
nance imaging (fMRI), including the Human Connectome
Project, led by the WU-Minn consortium. At the cellular
level, the effort of reconstructing networks from neuronal
activity can be traced back to a 2006 paper, already using
the terminology of “effective topology”, where only the
in-degree of a neuron was estimated based on the simple
logic “higher firing frequency = more inputs” [13]. The first
major study using calcium imaging identified “hub neurons”
with a simple cross-correlation approach [14]. This was
followed by a major contribution by the Paninski group at
Columbia also aiming at reconstructing the connectivity from
calcium fluorescence imaging data [15, 16]. The idea was to
first infer spike times as a Bayesian inverse problem, and
then infer the generalized linear model (GLM) kernels —
representing synaptic weights— of the supposed GLM for
the neurons. Their work builds on a rigorous study of GLM
models demonstrating reconstruction of spike data [17]. One
criticism of the approach is that it was proven successful
only with data generated with the same model as the model
used for reconstruction. Real neurons are very diverse and
an approach that is bound too tightly to a supposed model
of the neurons may be plagued with artifacts. This motivated
model-free network reconstruction techniques [8, 18].

Effective topology reconstruction is not sensu stricto the
same concept as establishing a map of “anatomically correct”
structural connections (actual synapses) because of a variety
of reasons, including:

1) Some anatomical connections may be missed by the
reconstruction because: (i) some synapses may be dor-
mant (weak or inactive); (ii) some interactions may be
invisible due to signal cancelation in feed-back circuits;
(iii) two (or more) neurons may be overlapping and
their signals merged.

2) Some spurious connections may be inferred because:
(i) some effective connections may be relayed by invis-
ible neurons and not correspond to actual synapses; (ii)
some effective connections may result from artifacts
of network reconstruction algorithms, which rely on
data limited in time resolution; (iii) some effective
connections may reflect real influences mediated by
collective network properties, rather than by pairwise
interactions.

However, algorithmic reconstruction approaches are far
more scalable than anatomical axonal tracing and the hope is
that, with improvements in imaging techniques, informatics
tools, and theoretical understanding of observed neuronal
dynamics, it will become possible to unravel connectomes
of the nervous systems of large organisms. This motivates
organizing this challenge.

We focus on reconstructing networks from so-called “ob-
servational data” which means the recording of cells let
to evolve according to their own dynamics, without inter-
vention of the experimentalists. This is in contrast with
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“interventional data” obtained by stimulating neurons with
external means (electrical, optical, or chemical). Forcing
given network nodes to assume given states, disconnect-
ing them from their natural influences from other network
nodes, is the basis of the experimental methodology in
causal inference. It is the only reliable way to unambigu-
ously unravel causal relationships (directed network con-
nections) from node activity. However, conducting proper
interventional experiments is costly, technically difficult,
and sometimes unethical or impossible. Optogenetics [6]
is one of the most promising methods because it offers
the possibility of intervening simultaneously on hundreds of
neurons. Optogenetic paradigms use genetic techniques to
induce the expression of light-activated ion channels into
a living organism such that focused shining of light can
trigger action potentials in the targeted neurons [19]. But,
the apparatus is complicated and expensive. Additionally,
intervening on neurons puts stress on them and cannot be
done extensively without damaging them.Moreover, inter-
vention on the network can change it by modifying the
strengh of the connections by plasticity processes (such as
long term potentiation or depression). For these reasons,
algorithms that unravel neuronal network structures from
purely observational data will remain important as standalone
methods or in conjunction with interventions to prepare them
or guide them. We believe that this is feasible, particularly
because from the perspective of complex dynamical systems
the distinction between “observational” and “interventional”
data (as made in the causal discovery literature) is blurred
by the fact that neuronal networks generate in a sense their
own self-organized set of experimental interventions by spon-
taneously bursting. Nonetheless, it is our intention to also
investigate how the methods developed by the participants
using observational data can be validated or complemented
using interventional data. This could lay the basis for a
new challenge of neuronal structure reconstruction blending
observational and interventional data.

III. BRIEF OVERVIEW OF NETWORK RECONSTRUCTION
METHODS

There is a rich literature on methods of network structure
reconstruction from observed time series, not only stemming
from research in neuroscience, but also machine learning and
econometrics, which have fueled the area of causal inference
from temporal data with numerous novel techniques [20].
Briefly, despite the 20th century rise to prominence of
statistics, initially intended to resolve causal quandaries in
agricultural and industrial process refinement, the field of
statistical causal inference is relatively young. Although its
pioneers have received wide praise (Clive Granger receiving
the Nobel Prize and Judea Pearl receiving the ACM Turing
Award) the methods they have developed are not yet widely
known and are still subject to refinement. Even though one
of the least controversial necessary criterion of establishing
a cause-effect relationship is temporal precedence, many
causal inference algorithms do not require time information
and establish possible causal relations among observations

on other grounds, based on conditional independence test-
ing [21], or, more recently, based on statistics of the joint
distribution of pairs of variables3. The work of Clive Granger,
built upon the 20th century development of time series
modeling in engineering and economics, with some input
from physiology, lead to a framework which admittedly does
not allow us to identify causality unequivocally, but has
received a lot of attention because of the simplicity of the
method and practical successes obtained in econometrics and
neuroscience [20].

The basic idea behind Granger causality to test whether
observations of time series of two variables A and B are
symptomatic of an underlying process “A causes B” rather
than “B causes A”, is to fit various predictive models
A(present time) and B(present time) as a function of A(past
times) and B(past times). Clues are obtained if A can be
predicted better from past values of A and B rather than
from A itself, but B cannot be predicted better from past
values of A and B rather than from B itself. Numerous
improved methods have been derived, incorporating, for
instance, frequency domain analysis in lieu of time domain
analyses [22]. One recent idea is to add contemporaneous
values of B to predict A and vice versa to take into account
instantaneous causal effect, due for instance to insufficient
time resolution [23]. In neuroscience, simple linear auto-
regressive (AR) models underlying Granger causality do not
capture well the complexity of neuronal signals. A non-linear
version of Granger causality called Transfer Entropy [24],
which reduces to Granger causality for simple AR mod-
els [25] is gaining popularity [26, 8].

It is well known that causal relationships can be con-
founded: the fact that A and B are correlated or co-variant
does not mean that A and B are in a causal relationship:
there may be a third common cause C. A typical way of
alleviating the problem of false positive causal relationships
is to perform conditional independence tests. If A and B
are independent given C, the existence of a direct causal
relationship between A and B is ruled out and the remaining
possibilities are A → C → B, B → C → A or
A ← C → B. However, one of the greatest challenges that
network structure reconstruction methods have to face is the
curse of dimensionality. With the explosion of the number of
variables it becomes quickly impractical to reliably conduct
conditional independence tests, which require a number
of samples exponential in the number of variables jointly
tested. Moreover, it is practically never possible to record
all the neurons of a network (with fluorescence methods for
instance, some neurons may be invisible or not marked).
Hence it is likely that one would violate the assumption of
“causal sufficiency” (namely that no neuron that influences
two observed neurons is unobserved), which often made by
methods relying on conditional independence tests.

Another approach, which is not limited to statistics of pairs
of variables, is to use score-based methods, by performing

3For a bibliography, see http://webdav.tuebingen.mpg.de/
causality/.
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a search in the space of all possible architectures, guided
by an objective function assessing the goodness of signal
reconstruction (possibly penalized to favor sparse connec-
tivity). Such methods include Bayesian approaches such as
Dynamical Causal Modeling (DCM) [27], which compare
data generating models formulated in terms of differential
equations (modeling the dynamics of hidden states in the
nodes of a probabilistic graphical model), where conditional
dependencies are parameterized in terms of directed effective
connections. Other related methods include L1 and/or L2
penalized regression methods [28].

Another possible remedy to the problem of confounding,
which attacks the problem of the curse of dimensionality
from a different angle, is to recourse to conditioning on the
average activity of the population of nearby neurons rather
than on combinations of single neurons, then rely only on
statistics of joint activity of pairs of neurons [8, 29]. The
promising results of the “Cause-Effect Pairs” Challenge that
we recently organized demonstrates that we can go a long
way to infer causal relationships from pairs of variables,
without conditioning on other variables.4 The Area under
the ROC Curve (AUC) of the top ranking participants
exceeded 0.8, on a combination of real and artificial data
(an AUC of 0.5 is obtained for random guesses and the
perfect score is 1). The methods used by the participants are
model-free. They exploit features of the joint distribution of
two variables, some of which are derived from information
theoretic principles. The predictions are made with pattern
recognition algorithms trained on thousands of examples of
cause-effect pairs. The challenge was limited to data samples
not time-ordered. For this reason, we are planning a new
Cause-Effect Pairs Challenge for Time-Series Data, which
will be held in conjunction with the challenge described in
this paper. The hope is that such techniques could be applied
with success to our new network structure reconstruction
challenge, possibly even reaching better performance after
preprocessing by conditioning on average activity of nearby
neurons and by exploiting the availability of time ordering
of samples.

IV. CHALLENGE DESIGN

Each scientific discipline has its favorite approach, not
necessarily reflecting better match of techniques to domains,
but rather historical tradition. Standard benchmarks are
needed to foster scientific progress, but the design of a good
benchmark, which is not biased in favor a particular model
or approach, is not trivial. Our team includes neuroscientists
and seasoned challenge organizers. This allowed us to define
a number of tasks geared towards deriving conclusive and
statistically significant results.

A. Protocol sketch

The goal of the challenge is to predict the directed con-
nections (synapses) of a neuronal network, given calcium
fluorescence imaging recordings of the activity of each

4http://clopinet.com/isabelle/Projects/NIPS2013/

neuron in this network. We devised tasks of progressive
difficulty. In this first challenge organized for WCCI 2014,
the participants’ task will be to reconstruct the structure of
a medium size network (1000 neurons). We are planning
a follow-up challenge on a much larger network of 80,000
neurons. The motivation behind having a first challenge on
a smaller size network is to lower the barrier of entry.
The follow up challenge will then force the participants to
scale their method up to address a more computationally
challenging task.

During a development period, the participants will ex-
periment with sample data generated from several “training
networks” of sizes 50-500 neurons, spanning a variety of
topologies and dynamical behaviors, using a realistic sim-
ulator of real neuronal networks. The architecture of the
“training networks” will be revealed to the participants. Other
networks will be used to generate “validation” and “test”
data, for which the truth values of the network connections
will be hidden to the participants. The goal of the challenge
is to predict the unknown network connections. The vali-
dation data will be used for practice purposes during the
development period. The final ranking and the selection of
the winners will be based on the test data. The workflow
of data generation and challenge participation is outlined
is (Figure 2). More details on the data are provided in
Section V.

Submissions are made via a web-based platform provided
by Kaggle.com. During the development period, the partic-
ipants will make practice submissions using the validation
data. On-line immediate feed-back on performance will be
provided and posted on a public leaderboard. This should
stimulate participation. The submissions using final data will
also be made via the on-line platform. The results on final
data will be kept on a private leaderboard visible only to the
organizers until the challenge ends and the final rankings are
revealed.

We provide a brief tutorial, baseline software based on the
Transfer Entropy (TE) method [8], and a sample submission
produced with the software.

B. Evaluation metrics

In a network of n neurons, there are n2 potential directed
connections (including self-connections). For each “ordered
pair” (i, j) of neurons among n2 possible combinations, the
problem is to determine whether there is a connection i→ j.
We can there formulate the network structure reconstruction
problem as a classification problem:

• Classify (i, j) as 1 (positive class) if neuron i has a
connection to neuron j.

• Classify (i, j) as -1 (negative class) otherwise.
Note that a “connection” refers to an effective connection,
which may correspond to one or more synapses (physi-
cal connections), since a neuron commonly makes several
synapses with another neuron.

The score provided by the participants for each ordered
pair of neurons will be understood as a discriminant value.
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Fig. 2. Data production and challenge workflows: (a) Data production, (b)
Challenge, (⇔ predictions are compared to the true connections).

The classification performance will be evaluated with the
area under the ROC curve (AUC). The AUC is equivalent
to the area under the curve obtained by plotting sensitivity
(success rate of the positive class) against specificity (success
rate of the negative class), by varying a threshold on the
prediction values to determine the classification result. The
AUC on test data will be used for ranking the participants.

Approximate error bars can be computed to evaluate the
test set size necessary to get good performance estima-
tion [30]. For a test network of n = 1000 neurons, a decision
on N = n2 = 106 potential connections must be made. N
is the number of “examples” to be classified. However, we
have sparsely connected networks, so only about f = 10% of
the examples belong to the positive class. In reference [31],
we adapted the error bar formula to the case of imbalanced
classes: E '

√
p(1− p)/(2fN). Where p is the anticipated

balanced success rate (BAC), the average of the sensitivity
and the specificity. The BAC is equivalent to the AUC for
the optimal sensitivity and specificity tradeoff. Based on the
preliminary work of our collaborators [8], we anticipate a
success rate of the order of BAC=0.9. This leads to an error
bar of: E '

√
0.9(1− 0.9)/(2× 0.1× 106) ' 10−3.

Having a global figure of merit such as the AUC is
convenient to summarize results and rank the participants.

However, it does not provide a fine analysis of the strengths
and weaknesses of the methods. In post challenge analyzes,
we will make use of additional metrics. Specifically, we
will threshold the scores of the participants at the level of
the real probability of connection known from the literature
(taking the top 12% as reconstructed links). We will then
compute the fraction of correctly identified motifs of triples.
Of particular interest are the triples {A,B,C} with true
structure A → B and A → C with no link B → C (co-
causation) and the triples with true structure A → B and
B → C and no link A→ C (indirect causation). The study
of motifs is an important step towards understanding the
functionality of larger circuits [32]. We may also include
higher order motifs of interest based on a literature survey.

Our test networks are designed such that sub-networks
have various degrees of node clustering. It will also be
interesting to study the correlation between clustering co-
efficients in the sub-networks that generated the data and in
the reconstructed connectivity.

C. Prizes

Anybody complying with the rules of the challenge, with
the exception of the organizers, will be eligible to enter the
challenge. However, the participants barred from receiving
compensations from US sources by US export regulations
will be barred from winning prizes. The participants will be
allowed to remain anonymous, except if they want to claim
a prize. The will have to be organized in mutually exclusive
teams. The participants will make only one final submission
for the test network. After the challenge is over and before
the prizes are attributed, (i) All participants will be asked
to fill out fact sheets describing their methods if they want
to be ranked in the challenge; (ii) To qualify for prizes,
the top three ranking participants will have to make their
source code available under a popular OSI license (http:
//opensource.org/licenses). The organizers will
verify the reproducibility of the results by executing the code
using the datasets of the challenge. (iii) To qualify for prizes,
the top three ranking participants will have to contribute a
paper to the proceedings.

We will attribute 3000 USD in prizes to the winners,
donated by ChaLearn:

• First place: 500 USD and 1000 USD travel award.
• Second place: 250 USD and 750 USD travel award.
• Third place: 100 USD and 400 USD travel award.

The travel awards may be used for one of the workshops
organized in conjunction with the challenge. The award
money will be granted in reimbursement of expenses in-
cluding airfare, ground transportation, hotel, or workshop
registration. Reimbursement is conditioned on (i) attending
the workshop, (ii) making an oral presentation of the methods
used in the challenge, and (iii) presenting original receipts
and boarding passes.

V. DESCRIPTION OF THE DATA AND SUBMISSION FORMAT

We are using simulated data supplied by a realistic sim-
ulator of real neurons and a model of calcium fluorescence
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recording, providing data closely resembling real recordings
of cultured neurons, while providing unequivocal ground
truth of synaptic connections. The data were generated
using a simulator extensively studied and validated [8]. The
dynamic behavior of the neurons was adjusted to reproduce
collective properties of real networks of cultured neurons.
The model also simulates limitations and defects of the
imaging technology (calcium fluorescence): limited time
resolution (not allowing to separate individual spikes) and
light scattering artifacts (by which the activity of given
neuron influences the measurements of nearby neurons).
Reconstructing networks from artificially generated data can
be thought of as a futile mathematical exercise. This is why
we have moved away from reconstructing data generated
by simple models such as Bayesian networks or Structural
Equation Models making over-simplifying assumptions of
linearity and Gaussianity. The data simulator that we are
using integrates realistic scenarios at three levels [8]:

• Network structure: At the network architecture level
we use topologies as close as possible to natural topolo-
gies. We use connectivity models taking into account
neuron proximity and enforcing a realistic degree of
node clustering. We hide a certain number of neurons,
accounting for the fact that only about 80% of neurons
are visible in real experimental data. This makes the
problem of structure reconstruction considerably more
difficult.

• Neuron models: We use leaky integrate-and-fire
models of spiking neurons, as implemented by the
NEST simulator (Neuronal Simulation Technology, see
http://www.nest-initiative.org/). The dynamic regimes
reproduce faithfully experimentally observed neuronal
recordings. However, in this first challenge, we consider
only excitatory synapses as an experimentally mean-
ingful simplification and further restrict ourselves to
constant value synapses. More complexity will be added
in the follow up challenge.

• Fluorescence model: We simulate the calcium fluores-
cence time series taking into account time averaging and
light scattering effects. The signals generated closely
resemble real data.

For development purposes, we will provide simulated
neuronal recordings for various network sizes in the range
50-500 neurons, generated under varying conditions of con-
nectivity and exhibiting a range of dynamical behavior. The
truth values of the network connection will be supplied for
such “training networks”, which the participants will use to
make predictions on the submission platforms for practice
purposes.

Our final test set will consist of data from a network of
1000 real neurons simulating cultures neurons. The architec-
ture of the network will be designed such that sub-networks
exhibit a range of node clustering to test the robustness of the
reconstruction algorithms. The simulated neuronal recordings
will be obtained with the same neuronal simulator used to
generate the training data. The truth values of the network

connections will not be provided to the participants, since
the goal of the challenge is to uncover them. The validation
set will be contructed similarly as the test set, but with a
different simulated network.

We are providing to the participants data consisting of
simultaneous recordings of neurons in networks of:

• n neurons (n varying from 50 to 1000)
• sparsely connected (with an average probability of con-

nection of 0.12)
• coming as tables with neurons in columns and time

samples in lines
• for each network we supply 180k time samples (1h of

recording at 50fps)
• we supply the position of the neuron in two dimensions

(emulating a neuronal culture).
To generate a rich set of training networks, we varied

the parameters of the network construction and dynamical
simulation. The data include:

• 2 networks with the same parameter sets as the valida-
tion and test data,

• a network with higher/lower sparsity,
• a network with higher/lower rate of external inputs,
• a network with higher/lower camera noise,
• a network with higher/lower maximum clustering index.
The contestants will return in a text file a vector of pre-

dictions suitable to be scored by the competition platforms.
Each line will be associated with one ordered pair of neurons
(i, j) and will provide a score that neuron i influences neuron
j via a direct synaptic connection.

VI. BASELINE SOFTWARE AND BASELINE RESULTS

We prepared a software kit written in Matlab to help the
participants getting started, which we are making publicly
available. The kit includes:

• Data visualization software showing a movie of simu-
lated calcium fluorescence.

• Network visualization software.
• Time series visualization software.
• Baseline network reconstruction software.

The baseline network reconstruction method, which we im-
plemented, is described in details in [8]. It is based on
Generalized Transfer Entropy (GTE), which is an extension
of Transfer Entropy first introduced by Schreiber [24], a
measure that quantifies predictive information flow between
stationary systems evolving in time. It is given by the
Kullback-Leibler divergence between two models of a given
time series, conditioned on a given dynamical state of the
system, which in the case of fluorescence signals corresponds
to the population average. Transfer Entropy captures linear
and non-linear interactions between any pair of neurons in
the network and is model-free, i.e., it does not require any a
priori knowledge on the type of interaction between neurons.

Apart from GTE, we have also provided the implemen-
tation of cross correlation and two information gain (IG)
measures based on entropy and gini for network reconstruc-
tion. Cross correlation gives best results when there are
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zero time delays, which reduces it to a simple correlation
coefficient measure. Hence, all these methods treat the data as
independent instances/points in space instead of time series
data.

Another module that we have added to our software
kit is a supervised learner, which extracts features from a
network whose ground truth values are known and builds a
simple linear classifier for learning whether a connection is
present between two neurons or not. Currently, the features
extracted are GTE, correlation, information gain using gini
and information gain using entropy.

We ran the sample code on the six small networks that
we have made available to the participants. Each network
contains 100 neurons and their ground truth values are also
made publicly available. Table I gives the results on all of
the afore mentioned methods for all the six networks. As we
can see GTE outperforms all other methods for almost all
the networks.

TABLE I
AUC FOR DIFFERENT METHODS WITH 100 NEURONS

Small GTE Correlation IG IG Trained
networks Coefficient (gini) (entropy) Predictor
network 1 0.643 0.5224 0.5217 0.5246 0.5384
network 2 0.7036 0.5789 0.5854 0.5789 0.6011
network 3 0.7848 0.6995 0.7153 0.6964 0.7514
network 4 0.8280 0.8081 0.7790 0.7648 0.8290
network 5 0.8749 0.7061 0.6186 0.7062 0.8375
network 6 0.9156 0.8816 0.8382 0.8563 0.9206

Sample code was generated in C++. The conditioning level
(CL) for correlation, cross-correlation, and Granger causality
was 0.25 and for GTE was 0.10 and 0.15. Table II gives the
results for all of the afore mentioned methods for all the six
networks.

TABLE II
AUC FOR DIFFERENT METHODS WITH 100 NEURONS

Small Correlation Cross Granger GTE GTE
networks Coefficient Correlation Causality CL=0.10 CL=0.15
network 1 0.6155 0.5591 0.4815 0.6451 0.6733
network 2 0.6602 0.5674 0.4877 0.7339 0.7223
network 3 0.7453 0.5862 0.4831 0.8115 0.7993
network 4 0.8165 0.5811 0.4924 0.8646 0.8479
network 5 0.8315 0.5725 0.4775 0.8857 0.8796
network 6 0.9242 0.7632 0.4818 0.9396 0.9379

Results obtained using Python code for correlation coeffi-
cient without and with discretization at -10, 10, and 20 and
number of bins = 3 are summarized in Table III.

Using the sample code, we generated two benchmark
submissions for the challenge on the validation set of 1000
neurons. One based on the correlation coefficient, giving an
AUC of 0.873 and one using GTE which gives a slightly
higher AUC of 0.880. The correlation coefficient takes a
couple of minutes to run on a regular laptop computer.
Although the ROC curve yields a relatively high AUC value,
there’s still a lot of room for improvement. Given that the
real network is sparse, only the beginning of the ROC curve

TABLE III
AUC FOR DIFFERENT METHODS ON THE 6 SMALL NETWORKS WITH 100

NEURONS AND TWO WITH 1000 NEURONS

Small Correlation Correlation Correlation
networks Coefficient Coefficent Coefficent

without with bins = 3
discretization discretization

network 1 0.5665 0.6155 0.5357
network 2 0.5734 0.6602 0.5935
network 3 0.5923 0.7453 0.6971
network 4 0.5874 0.8165 0.7679
network 5 0.5784 0.8315 0.7066
network 6 0.7634 0.9242 0.8573
normal-1 0.6816 0.8808 0.6752
normal-2 0.6995 0.8764 0.7577

is really interesting, usually up to 10% false positives where
currently only a 70% of the true positives are detected. After
around a week of the launch of the challenge, participants
had already crossed the benchmark scores and reached AUC
above 0.90. We expect the participants to reach much higher
values, hopefully above a 90% of true positives at the 10%
false positive mark, corresponding to an AUC over 0.95.

VII. CONCLUSION

This challenge will push the computational intelligence
community to scale up methods of network structure discov-
ery. We will provide baseline methods and tutorial material
to induce participation. Our proposed setting will allow
computational intelligence scientists to make a contribution
without having an in depth understanding of neuroscience.
In post challenge analyses, the structures hypothesized from
new real data by the winning methods will be verified
by actual wetlab experiments. If accepted, this paper will
be updated with preliminary challenge results before its
publication. The results will be presented at the WCCI 2014
conference, where the winners will be awarded their prizes.
The challenge platform will remain open beyond the end of
the challenge as an on-going benchmark and the datasets will
be made publicly available.
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Statistics and Geometry (Studies of Brain Function).
Springer, 1991.

[10] J. White, E. Southgate, J. N. Thomson, and S. Brenner,
“The structure of the nervous system of the nematode
c. elegans,” Philosophical transactions Royal Society
London, vol. 314, pp. 1–340, 1986.

[11] S. Seung, Connectome: How the Brain’s Wiring Makes
Us who We are, ser. A Mariner Book. Houghton
Mifflin Harcourt, 2012.

[12] J. Livet, T. A. Weissman, H. Kang, R. W. Draft,
J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman,
“Transgenic strategies for combinatorial expression of
fluorescent proteins in the nervous system.” Nature, vol.
450, no. 7166, pp. 56–62, 2007.

[13] D. Eytan and S. Marom, “Dynamics and effective
topology underlying synchronization in networks of
cortical neurons,” J Neurosci, vol. 26, no. 33, pp. 8465–
76+, 2006.

[14] P. Bonifazi, M. Goldin, M. A. Picardo, I. Jorquera,
A. Cattani, G. Bianconi, A. Represa, Y. Ben-Ari, and
R. Cossart, “GABAergic hub neurons orchestrate syn-
chrony in developing hippocampal networks.” vol. 326,
no. 5958, pp. 1419–1424, 2009.

[15] J. T. Vogelstein, B. O. Watson, A. M. Packer, R. Yuste,
B. Jedynak, and L. Paninski, “Spike inference from cal-
cium imaging using sequential Monte Carlo methods.”
Biophysical journal, vol. 97, no. 2, pp. 636–655, 2009.

[16] Y. Mishchenko, J. T. Vogelstein, and L. Paninski, “A
Bayesian approach for inferring neuronal connectivity
from calcium fluorescent imaging data,” The Annals of
Applied Statistics, vol. 5, no. 2B, pp. 1229–1261, June
2011.

[17] W. Truccolo, U. T. Eden, M. R. Fellows, J. P.
Donoghue, and E. N. Brown, “A Point Process Frame-

work for Relating Neural Spiking Activity to Spiking
History, Neural Ensemble, and Extrinsic Covariate Ef-
fects,” Journal of Neurophysiology, vol. 93, no. 2, pp.
1074–1089, 2005.

[18] J. G. Orlandi, O. Stetter, J. Soriano, T. Geisel, and
D. Battaglia, “Transfer entropy reconstruction and la-
beling of neuronal connections from simulated calcium
imaging,” 2013.
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