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Abstract— Semi-supervised clustering aims at boosting the
clustering performance on unlabeled samples by using labels
from a few labeled samples. Constrained NMF (CNMF) is
one of the most significant semi-supervised clustering methods,
and it factorizes the whole dataset by NMF and constrains
those labeled samples from the same class to have identical
encodings. In this paper, we propose a novel soft-constrained
NMF (SCNMF) method by softening the hard constraint in
CNMF. Particularly, SCNMF factorizes the whole dataset into
two lower-dimensional factor matrices by using multiplicative
update rule (MUR). To utilize the labels of labeled samples,
SCNMF iteratively normalizes both factor matrices after up-
dating them with MURSs to make encodings of labeled samples
close to their label vectors. It is therefore reasonable to believe
that encodings of unlabeled samples are also close to their
corresponding label vectors. Such strategy significantly boosts
the clustering performance even when the labeled samples
are rather limited, e.g., each class owns only a single labeled
sample. Since the normalization procedure never increases the
computational complexity of MUR, SCNMF is quite efficient
and effective in practices. Experimental results on face image
datasets illustrate both efficiency and effectiveness of SCNMF
compared with both NMF and CNMEF.

I. INTRODUCTION

LUSTERING is an unsupervised learning task, which

has been widely used to find natural groups and clus-
ters of unlabeled samples based on similarity, proximity or
continuation [1].However, in many applications, traditional
clustering methods perform unsatisfactory on some datasets
because they never utilize any prior knowledge.It is natural to
use accessorial information such as class labels to improve
the performance. In practice, it is extremely expensive to
obtain labels of the whole dataset, but we usually can get
labels for partial samples [2]. Recently, semi-supervised
clustering [3][4][5] has attracted much attentions to solve
this problem.

Semi-supervised clustering employs class labels to fa-
vorably boost clustering performance on unlabeled samples
by transferring labels of partial samples to enhance their
discriminative ability. Seeded K-Means [6] and constrained
K-means [6] are two well-known semi-supervised clustering
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algorithms, both of which treat the labeled samples as seed
sets. The semi-supervised algorithms iterate two steps: 1)
the seed sets are used to initialize the centroids for each
class, and the label of each sample is assigned according
to its distance to centroids, and 2) the centroids are re-
estimated in virtue of current labels, until convergence.
Seeded K-means re-estimates labels of all samples in each
iteration round, while constrained K-Means keeps the labels
of seeds unchanged throughout.Constrained normalized cuts
(CNC) [7] incorporates the prior information into graph
partition clustering algorithm, which is designed to deal
with constraint pairs by specifying two must-link samples in
clustering. CNC enforces the constrained samples to share
identical cluster indicator, and thus the reminding samples
take the advantage of the constrained samples.

Non-negative matrix factorization (NMF) [8], as a useful
dimension reduction method, has attracted a lot of attentions
in recent years. It has been practically proven that NMF is an
effective clustering method [9][10][16]. NMF decomposed
an original matrix into two lower-rank non-negative matrices,
namely, basis matrix and coefficient matrix, where the basis
matrix can be considered as centroids of clusters, and the
coefficient matrix indicates membership of clusters for each
sample. Recently, numerous works have addressed the semi-
supervised non-negative matrix factorization problem [11]-
[15]. Some studies have shown that the classical clustering
methods such as K-means and spectral clustering are theo-
retically equivalent to NMF [17]. Liu e al. [12] proposed
a Constrained NMF (CNMF), which takes labels of partial
samples as a hard constraint. In particular, CNMF decom-
poses the coefficient matrix into the product of two matri-
ces including the label-constrained matrix and the indicator
matrix. It forces samples with identical class label to have
consistent coordinate in the reduced dimensional space, and
thus samples show more discriminative. However, CNMF
fails in case that each class has only one labeled sample,
since the constraint matrix degenerates to an identity matrix
and takes no effect. NMF-« [15] makes a good combination
of NMF and SVM, which utilizes limited labeled samples to
achieve the support vectors of large-margin classifiers. NMF-
« assumes that the achieved support vectors show discrimina-
tive in the NMF subspace. However, limited labeled samples
hardly form effective classifier for the whole dataset, and
thus NMF-« fails in many real word applications.

In this paper, we propose Soft-Constrained NMF (SCNM-
F) to solve the aforementioned problems by incorporating the
labels of partial samples to boost the clustering performance



on the unlabeled samples on the fly of multiplicative update
rule (MUR) for the standard NMF. In particular, SCNMF
normalizes the encoding of labeled samples to approximate
their label vectors, and thus softens the label constraint. To
keep the convergence of each step of MUR, SCNMF revises
the centroids accordingly, and the revised centroids reshape
the encoding of unlabeled samples in the next step.It is
therefore reasonable to believe that the encoding of unlabeled
samples also approximate their corresponding label vectors.
The advantages of SCNMF lie in two-folds: 1) SCNMF
works well when each class owns only a few labeled sam-
ples,e.g., there is single labeled sample in each class, because
the approximate encodings distinctively differentiate samples
in different classes, and 2) SCNMF is efficient because the
normalization step does not increase the time complexity
of MUR. The experimental results on classical face image
datasets show that SCNMF outperforms the representative
semi-supervised NMF clustering algorithms.

The remainder of this paper is organized as follows:
Section 2 briefly reviews NMF and CNMF, and Section
3 presents SCNMF. Section 4 verifies the effectiveness of
SCNMF and Section 5 concludes this paper.

II. RELATED WORKS
A. Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) [8] approximates
the data matrix, i.e,V = [v1,v2,---v,] € R]™ by the
products of two lower-rank non-negative matrices, i.e., W =
[wl,wg, s wc] € RTXC and H = [hl, hg, ce hn] S Ri_xn
. where ¢ (¢ < min(m,n)) denotes the number of reduced
dimensionalities. In mathematics, the objective function of
NMF is

min f(W, H) = ||V — WH||% st. W,H>0. (1)

NMF has been widely used in clustering tasks. If ¢ equals
to the number of clusters, W can be treated as cluster cen-
troids and columns of H indicates the cluster membership of
samples. Moreover, NMF has also been theoretically proven
to be equivalent to classical clustering methods such as K-
means and spectral clustering algorithms [17] and has been
practically proven to be effective on document clustering [17]
and image clustering [12]. The most popular NMF solver is
multiplicative update rule (MUR):

VHT wtv
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where ® denotes the element-wise multiplication, which
alternatively updates W and H until convergence. Other
NMF solvers [18][19][21] have been proposed, but they all
seek only local minimum because the objective function of
NMF (1) is non-convex.

On the other hand, NMF is non-unique because
f(W, H) f(WD~1 DH) for any diagonal matrix D
whose diagonal elements are positive. In this paper, we
significantly boost the performance by determining D based
on the labels of partial samples.
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B. Constrained NMF

Constrained NMF (CNMF) [12] is a well-known semi-
supervised NMF algorithm, which decomposes the data ma-
trix into the product of three parts and embeds the labels of
partial samples in a constraint matrix. The objective function
of CNMF is

min ||V — WHA||% s.t. W,H >0, 3)
W,H

where A is a constraint matrix and constrains the coefficients
of samples from the same class to be identical. However,
CNMF fails if each class has only a single labeled sample
because degenerates to an identity matrix in that case.

III. SOFT CONSTRAINED NMF

Soft-Constrained NMF (SCNMF) effectively utilizes la-
bels of partial samples to constrain their indicators, and thus
significantly improves the discriminative ability of unlabeled
samples. Given an sample matrix V' = [v1,vg, - ,v,] €
RTX" which consists of n samples, without loss of general-
ity, we assume that the first [ samples are labeled, and the rest
u samples are unlabeled, where © = n — [ . Supposing that
there are c classes and each class has at least one labeled
sample, we construct label matrix Y; € Re*L for labeled
samples as follows:

|1 if v; labeled with i
(Y)ij = { 0 otherwise

where each column corresponds to a label vector. We de-
compose V into the product of W and H, ie., V
W H, like NMF. Different from NMF, we expect that the
encodings of labeled samples to be as close as their label
vectors. To this end, we introduce a diagonal matrix D with
positive diagonal elements to normalize the decomposition,
iie, WH = WD 1DH, and constrain that Y; equals to the
encodings of labeled samples H; after normalization, i.e.,
DH,; =Y. The objective function of SCNMF is:

“

~
~

|V-WD 'DH|%, s.t., Dy >0,DH, =Y.

&)

Note that D~'D = I, the introduced matrix D does

not change the objective value, and thus the traditional

multiplicative update rule (MUR) can be adopted to solve
SCNMF without any modifications, i.e.,

min
W>0,H>0,D

\g:
W=We ©)
and .
wW+v
H=H& e ™

To meet the equality constraint in (5), we apply a nor-
malization step after MUR and determine the matrix for
normalization as follows:

. . 2
]§n”1§0|\DHl Yill7 ®)



Let {di,...,d.} denote the diagonal elements of D, by
solving (8), we have
Y,HT
d; = L )i 9
(HIHZT ) ©)

After obtaining the optimal D , we normalize both W and
H by

W=wD"! (10)

and

H=DH (11)

respectively.

On the fly of MUR, i.e., (6) and (7), followed by normal-
ization, i.e., (9), (10), and (11), H; gets closer and closer
to Y;. Since both H, and H; are normalized through the
identical D, the encodings of unlabeled samples H,, approx-
imates their encodings. Since the matrix D is calculated by
the analytic formulation (9) and the normalization operators
(10) and (11) never increase the computational overheads,
SCNMF is as efficient as the standard NMF. However,
SCNMF benefits much from the normalization step based on
the labels of partial samples, and thus significantly boosts the
clustering performance on the unlabeled samples.

IV. EXPERIMENTS

In this section,we conduct several experiments to verify
SCNMF on four face image datasets including ORL [22],
Yale [24], FERET [23] and UMIST [25]. The ORL dataset
consists of 40 individuals and 10 images for each individual.
The Yale dataset has 11 individuals and 15 images for each
individual. The FERET dataset has 700 images and 7 images
for each individual. And the UMIST dataset has 575 images
taken from 20 individuals. We evaluate the effectiveness
of SCNMF in image clustering at four aspects: 1) more
representative cluster center, 2) better cluster performance, 3)
more robust with variant label size, and 4) less running time.
We use both accuracy (AC) and normalized mutual informa-
tion (NMI) to compare different algorithms. The concrete
definition of both metrics can be found in [10][26][27]. For
the fairness of comparison, all algorithms are evaluated on
the same labeled samples and unlabeled samples.

A. Ilustration of Cluster Centers

We firstly investigate the cluster centroids, i.e., the basis
matrix, of SCNMF compared with those obtained from both
NMF and CNMF on ORL and FERET datasets. In this
experiment, we randomly select two labeled samples for each
class. Figure 1 and Figure 2 visualizes the basis images
learned from ORL and FERET datasets, respectively.

From both Figure 1 and Figure 2, we can observe that
the bases of SCNMF are more representative than those
learned by NMF and CNMF. It shows that the reconstructed
bases of SCNMF accurately describe the cluster centroids.
However, the hard constraint of CNMF makes bases blurred.
It is difficult to appoint each base to any specified cluster.
The bases learned by SCNMF show a great superiority in
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Fig. 1. The basis of SCNMF(3rd row), CNMF (4th row ), and NMF (5th
row) on the ORL dataset, and the top two rows display the two constrained
labeled samples from each class
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Fig. 2. The basis of SCNMF (3rd row), CNMF (4th row ), and NMF
(5th row) on the FERET dataset, and the top two rows display the two
constrained labeled samples from each class

clustering. We will validate the effectiveness of these bases
in the next section.

B. Clustering on Face Image Datasets

In this section, we evaluate the clustering performance of
SCNMF on the ORL, FERET, YALE, and UMIST datasets
by comparing with CNMF [12] and NMF-« [15]. In this
experiment, according to [12], we vary the number of classes
from 2 to 10 and randomly select two labeled samples for
each class. Such trial was repeated ten times and averaged
AC and averaged NMI were reported. Figures 3 to 6 show
the clustering performance of SCNMF on the ORL, FERET,
YALE, and UMIST datasets, respectively.
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Fig. 3. The averaged AC (a) and averaged NMI (b) of SCNMF, NMF,
NMF-a and CNMF versus the number of classes on the ORL dataset

Figures 4 to 6 show that SCNMF performs much better
than NMF, CNMF and NMF-a. This observation confirms
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Fig. 5. The averaged AC (a) and averaged NMI (b) of SCNMF, NMF,
NMF-a and CNMF versus the number of classes on the YALE dataset 3
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discriminative of unlabeled samples.
C. Performances versus Label Size

In this section, we evaluate the performance of SCNMF @ 0o ()
by varying the number of labeled samples in each class e N
(denoted by label size). In this experiment, we selected a 0.85= = NMF-o.

subset comprised of images taken 10 individuals of the ORL,
FERET, YALE and UMIST datasets. Figures 7 to 10 depict
the experimental results when the label size varies from 1
to 5. Various numbers of labeled samples were randomly
selected from images of each individual and such trail was
repeated ten times with the averaged AC and averaged NMI
are reported.

From Figures 7 to 10, we can see that the curves of
SCNMF rise rapidly as increasing of the label size. In
contrast, both AC and NMI of CNMF and NMF-« increase

3
label size

Fig. 10.
on UMIST
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AC and NMI of SCNMF, NMF-a and CNMF versus label size



AC

rather gently as increasing the label size. It is reasonable to
believe that SCNMF can more sufficiently take the effect of
the provided labels than CNMF and NMF-a.

D. Complexity Analysis

SCNMF does not introduce auxiliary matrix, and thus
never increase the time complexity of NMF, i.e., ¢(mnc)
for each iteration round. Note that both CNMF and NMF-«
terribly increase the complexity of NMF due to the influence
of the constraint matrix. In particular, the time complexity of
CNMF is ¢(m(n—I1+c)(2n+2c)), where [ is the number of
labeled samples. Since [ < n and ¢ < n , SCNMF has much
less time complexity than CNMF. The time complexity of
NMF-« is ¢(mn(c+n)) which is much greater than SCNMF.
We compare performance versus CPU time to validate the
efficiency of SCNMF.
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Fig. 11. AC, NMI and Time (second) versus iterations on ORL
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Figures 11 to 14 show that SCNMF takes less CPU
time than CNMF and NMF-«a to achieve better clustering
performance. By comparing the curves of SCNMF and NMF,
we can see that the normalization step significantly boosts
the clustering performance by incorporating the labels of
partial samples without bringing in any extra computational
overheads. Due to its simplicity and effectiveness, SCNMF
provides a framework of boosting for semi-supervised NMF

AC
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200

200
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Fig. 14. AC, NMI and Time (second) versus iterations on UMIST

algorithms. Hence, SCNMF can be extended to other NMF
models such as manifold regularized NMF [26] and online
NMF [20].

V. CONCLUSIONS

This paper introduces a soft-constrained non-negative ma-
trix factorization (SCNMF) algorithm which boosts the clus-
tering performance on unlabeled samples by incorporating
the discriminative information of a few labeled samples.
Since SCNMF smartly embeds the discriminative informa-
tion of labeled samples in the normalization step of the
multiplicative update rule in standard NMF without bringing
in any extra overheads, it is quite efficient and effective, and
provides a framework for boosting NMF algorithms. The
experiments on real-world datasets confirm both efficiency
and effectiveness of SCNMF.
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