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Abstract—We propose a scheme that mimics the analog
time dependent learning characteristics of biological synapses
using a small set of discrete nanoscale RRAM devices whose
switching voltages vary stochastically. Using numerical mod-
els and simulations, we demonstrate that a voltage limited
analog memristor operating in the tunneling regime and a
parallel combination of < 10 RRAM devices having discrete
resistance states (two resistance states – high and low), can
both be employed as artificial synapses with similar statistical
performance. We also show that by appropriately choosing
the programming voltages and hence the switching probability
of the RRAM devices, it is possible to tune the relative
conductance of the synaptic element anywhere in the range of
2−100. This paper thus shows the possibility of using discrete
RRAM devices to realize an analog functionality in artificial
learning systems.

Keywords—Spike Timing Dependent Plasticity, Memristor,
Neuromorphic Computing.

I. INTRODUCTION

Reverse engineering the operating principles of the hu-
man brain and building computational hardware mimicking
its key algorithmic features is a grand challenge of this
century [1]. Thanks to focused research to establish the
underlying principles of computation employed by biolog-
ical systems, it is now becoming clear that information is
encoded, transmitted and processed in the time of arrival of
spikes at the neurons, which are the computational nodes in
the brain. The pathways of information processing are deter-
mined by the effective strength of the connections between
the neurons – the synapses. It is now well established that
the state of the synapse is determined primarily by the time
of arrival of spikes at the pre- and post-synaptic neurons.
Spike Timing Dependent Plasticity (STDP) has emerged as
the fundamental mechanism underlying cognition, learning
and memory [2] (Figure 1).

Recent advances in nanotechnology has buoyed the
hopes of building area and power efficient hardware mim-
icking the operating principles of the brain [3]. One of the
most promising developments in the area of nanoelectronic
devices in the past decade has been the demonstration of
the memristor [4]. Memristors are passive two terminal
devices with variable resistances that depend on the history
of current flow through them [5]. Nanoscale memristive
devices offer a wide range of advantages such as device

Fig. 1. Change in synaptic-efficacy due to spiking of two consecutive
neurons connected through a synapse in biological systems. Experimental
data taken from [2] demonstrating the classic Spike Timing Dependent
Plasticity (STDP) rule for biological synapses.

scalability, compatibility with CMOS technology, low power
consumption and reasonable switching speed. Since the
recent demonstration of a nanoscale ion-drift based device
that showed memristive properties [4], memristors have
attracted immense attention also in the field of neuromorphic
engineering, where, one of the main challenge is to mimic
synaptic plasticity in power and area efficient hardware de-
vices. In artificial learning systems, memristive devices have
been envisioned as artificial synapses that mimic synaptic
plasticity, typically demonstrated by establishing that it will
exhibit STDP or other timing dependent adaptation rules.
The STDP behavior across any two terminal device is
demonstrated when it exhibits an expected set of trends in
the conductivity modulation as a function of the temporal
separation between two voltage pulses applied at the two
terminals. The voltage pulses could be shaped in the form
of the action potential waveform [3], [6], though other ideas
using more complicated waveforms or complex signaling
schemes that require precise clocking have been proposed
earlier [7].
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While the synapse and its associated learning behavior is
believed to be an analog paradigm, it is the primary objective
of this work to demonstrate that digital devices may also be
tailored for a similar synaptic functionality. Using numerical
simulations, we first show that the STDP behavior may
be captured by a nanoscale ion-drift memristive device in
the tunneling regime [4]. Use of memristors in artificial
neuromorphic domain to achieve synaptic plasticity has
already been shown in [8], [9], [10], [11]. While most of the
fabricated memristive devices show an on-off conductance
ratio greater than 100 [4], we particularly tune or choose
our pre-synaptic and post-synaptic programming pulses to
partially switch our analog device so that the modified
on-off ratio is within a range of approximately 2, on par
with biological systems [2]. We then propose a scheme
to mimic this analog memristive time dependent learning,
using a small set (9 or 16) of discrete nanoscale RRAM
devices whose switching voltages vary stochastically [12].
The two schemes, i.e., the analog memristive switching and
the discrete switching schemes are then shown to be of
similar statistical performance.

This paper is organized as follows. In the following
section, we describe the simulation set up. Section III and
IV will focus on how the essential STDP feature is captured
by the analog memristive switching, which we term as
memristive switching and the digital scheme, which we term
as the discrete switching scheme respectively. Section V will
demonstrate the statistical aspects of the two paradigms and
establish the similarity between them.

II. SIMULATION SET UP

The biological nervous system consists of a network
of neurons that are connected to each other through an
intricate mesh of plastic synapses. Each neuron receives
input stimuli/signals from thousands of pre-synaptic neurons
and transmits signals to thousands of post-synaptic neurons.
When a group of input/pre-synaptic neurons fire within a
small time window, the cumulative depolarization of the
output neuron exceeds a threshold voltage, resulting in an
‘all-or-none’ action potential. For the purpose of evaluating
methods for implementing plasticity, we simulate a network
of n input neurons stimulating one output neuron. We denote
this architecture as the n × 1 network. Typically, n has to
be a large number (typically > 100) to account for the fact
that an output neuron has to be depolarized by several input
neurons before it can generate an action potential. In our
simulations, n is chosen to be 100. A schematic of our
simulation network for both the memristive and the discrete
scheme is depicted in Figure 2.

The dynamics of the output neuron is modeled using the
leaky integrate and fire model, given by the equation:

C
dV

dt
= −g(V − E) +

∑
Isyn +

∑
Iext, (1)

where g is the leakage conductance, E is the resting potential
of the neuron and Isyn is the current flowing into the neuron
from the pre-synaptic neurons, based on the potential of the
input neuron and the strength of the synaptic connection.
Iext represents the current flowing into the neuron due
to external input stimulus. An appropriate stimulus at the
input neuron causes it to spike, which in turn generates

(a) (b)

Fig. 2. Schematic of the simulated network for (a) analog memristor (b)
k discrete RRAM devices connected in parallel to form the synapse. In
our simulations, we study the dynamics of the network for n = 100 and
k = 4, 9, 16.

the synaptic current. The sum of the currents from all
input neurons is integrated at the output neuron, thereby
depolarizing the output neuron. The output neuron will spike
when its membrane potential reaches a certain threshold
value. In biological neurons, the neuron resting potential
hovers around −70 mV and the firing threshold hovers
around −40 mV. In our simulation, the resting potential is
taken to be 0 mV.

In order to implement timing dependent learning in our
artificial synaptic devices, we have chosen the scheme pre-
sented in [3]. According to this scheme, every neuron, upon
spiking, sends a pre-synaptic waveform towards the axonal
end, and a post-synaptic waveform towards its dendritic
end. We illustrate this in Figure 3 which shows a neuron
ns, receiving inputs from ni neurons and connecting to no
downstream neurons.

Fig. 3. Schematic of the adopted programming methodology [3]. Each
neuron upon spiking sends a pre-synaptic programming waveform on all
its axonal terminals and a post-synaptic programming waveform on all its
dendritic terminals.

Our main objective is to show that Spike Timing De-
pendent Plasticity behavior of synapses can be achieved
by using either (i) an analog memristor or (ii) a parallel
combination of discrete RRAM devices. The classic Spike
Timing Dependent Plasticity (STDP) rule states that a synap-
tic connection is potentiated or strengthened when a pre-
synaptic neuron firing occurs a few milliseconds before
a post-synaptic firing and depressed or weakened when a
post-synaptic firing occurs a few milliseconds before a pre-
synaptic firing [2], [13] as shown in Figure 1.
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One of the key motivations for building hardware circuits
mimicking neural networks is the possibility to accelerate
the dynamics and implement learning and decision making
in time scales faster than that is possible in normal biological
systems or software simulations. We have chosen to study
the dynamics for an acceleration factor of 50. However,
our scheme is flexible and can be used to achieve desired
acceleration factors over a wide range by adjusting the
parameters of the programming waveforms used to control
the state of the artificial synapse. In biological systems,
a causal pair or an anti-causal pair can cause synaptic
strengthening or weakening when the delay between the
pre-synaptic and post-synaptic action potential is at most
±80 ms (approx). An acceleration factor of 50 implies that
synaptic changes in our system will occur for a delay of
at most 80 ms/50 = 1.6 ms between the pre-synaptic and
post-synaptic action potentials.

In biological systems, the firing of neurons are highly
irregular and stochastic. In our simulation, this is modeled by
a Poisson arrival process. The input neurons are stimulated
with independent Poisson stimuli with a mean arrival rate
of 1800 s−1. This stimulation rate is enough to cause firing
of the output neuron as well as to cover the entire range
of pre-synaptic to post-synaptic firing delay between 0 and
±1.6 ms.

In artificial neuromorphic systems, the characteristics of
the synapse are to be mimicked by an equivalent two termi-
nal device. Our analysis is based on the timing dependent
plasticity scheme proposed in [3]. As per this model, a spike
will create a pre-synaptic or post-synaptic programming
waveform of the form

V = V +
Maxe

−t/τp(u(t)− u(t− Tw))

− V −
Maxe

−(t−Tw)/τnu(t− Tw)
(2)

The initial part has a peak amplitude V +
Max with decay

constant τp and pulse width Tw. This part is followed by
a negative exponential pulse that has a peak amplitude of
V −
Max with a decay constant τn. Typically τn ≥ 20τp. An

overlapping set of pre-synaptic and post-synaptic pulses can
cause an increase in the magnitude of the voltage drop across
the electrical synapse, and depending on the sign, cause
synaptic strengthening or weakening. Implementation of this
type of exponential programming pulses has already been
discussed in [3]. In our simulation, around 40% of the input
neurons having strong synapses are able to elicit a spike in
the output neuron provided they fire together within a time
interval of 400µs. However this number can vary depending
on the timing interval itself. A refractory period of 10µs is
implemented for each neuron in our simulation.

III. STDP WITH ANALOG MEMRISTIVE DEVICES

Memristors are nanoscale devices having ideally a set of
stable resistance states. An analog memristor is characterized
by continuous set of resistance states in between its two
extremum states. Memristors are hence characterized by
a pinched current-voltage hysteresis loop [5] and a non-
volatility in the resistance when no currents pass through the
device [5]. On the application of appropriate electric field,
the state of the device may change from a high resistance
state to a low resistance state. This process is called the SET

operation. Application of an electric field in the opposite
direction results in the resistance of the device to change
from a low resistance state to a high resistance state. This
process is called the RESET operation. Development of
well-controlled, analog memristive devices as well as their
characterization and physical modelling remains an active
area of research at this point as the field is in its infancy
[14]. The fabrication procedure as well as the materials used
to form the electrode metals and the dielectric determines
the switching properties of the device. Implementation of a
synapse with a single memristive device calls for a device
with non-linear current-voltage characteristics. Control over
the switching phenomenon of the device is another require-
ment, so that all the resistance states of the device between
the extremum states are accessible.

For our simulations, we need a model for the memristor
that captures the essential device physics and matches rele-
vant experimental data. Although various models are avail-
able in literature, most of them fail to completely explain the
observed characteristics. One of the earliest works to capture
the essential features of memristive switching was proposed
in [15], but it does not do justice to the device physics
in detail. Also, it can be shown that with our proposed
scheme, devices modeled using the simple models developed
there [15] cannot reproduce the STDP characteristics without
incorporating a rectifying device in series with it. Hence, we
chose the physics based model proposed by Pickett et al [6]
for our analysis. This model explains the dynamical I − V
characteristics of a Ti/TiO2 based memristive nanodevice
with the help of the Simmons tunnel barrier model [16].
Simmons tunnel barrier model explains the phenomenon of
tunneling of electrons through an energy barrier (insulating
film) when a suitable electric field is applied across it. The
memristive nanodevice modeled in [6] consists of a 215±6 Ω
linear resistor in series with a thin insulating film. The
current through this insulating film is solely governed by
Simmons tunnel barrier model. On application of suitable
electric field through the device, the mobile dopants will
either spread or accumulate (depending on the direction of
application of electric field) thereby varying the width of
the insulating film and exhibiting memristive behavior. As
described in [6], the device is characterized by fast SET
operation and a gradual RESET operation.

(a) (b)

Fig. 4. (a) Simulated partial and complete switching characteristics of a
memristor using the Pickett’s Model [6]. A triangular voltage sweep with
amplitude of 1.4 V and time period of 20µs (blue curve) and 100 ms (red
curve) was applied to the memristor. (b) An exemplary pre-synaptic and
post-synaptic programming waveforms applied to the analog memristor.

In biological systems, it is observed that the synaptic
efficacy of a strong synapse is typically two to four times
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larger than that of a weak synapse. However, most fabricated
memory switching devices have an on-off conductance ratio
greater than 100. This poses a problem in mimicking biolog-
ical neural networks as a synapse replaced by a memristor
would depolarize the output neuron 100 times more in the
high conductance state than in the low conductance state.
The problem can be alleviated by suitable design architecture
(for example, adding a logarithmic amplifier can reduce the
depolarization of the output neuron). However, a simpler
solution is to tune the amplitude of the pre-synaptic and post-
synaptic waveforms such that the memristor doesn’t switch
completely to it’s extremum states, that is, the memristor
changes back and forth within a fraction of it’s total conduc-
tance range. Power minimization calls for the use of the low
conductance range of the device. However, the SET process
cannot be controlled by voltage. The trick is to control
the RESET process so that the device does not switch off
completely to it’s off-state. Hence, we have chosen to utilize
the high conductance range of the device. The amplitude of
pre-synaptic and post-synaptic waveforms are chosen so that
the conductance varies approximately between the maximum
conductance state GMax and GMax/2.

Since Pickett’s model is inherently non-linear with a
voltage dependent conductivity, we have chosen to report
the effective resistance of the artificial synapse by measur-
ing the current through the device, when 0.5 V is applied
across it. Figure 4(a) shows the simulated I-V characteristics
of the memristor when it is allowed to switch partially.
The pre-synaptic and post-synaptic programming waveforms
based on 2 are shown in Figure 4(b). The parameters for
pre-synaptic programming waveform are V +

Max = 0.68 V,
V −
Max = 0.6 V and τn = 1.6 ms. For post-synaptic pro-

gramming waveform, the parameters are V +
Max = 0.6 V,

V −
Max = 0.68 V and τn = 6.4 ms. The value of τp for both

pre-synaptic and post-synaptic programming waveforms is
2µs and Tw = 10µs.

During the overlap between the pre-synaptic and the
post-synaptic waveform, maximum voltage will drop (and
hence maximum current will flow) through the synapse when
the positive peak of post-synaptic waveform will coincide
with the negative peak of the pre-synaptic waveform for
a small positive value of ∆t. Hence maximum change in
synaptic strength will occur. With increasing values of ∆t,
the maximum voltage (and hence current) across the synapse
at the instant of overlap will decrease exponentially. Hence
the relative change in synaptic strength will also decrease
with increasing ∆t. Similar phenomenon occurs for negative
values of ∆t.

The STDP points of the analog memristive synapse
following Pickett’s model at the end of application of 2000
pulse pairs are shown in Figure 5(a). Note that we are able
to reproduce the biological STDP curves to a high degree of
accuracy. However, due to device limitations (SET process
being fast and current-controlled), all the resulting STDP
points do not lie completely within the exponential envelop.

IV. STDP WITH BINARY STOCHASTIC DEVICES

We now develop a scheme that enables nanoscale Re-
sistive Random Access Memory (RRAM) devices with
stochastic switching properties to be used for implementing

(a) (b)

(c) (d)

Fig. 5. STDP with (a) synapse consisting of an analog memristor along
with an eye-guide exponential fit. (b), (c) and (d) are equivalent STDP
simulation results for synapse with 4, 9 and 16 RRAM devices respectively.
The reproduced simulation curves can match the exponential form of
biological STDP curves to a high degree of accuracy.

STDP in neuromorphic learning systems. RRAM is a two
terminal switching device essentially having two resistance
levels. However, recent research has also shown that RRAM
devices can be programmed to multiple stable intermediate
resistance states by controlling the applied programming
voltages/currents [17], [18], [12], [19]. In our simulation,
we assume RRAM devices with essentially two resistance
states – high resistance state and low resistance state. Neu-
romorphic applications employing stochastic learning with
binary synapses has been discussed in [20], [21], [22].

In most of the fast switching RRAM devices, the switch-
ing voltage varies stochastically within a certain range.
Stochastic variations of switching voltages have been dis-
cussed in detail in [23], [24], [25]. It has been observed
that the probability of switching increases almost linearly
with the applied voltage. Figure 6 shows the variation of
switching probability with increase in voltage magnitude of
a fabricated RRAM device.

We will now show that this stochastic variation in
switching voltage may be used to mimic the analog STDP
behavior of biological synapses. Figure 6 shows the pre-
synaptic and post-synaptic voltage waveforms used in our
simulations. The parameters for pre-synaptic programming
waveform (described by equation 2) are V +

Max = −1 V,
V −
Max = −0.6 V and τn = 0.9 ms. For the post-synaptic

programming waveform, the chosen parameters of equation
2 are V +

Max = −0.60 V , V −
Max = −0.30 V and τn = 4 ms.

We have chosen the value of τp for both pre-synaptic and
post-synaptic action potential to be 1µs, assuming that the
device can switch in less than 100 ns. We have simulated
the 100 × 1 neural network with the synapses consisting
of k parallel RRAM devices. We have chosen k to be a
perfect square integer, because of ease of fabrication of such
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(a) (b)

Fig. 6. (a) Variation of the switching probability of the discrete RRAM
device with voltage (experimental data taken from [25]). In our simulations,
the probability of switching is assumed to increase linearly with the
potential drop across the device. The blue lines show the modeled data used
for simulation. (b) The pre-synaptic and the post-synaptic programming
waveforms used in simulation are based on the probability trends in (a).

arrays in crossbars. We have simulated the 100 × 1 neural
network with synapses consisting of k=4, 9 and 16 RRAM
devices in parallel. A synapse consisting of “k” parallel
RRAM devices would have (k + 1) resistance levels and
at most k(k + 1)/2 STDP levels. On application of the
programming voltage, the individual RRAMs in the synapse
will switch probabilistically, but by using larger number of
discrete devices in parallel, we expect to get a continuous
change in the STDP graph. Our goal is to determine how
small an array of discrete devices is necessary to closely
mimic the analog STDP curve shown in Figure 5(a).

In our simulation, the experimental data from [25] is
used. These devices have high resistance states around
100 KΩ and low resistance state around 1 KΩ [25]. As
stated earlier, the on-off conductance ratio greater than 100
poses problem in designing artificial neural networks. One
way this problem can be alleviated is by using a suitable
resistor of appropriate magnitude in parallel to the synapse
so that the effective on-off resistance becomes almost 2. For
example, a 0.25 KΩ resistance in parallel with the synapse
consisting of 4 RRAMs gives an effective on-off ratio of
approximately 2. However this will cost fabrication density
and unnecessary power dissipation. A more efficient solution
is to keep at least one of the RRAMs in ON state all the
time by reducing the RESET probability of the devices.
This can be done by choosing lower amplitudes for the pre-
synaptic and post-synaptic waveforms so that the probability
of RESET never reaches 1. In our simulation, the maximum
RESET probability is set to 0.4 by limiting the maximum
negative voltage drop across the device to −1.3 V. This is
based on the assumption that that the probability of RESET
switching increases linearly from 0 to 1 when the voltage
decreases from −1.2 V to −1.45 V respectively.

Figures 5(b), (c) and (d) show the simulated STDP
graphs for synapses made of 4, 9 and 16 RRAM devices
with stochastic switching characteristics. It can be seen that
the discrete levels are clearly visible when the synapse is
made of 4 parallel RRAM devices. However, the curve be-
comes more continuous when the number of parallel RRAM
devices within a synapse is increased. A synapse made of 9
RRAM devices shows a good continuity in the STDP graph.
So, we state that for the chosen RRAM devices, we can get
an almost continuous STDP graph with a synapse consisting

of at least 9 parallel RRAM devices. The continuity of the
STDP graph could be improved by increasing the number
of parallel RRAM devices in a synapse. However, that
results in higher power and area consumption. So, a tradeoff
has to be made depending on the precision required. We
have hence shown that digital/discrete RRAM devices with
stochastic switching behavior may also be tailored to give
Spike Timing Dependent Plasticity.

(a) (b)

Fig. 7. Temporal evolution of conductivity in a group of synapses com-
prising of (a) one analog memristive device, and (b) parallel combination
of 9 RRAM devices. The average of the group of synapses is shown for
three different cases - more anti-causal spike pairs than causal spike pairs
(solid blue line), almost equal number of causal and anti-causal spike pairs
(solid pink line), more causal pairs than anti-causal pairs (solid brown line).
The shaded region depict the standard deviation in each case. Similar time
dependent variations are seen for the analog memristive device and the
parallel combination of 9 RRAM devices.

A. Capturing STDP in a group of synapses

When the pre- and post-synaptic neurons of a synapse re-
peatedly spike in causal order, the average synaptic strength
is expected to see an overall increase in conductivity. The
conductivity should decrease, if on the other hand, the
temporal order of the spiking is reversed. This must in
general be true for a group of synapses as well, if they
all experience similar number of causal or anti-causal spike
pairs. Both the schemes given in this paper capture this
ensemble average property of STDP. In our simulation, the
group of 100 input neurons were excited with stimuli at the
rate of 1800 s−1 and 2600 s−1 respectively. Since we use
the leaky integrate and fire model to stimulate the output
neuron in our simulations, the spiking rate of the output
neuron does not increase linearly with the spiking rate of
the input neurons. It was observed than when the input
neurons were spiking at an average rate of 1800 s−1, the
output neurons spiked at a lower rate compared to the input
neurons. This means that on average, synapses will see more
anti-causal spike pairs than causal ones. So, the average
strength of the group of synapses must decrease. This is
clearly seen in Figure 7 (solid blue lines) for both analog
memristive switching devices and parallel combination of
discrete RRAM devices.

When the input neurons were spiking at a rate of
2600 s−1, the output neuron spiked at almost the same rate
as the input neurons. So, synapses on average would see
equal number of causal and anti-causal pair of spikes and
the average synaptic strength of the group of synapses should
more or less remain constant (solid magenta lines in Figure
7).
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To study the dynamics of the group of synapses when
they encounter more causal spike pairs then anti-causal ones,
we chose 80 random input neurons to spike at an average rate
of 2600 s−1 and the remaining 20 neurons were provided a
large current so that they spike at a larger rate of 26000 s−1.
Due to higher stimulation rate of these 20 input neurons, the
spike rate of the output neuron will also increase. So, on an
average 80 synapses will see more causal spike pairs than
anti-causal spike pairs. So, the average synaptic strength of
the group of 80 synapses will see an overall increase as
shown by the solid brown lines in Figure 7.

V. STATISTICAL COMPARISON BETWEEN MEMRISTIVE
AND DISCRETE SWITCHING SCHEMES

(a) (b)

(c) (d)

Fig. 8. The maximum value of average conductance change seen by
a synapse made of 9 (left) and 16 (right) parallel RRAM devices with
maximum RESET probability set to 0.7 (top) and 1 (bottom). Maximum on-
off synaptic conductance ratio up to 100 can easily be achieved by adjusting
the maximum RESET probability of the RRAM devices. By controlling the
amplitudes of the pre-synaptic and post-synaptic programming waveforms,
we can also tune this ratio up to 100.

Both the schemes described above can be used to im-
plement synapses in a neural network. The advantage of
these schemes is that the effective resistance ratio of the
synapses can be controlled by tuning the maximum voltage
drop across the synapse. So far, we have chosen the param-
eters of the programming waveform to demonstrate relative
conductivity change by a factor of 2, but by appropriately
tuning these parameters, we can easily achieve other desired
on-off conductance ratios up to a factor of 100, as shown
in Figure 8. Another advantage of these schemes is that this
implementation is devoid of CMOS and rectifying devices,
eliminating the need for buffering and matching circuits.
Mismatches in device switching voltage and impedance will
not affect the performance of the system as long as they
remain in a tolerable range. Since the sum of all synaptic
currents is integrated at the output neuron, small mismatches
in device impedance will not influence the performance of
the hardware.

Depending on the area of application, either the analog
memristor or binary switching RRAMs may be preferable
for synapse implementation. The advantage of an analog
memristor is that implementation of a synapse consists of
one single nano-scale device. The advantage of binary-
switching RRAM devices, on the other hand, is ease of
fabrication. Parallel combination of RRAMs in synapse
consume more area and power. It has been stated in [3]
that an artificial synapse consisting of a series combination
of a diode and a RRAM consume at least 10 times less area
and power compared to digital synapse implementation with
CMOS circuitry. So, a combination of 9 parallel RRAM
devices for a synapse will reduce the area by at least a
factor of 2 compared to digital implementation of synapse
with CMOS circuitry (assuming that the cell size of each
fabricated device is 4F 2, where F denotes the minimum
feature size). In this section, we will show that both these
schemes have almost identical statistical properties.

To study the statistical property of both schemes, a train
of Poisson stimulus of average arrival rate of 2600 s−1 were
applied to the input neurons. This rate was chosen as a
reference because at this rate of input stimulus, the average
spiking rate of the output neuron is almost equal to the
average spiking rate of the input neurons.

Fig. 9. Probability density of inter-arrival time of the spikes in the output
neuron for a synapse made of a single analog memristor and 4, 9 and 16
discrete RRAM devices. The plot depicts the similarity of the inter-arrival
processes related to the spiking in the output neuron.

The average synaptic strength of the group of synapses is
already shown in Figure 7 for the two schemes. The standard
deviation in the normalized conductance (G/GMAX ) of the
group of 100 synapses varies within a small range (shown
as dotted lines in Figure 7) in each case. Since the stimulus
applied to the input neurons are all independent and random,
and the mean conductivity of all the synapses varies in this
small interval, the distribution of inter-arrival time of the
post-synaptic stimulus should have a peak around the mean
inter-arrival time with sharply trailing edges. Figure 9 shows
the probability density distribution of inter-arrival time of
the post-synaptic stimulus. As is evident, the distribution of
inter-arrival times of the post-synaptic spikes for the analog
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Fig. 10. Probability density of the delay (4t) between spikes of the
input and output neurons (pre-synaptic to post-synaptic firing delay) with
analog memristive synapse and discrete RRAM synapse. The probability
density distribution in all the cases is almost identical, ensuring that all the
synapses see a similar distribution of pre-synaptic to post-synaptic firing
delay. ∆tMAX = 1.6 ms.

memristive device and the parallel combination of discrete
switching devices are statistically almost identical.

Another important statistical property is the probability
density distribution of the time interval (4t) between pre-
synaptic and post-synaptic spike. This was also seen to
be statistically almost identical for both types of synapse
(Synapse consisting of an analog memristor and a synapse
consisting of k parallel RRAM devices) in Figure 10. For
all these statistical simulations, the input neurons were
stimulated at a rate of 2600 s−1.

Figure 11 shows the distribution of conductance of a
synapse over time. Our main intention was to make the ef-
fective on-off conductance ratio of the device 2; this implies
that the value of normalized synaptic strength (conductance)
should be confined ideally between 1 and 0.5. However,
in each case of Figure 11 the value of G/GMAX of the
device stays below 0.5 for about 10−15% of the total time.
This value can however be reduced by further reducing the
maximum RESET probability of the RRAM devices.

The distribution of 4G/min(GInitial, GFinal) was also
found to be almost identical in all the four cases with the
peaks at 0 and sharply trailing edges (Figure 12). This shows
that as the number of RRAM devices within the synapse are
increased, the device behavior closely mimics that of the
analog memristive device.

VI. CONCLUSIONS

In this paper, we have shown two schemes to imple-
ment adaptive synapses in artificial learning systems and
proposed a scheme to mimic the analog memristive time
dependent learning using a small set (9 or 16) of discrete
nanoscale RRAM devices whose switching voltages vary
stochastically [12]. Both schemes not only capture spike

Fig. 11. Cumulative probability of the conductance of a synapse over
time for analog and discrete RRAM synapses. In each of these cases, the
value of G/GMAX remains below 0.5 for 10−15% of the total time. The
approximately identical distribution of G/GMAX ensures almost identical
distribution of inter-arrival time of the post-synaptic spikes.

(a) (b)

(c) (d)

Fig. 12. Probability density of 4G/min(GInitial, GFinal) for a
synaptic device consisting of (a) 4 parallel RRAM (b) 9 parallel RRAM
(c) 16 parallel RRAM, and (d) a single analog memristor. This plot depicts
that the statistical variation of the synaptic conductance shows a similar
distribution among the four different schemes. Each of the graphs has a
peak at 0 with sharply trailing edges on each side.

timing dependent plasticity (STDP) behavior but are also
flexible in maintaining a desired on-off ratio of synaptic
strength. In addition, the two schemes are almost statistically
identical. The demonstrated statistical similarity allows the
use of either schemes based on other trade-offs between ease
of fabrication and area efficiency.
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[13] H. Markram, J. Lübke, M. Frotscher, and B. Sakmann, “Regulation

of synaptic efficacy by coincidence of postsynaptic APs and EPSPs,”
Science, vol. 275, pp. 213–215, 1997.

[14] A. Ascoli, F. Corinto, V. Senger, and R. Tetzlaff, “Memristor model
comparison,” Circuits and Systems Magazine, IEEE, vol. 13, no. 2,
pp. 89–105, 2013.

[15] Dmitri B. Strukov, Gregory S. Snider, Duncan R. Stewart and R.
Stanley Williams, “The missing memristor found,” Nature, vol. 453,
pp. 80–83, 2008.

[16] J. G. Simmons, “Electric tunnel effect between dissimilar electrodes
separated by a thin insulating film,” Journal of Applied Physics,
vol. 34, no. 9, 1963.

[17] Kuan-Liang Lin, Tuo-Hung Hou, Jiann Shieh, Jun-Hung Lin, Cheng-
Tung Chou and Yao-Jen Lee, “Electrode dependence of filament
formation in HfO2 resistive-switching memory,” Journal of Applied
Physics, vol. 109, no. 8, 2011.

[18] A. Chen, “Area and thickness scaling of forming voltage of resistive
switching memories,” Electron Device Letters, IEEE, no. 1, pp. 57–
59, 2014.

[19] Branden Long, Yibo Li, and Rashmi Jha, “Switching characteristics
of Ru/Hfo2/TiO2−x/Ru RRAM devices for digital and analog non-
volatile memory applications,” IEEE Electron Device Letters, vol. 33,
no. 5, 2012.

[20] W. Senn and S. Fusi, “Convergence of stochastic learning in percep-
trons with binary synapses,” Phys. Rev. E, vol. 71, p. 061907, Jun
2005.

[21] M. Suri, D. Querlioz, O. Bichler, G. Palma, E. Vianello, D. Vuil-
laume, C. Gamrat, and B. DeSalvo, “Bio-inspired stochastic com-
puting using binary CBRAM synapses,” Electron Devices, IEEE
Transactions on, vol. 60, no. 7, pp. 2402–2409, July 2013.

[22] Shimeng Yu, Bin Gao, Zheng Fang, Hongyu Yu, Jinfeng Kang, H.S.
Philip Wong, “Stochastic learning in oxide binary synaptic device for
neuromorphic computing,” Frontiers in Neuroscience, vol. 7, 2013.

[23] S. Yu, X. Guan, and H. S. P. Wong, “On the stochastic nature of
resistive switching in metal oxide RRAM: Physical modeling, monte
carlo simulation, and experimental characterization,” in Electron
Devices Meeting (IEDM), 2011 IEEE International, Dec 2011, pp.
17.3.1–17.3.4.

[24] Zi-Jheng Liu, Jen-Chun Chou, Shih-Yuan Wei, Jon-Yiew Gan, Tri-
Rung Yew, “Improved resistive switching of textured ZnO thin films
grown on Ru electrodes,” Electron Device Letters, IEEE, vol. 32,
no. 12, pp. 1728–1730, 2011.

[25] Venkatakrishnan Sriraman, Zhixian Chen, Xiang Li, Xinpeng Wang,
Navab Singh, “HfO2 based resistive switching non-volatile memory
(RRAM) and its potential for embedded applications,” in 2012 In-
ternational Conference on Solid-State and Integrated Circuit (ICSIC
2012), 2012.

2255




