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Abstract— Human, especially elderly, require frequent at-
tention, continuous companionship, and deep understanding
from the others. To provide more specific and appropriate
tender care to the elderly, knowing their affective states is a
great advantage. Recent work on human emotion recognition
shows promising results that the expressive emotion can be
successfully captured through visual, audio, and keyboard or
touchpad stroke pattern signals. Furthermore, human activities
are shown to be accurately recognizable with context by non-
intrusive sensors within or connected to the smartphones. In
this paper, we propose a computational model to characterize
the affective states of the elderly based on the recognizable
daily activities. Therefore, by integrating such an understanding
module into a humanoid agent residing in the smartphone
platform, we make the mobile agent more human-like. The
initial knowledge of the activity-affect associations is taken
from published work in psychology and gerontology. Based on
the provided training signals, our model adapts the activity-
affect knowledge accordingly. Consequently, by modeling mood
awareness of the elderly, our agent can carry out more specific
task and provide more appropriate tender care.

I. INTRODUCTION

EMOTION recognition has become an emerging research
field in recent years. It is an important and challenging

inter-disciplinary topic involving psychology and many com-
puterized methods, such as facial and speech recognition,
activity recognition with context awareness, and ambient
intelligence. To model mood awareness of the elderly, we
should also bring gerontology into the overall framework.

The world population is aging fast and it is the elderly who
require more attention, companionship, and most importantly
understanding from the others. According to United Nation
[1], the number of people aged 60 and above is expected
to increase from 841 million in 2013 to 2 billion in 2050.
We should better prepare now the technologies to assist
the elderly. Thus, sensing the affective states of the elderly
becomes more important because we can provide better
tender care based on proper mood awareness.

Some existing emotion recognition technologies are re-
stricted within certain low-noise confined environments. With
recent advances in ambient intelligence, wearable sensors,
and mobile communication technologies, the means to model
mood awareness are further broadened. In this paper, we pro-
pose a Humanoid Agent With Mood Awareness (HAWMA)
residing in the smartphone platform to provide better and
constant tender care to the elderly.
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There are many reasons that we select smartphones as
the platform to deploy HAWMA. First of all, the current
penetration rate of smartphones is high in many developing
and developed countries. For example, it is estimated that
83% of Singaporean aged 55 and above own at least one
smartphone [2]. Moreover, smartphones nowadays are pow-
erful enough to support natural human-machine interaction
and to assemble various kinds of information through an
increasing number of build-in and wirelessly connectable
sensors. In addition, smartphones provide more convenience:
1) simplicity to monitor the social interactions through text
messages, social network service platforms, and other means
of communications, if authorized; 2) multimedia platform to
support audio, video, and other types of inputs and outputs;
3) an easier way for the elderly to explicitly annotate their
affective states through an emoticon system [3].

In this paper, we focus on how to model the affective states
of the elderly based on their recognizable activities so that
HAWMA can provide more specific and appropriate tender
care. Mood awareness takes two major steps: identifying
the activity and then determining how it affects the elderly
emotionally. Although the data set used in this paper is
artificial, we argue that all activities are recognizable by
smartphones, computers, and robots with mobility and visual
inputs, if authorized. A widely studied and applied emotional
model, which maps eight major affective states (evenly
distributed) in a 2-D space, is employed to characterize
the mood of the elderly. The relationship between the two
axes of the emotional model is orthogonal, so they can be
independently modeled during computation. If we define
the Activity-Affect Knowledge (AAK) as the set of all
associations between recognizable activities and how they
affect the corresponding mood changes in the 2-D space, we
can apply such knowledge to model the mood awareness
in a computational way. The initial AAK is taken from
published work in psychology and gerontology. HAWMA
employs a neural network to store, retrieve, and adapt AAK
according to the provided training signals with mathematical
equations and learning algorithms. After adequate training,
HAWMA is able to capture the personalized AAK for
different individuals. Consequently, more specific task can
be carried out to provide more appropriate tender care.

Although the subjects of this paper are the elderly, the
mood awareness model can be generally adopted to other
people, even other humanoid agents if all required interfaces
are available. Furthermore, to the best of our knowledge,
our work is the pioneer to explore how to model mood
awareness (specifically) of the elderly through a humanoid
agent residing in the smartphone platform.

The rest of the paper is organized as follows. Section II
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reviews the related work. Section III introduces the employed
emotional model and the pre-defined activity-affect knowl-
edge. Section IV presents the employed network to store,
retrieve, and adapt the activity-affect knowledge. Section V
shows the experimental results with visualizations. Section
VI concludes this paper and proposes future work.

II. RELATED WORK

There is a common stereotype that the elderly are not
receptive to the advanced technological gadgets. However,
Czaja [4] shows that although less confident than younger
people, the elderly who have successful experience with
modern gadgets generally hold more positive attitude and
greater confidence. Furthermore, if computers (extensible to
smartphones) are modified according to their specific needs
with simpler interfaces that follow the natural mental con-
cepts, the elderly can benefit much from them [4]. Therefore,
deploying humanoid agents in smartphones is a practical and
mobile way to assist the daily lives of the elderly.

To model the affective states of the elderly, the agent must
be aware of their current activities with as much context
as possible. A thorough investigation on activity recognition
using the embedded sensors within the smartphones is pre-
sented in [5], wherein similar models are reviewed and their
capabilities are compared. Context awareness can be studied
in either the social aspect [6] or the physical environmental
aspect [7]. Human behavior cognition [8] generates high-
level context based on the recognized low-level activities. In
this paper, we model the mood awareness of the elderly by
assuming the activities have been accurately recognized.

A body of research work focuses on applying established
emotional models to regulate the behaviors or personalities of
the agents without sensing the affective states of the subjects
to be served. Wu and Miao [9] integrate the curiosity model
[10] into the virtual peer-learners to accompany secondary
school students in the virtual learning world. Ailiya et al.
[11] integrate the well-known OCC model [12] into the
teaching companion agents whose avatars are rendered as
dinosaurs in the virtual learning world. In this paper, we do
not investigate how to construct the emotional model of our
agent. Instead, we focus on how to model the affective states
of the elderly. Because people prefer computers that match
their own personalities [13], we can simply let our agent
follow the affective states of the elderly.

The two major means to recognize the emotion of the user
in real time are by analyzing either speech or visual signals.
Attabi and Dumouchel [14] construct various combinations
of models (various back-end systems with various front-end
systems and various front-end systems only) to recognize
one of the five basic emotions from speech. Majumder et al.
[15] propose an extended Kohonen SOM to identify one of
the six basic emotions from 26 dimensional geometric facial
feature vectors. In this paper, we do not require the mood of
the elderly to be explicitly expressive for sensing.

Smartphone itself can either recognize the emotions of the
users or express its own emotions. Lee et al. [16] propose
a way to identify one of the seven basic emotions of the

users by analyzing both their patterns (speed of the key
strokes and counts) when they write Twitter messages and
the environmental information (location, time, and weather).
Based on the interactions between the user and the smart-
phone, Kifor et al. [17] apply the pre-defined activity-affect
knowledge to model the emotion (among five basic ones)
of the smartphone. In this paper, we focus on modeling
the affective states of the elderly based on their high-level
activities recognized. Furthermore, the pre-defined activity-
affect knowledge evolves if training signals are provided.

In recent years, research work on caring the elderly with
emotional supports is rising in numbers. McCalley and
Mertens [18] develop a pet plant, which has no hygienic
concerns, to attract the elderly’s attention and to follow their
extrovert or introvert characters. Although the evaluation
results are significant in terms of therapeutic effects, the
pet plant is still limited in functionality. It cannot move
or express itself other than by means of flashing lights
in different colors and manners. On the other hand, an
agent residing in the smartphone platform is mobile and can
naturally interact with the elderly through various multimedia
applications. Zhou et al. [19] propose a promising elderly-
orientated smart-home environment. However, within their
framework, there is no agent implemented to provide human-
like personal assistance. In this paper, we show how our agent
provides better tender care when the elderly is experiencing
an emotional extreme.

III. COMPUTATIONAL ACTIVITY-AFFECT KNOWLEDGE

Elderly tend to respond more to the positive stimuli
than the negative ones [20]. Generally speaking, elderly
require constant positive companionship to keep them away
from loneliness, depression, and anxiety. Because different
activities performed or experienced by the elderly affect
their mood in different ways, the Activity-Affect Knowledge
(AAK) must be carefully modeled for accurate computation
(see Section III.A) and efficient storage, retrieval, and adap-
tation (see Section IV). Furthermore, the AAK is different
among different elderly [21], evolves as they age [22], and
changes when they have different roles [23]. Therefore,
the AAK should be presented with a simple yet effective
model to characterize different temperaments. In this paper,
our proposed agent, named Humanoid Agent With Mood
Awareness (HAWMA), employs the Russell’s circumplex
model of affect [24], which is one of the most widely studied
and applied emotional models [25].

A. Representation of the affective states

Russell finds that the relationship between pleasure-misery
and arousal-sleepiness is almost orthogonal [24]. Therefore,
he proposes a circumplex model (see Fig. 1) to represent
one’s affective states in the 2-D space. The eight major ones
(represented in bold) are evenly distributed around the circle.
By knowing the exact pleasure and arousal values, one of the
eight affective states can be identified accordingly.

The Pleasure-Arousal-Dominance (PAD) model [26] ex-
tends the 2-D model [24] by affixing another axis to represent
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Fig. 1. Russell’s circumplex model of affect.

dominance. The positive or negative values of dominance
represent how much a person is affected by the activity, in
dominance or in submissiveness, respectively.

HAWMA uses the dominance values to determine math-
ematically how long the activities affect the mood of the
elderly. Because each individual activity may affect the
pleasure and arousal values differently, we separate the two
axes for independent computation. Furthermore, because the
influence of previous activities decreases as time elapses, we
employ the one-tailed Gaussian function to mathematically
model how each activity affects the mood:

f(x) = −a exp
(

− (t− tx)2

2b2

)

, t ≥ tx, (1)

where f(x) denotes the function to compute the amount of
affect contributed by the activity happened at time tx in either
the pleasure-misery or the arousal-sleepiness dimension at
time t; a denotes the altitude of activity x in terms of affect;
and b denotes the corresponding effective time (bandwidth)
of activity x. As t ≥ tx, the amount of affect contributed by
activity x decreases as t increases.

Eq. (1) models how much each individual activity hap-
pened preceding the current time t contributes to the current
pleasure or arousal values. At any time t, the actual pleasure
or arousal value is defined as the aggregation of all values
contributed by the previously happened activities:

Pt =
∑

fP (x), ∀tx ≤ t;At =
∑

fA(x), ∀tx ≤ t. (2)

After computing Pt and At, HAWMA can sense the
affective state of the elderly in the 2-D space shown in
Fig. 1 in real time. If we define the circle centered at the
origin with a radius of 1 to represent the safety boundary,
then HAWMA can notify any concerned party (including
the elderly) about the sensed extreme emotional situation
(the affective state falls outside the safety boundary). This
functionality is defined in Eq. (3).

TABLE I
EXAMPLES OF THE PRE-DEFINED ACTIVITY-AFFECT KNOWLEDGE.

ID Activity PAD Values
A.71 Hear that an old friend got cancer. -0.15; 0.58; -1.44
B.1 Wake up from a good sleep. 0.75; 1.00; 1.50
C.13 Keyword “miserable” is identified. -0.99; -0.15; N/A

IF
√
(P 2
t +A2

t ) > 1,
THEN send corresponding notification(s).

(3)

B. Pre-defined activity-affect knowledge

The pre-defined set of Activity-Affect Knowledge (AAK)
used in this paper is taken or derived from the published work
in psychology and gerontology. There are three categories of
the pre-defined AAK: A) averaged survey data consisting of
PAD values with the corresponding activities; B) heuristic
rules derived from expert knowledge; and C) training signals
associated with keywords. One example from each AAK
category is presented in Table I.

Knowledge in Category A is imported from [27], which
reports the averaged survey data collected from 200 young
adults on emotional correlates. In [27], there are 77 unique
activity-affect pairs reported. Among all 77 pairs, some
activities cannot be recognized based on the currently avail-
able sensors. However, 20 activities can be recognized by
smartphones, computers, and robots with mobility and visual
inputs, if authorized. Moreover, 14 activities can be recog-
nized if they are approximated by closely similar activities.
Because the survey uses five-point Likert scale, each PAD
value is bounded within the [−2, 2] interval. Rule A.71,
whose wording is shortened in Table I, can be directly
recognized if someone tells the elderly this message through
Twitter. Because the survey data is not collected from the
elderly, the misery value (P ) seems to be low. However, we
show in Section V that the pre-defined knowledge evolves
after adaptations if training signals are provided.

Knowledge in Category B consists of heuristic rules
derived from expert knowledge. McCrae et al. [28] show
that the positive or negative affective state highly correlates
with how well the elderly scale last night’s sleep. In [28],
Positive Affect and Negative Affect Scales (PANAS) [29]
are used. However, PANAS values can be translated [30] to
PAD values. The positive correlate is illustrated as Rule B.1
in Table I that a good sleep suggests a high pleasure value,
a higher arousal value, and both of them last for a relatively
long period of time. The PAD values in Category B have the
same scale ([−2, 2]) as those in Category A.

Knowledge in Category C consists of all the training
signals when certain keyword is identified. The keywords
can be identified through parsing all outgoing messages and
explicitly provided by the elderly through the annotating
emoticon functionality offered by HAWMA residing in the
smartphone platform. Among all the 28 keywords shown in
Fig. 1, 15 of them are given with the exact degrees in [24].
Assuming the length of the segment is 1 (the scale boundary
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is [−2, 2]), the exact P and A values (cos(θ) and sin(θ)) can
be computed as the training signals. Because the values are
used for training only, the D values are not applicable here.

All the pre-defined AAK is listed in details (how to
recognize the activities, how activities are approximated by
closely similar ones, how heuristic rules are derived, and
how to estimate the values of the training signals if the exact
degrees are not provided) in an Excel file1. If we denote these
pre-defined values as raw values, the parameters (altitude a
and bandwidth b) of Eq. (1) are defined as follows.

Pa = Praw/2;Aa = Araw/2. (4)

Pb = Ab = 8|Draw|, (5)

where |y| denotes the absolute value of y; and the coefficient
is set to 8 so that the maximal duration of any activity ap-
proximately affects the elderly for 4 hours (time is discretized
into 15-minute intervals).

Although the initial values of Pb and Ab are identical, we
show in Section V that they are differentiable after training.

IV. ACTIVITY-AFFECT MODEL FOR KNOWLEDGE
STORAGE, RETRIEVAL, AND ADAPTATION

Section III shows how to use AAK to compute the P
and A values in real time. In this section, we propose a
neural network, named Activity-Affect Model (AAM), to
store, retrieve, and adapt AAK for each individual elderly.

A. Dynamics of the activity-affect model

The architecture of AAM is shown in Fig. 2. AAM is
a particular realization of the generic fusion ART network
[32], which applies the Adaptive Resonance Theory (ART)
[33] for learning. AAM employs a 3-channel architecture,
comprising a high-level association field wherein the associ-
ations among the three low-level fields are stored as cognitive
codes. All the pre-defined AAK is translated (see Eqs.
(10) and (11)) and inserted into AAM during initialization.
AAM supports bottom-up knowledge storage and top-down
knowledge retrieval. An important consideration that we
employ the fusion ART network to model mood awareness
is because its network structure can dynamically evolve by
either adding in new cognitive codes in F c2 or expanding
the length of the input vectors of the three low-level fields
after initialization. More details about another realization of
the fusion ART network can be found in [34]. In this paper,
AAM employs ART2 operations [35], [36] for knowledge
adaptations. The dynamics of AAM are described as follows.

1) Input vectors: The input vector Ic1 to F c11 consists of
six binary bits: {Ic1i fori = 1, · · · , 6}. Therefore, Ic1 indi-
cates the unique index of each activity (totally 39 defined).
As discussed earlier in Section III.A, the affect knowledge
is splitted into the independent pleasure (P ) and arousal

1All the pre-defined activity-affect knowledge and all the generated
artificial daily lives are uploaded to our research center’s repository:
http://www.ntulily.org/. The online user evaluations of the generated artificial
daily lives will be available soon (currently under construction).

Fig. 2. Network architecture of the Activity-Affect Model (AAM).

(A) values. Therefore, both Ic2 and Ic3 consist of two
real numbers representing the altitude a and bandwidth b
parameters defined in Eq. (1), respectively.

2) Activity vectors: Let xck denote the F ck1 activity vector
for k = 1, 2, 3. Let yc denote the F c2 activity vector.

3) Weight vectors: Let wck
j denote the weight vector

associated with the jth code in F c2 for learning the input
patterns in F ck1 for k = 1, 2, 3.

4) Parameters: The dynamics of AAM is determined
by learning rate parameters βck ∈ [0, 1] for k = 1, 2, 3;
contribution parameters γck ∈ [0, 1] for k = 1, 2, 3, where∑3
k=1 γ

ck = 1; and vigilance parameters ρck ∈ [0, 1] for
k = 1, 2, 3.

5) Code activation: By representing the low-level input
vectors for bottom-up retrieval, the activation value of each
F c2 code j is computed by the choice function T cj :

T cj =

3∑

k=1

γck
xck ·wck

j

‖xck‖‖wck
j ‖ , (6)

where the operation · is the dot product and the norm ‖.‖ is
defined by ‖p‖ ≡√∑i p

2
i .

6) Code competition: After the activation values of all
codes in F c2 are computed with respect to the current input
vectors, the winner code J in F c2 is selected as the one who
has the maximal activation value:

T cJ = max{T cj : for all F c2 code j}. (7)

For knowledge retrieval, the process ends after the values
stored in wckJ are read out. For knowledge adaptation, further
computation is required.

7) Template matching: Before code J can be used
for learning, a template matching process checks that wckJ
are sufficiently close to xck for k = 1, 2, 3. Specifically,
resonance occurs if for each channel k, the match function
mck
J of the chosen code J meets its vigilance criterion:

mck
J =

|xck ∧wck
J |

|xck| ≥ ρck. (8)

8) Template learning: Once code J is selected, for each
channel k, the weight vector wck

J is updated towards the
input vector xck:

w
ck(new)
J = (1− βck)w

ck(old)
J + βckxck. (9)

Because the fusion ART network [32] requires all vectors
to be bounded within the [0, 1] interval, the transformations
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TABLE II
THE DETAILED ALGORITHM FOR THE OVERALL KNOWLEDGE ADAPTATION PROCESS.

Step 1 At each time t when training signals are provided, check Pt & At for whether adaptations are required.
Step 2 If the degree defined by Pt & At is deviated over ±22.5o from the training signal, then rule adaptations

are performed in two concurrent criteria: dominance values and recency effects.
Step 3 If the degree of the training signal is given as m, then the amount of change required to learn in P & A

axes are defined as 	Pt =
√
(P 2
t +A2

t ) cos(m)− Pt; 	At =
√
(P 2
t +A2

t ) sin(m)−At.
Adapt the altitudes of rules according to the dominance values:
Step 4 For all previously fired rules, compute their values at time t for P & A:

Pvalues t = ∪fP (x), ∀tx ≤ t; Avalues t = ∪fA(x), ∀tx ≤ t.
Step 5 Based on the absolute values of Pvalues t & Avalues t, select at most seven of them (according to the magic

number 7± 2 [31]) to identify the sets of rules to be adapted: Rule IDDominance P & Rule IDDominance A.
Step 6 For all rules selected for adaptation, compute their recency effects:

RecencyP,x = t− tx, ∀x ∈ Rule IDDominance P; RecencyA,x = t− tx, ∀x ∈ Rule IDDominance A.

Step 7 Compute the normalized learning values for all rules: 	Pt,x = 1
|Rule IDDominance P|

(
1− RecencyP,x∑

RecencyP,∀x

)
	Pt;

	At,x = 1
|Rule IDDominance A|

(
1− RecencyA,x∑

RecencyA,∀x

)
	At, where |S| denotes the cardinality of the set S.

Adapt the bandwidths of rules according to the recency effects:
Step 8 Identify at most seven [31] recently fired sets of rules: Rule IDRecency P & Rule IDRecency A.
Step 9 Compute their recency effects:

RecencyP,y = t− ty, ∀y ∈ Rule IDRecency P; RecencyA,y = t− ty, ∀y ∈ Rule IDRecency A.

Step 10 Compute the normalized learning values for all rules: 	Pt,y = 1
|Rule IDRecency P|

(
1− RecencyP,y∑

RecencyP,∀y

)
	Pt;

	At,y = 1
|Rule IDRecency A|

(
1− RecencyA,y∑

RecencyA,∀y

)
	At, where |S| denotes the cardinality of the set S.

Step 11 ∀	Pt,y, if Pt,y has different polarity with cos(m), then 	Pt,y = −|	Pt,y|, otherwise, 	Pt,y = |	Pt,y|;
∀	At,y, if At,y has different polarity with sin(m), then 	At,y = −|	At,y|, otherwise, 	At,y = |	At,y|.

Formulate the value vectors for learning:
Step 12 Pt,x = Pt,x +	Pt,x, ∀x ∈ Rule IDDominance P; Pt,y = Pt,y +	Pt,y , ∀y ∈ Rule IDRecency P;

At,x = At,x +	At,x, ∀x ∈ Rule IDDominance A; At,y = At,y +	At,y, ∀y ∈ Rule IDRecency A.
Step 13 Apply the binary index of each activity with the above computed vectors to AAM for knowledge adaptations.
Repeat the learning process recursively until no more learning is triggered.

TABLE III
TRANSFORMED VALUES OF THE EXAMPLES SHOWN IN TABLE I.

ID ART-Pa ART-Pb ART-Aa ART-Ab

A.71 0.4625 0.72 0.645 0.72
B.1 0.6875 0.75 0.75 0.75

of PAD values (Eqs. (4) and (5)) are defined in Eqs. (10) and
(11), respectively. The transformed values of the examples
given in Table I are shown in Table III.

ART-Pa = (Pa + 1)/2;ART-Aa = (Aa + 1)/2; (10)

ART-Pb = ART-Ab = |Draw|/2. (11)

B. Learning algorithm for knowledge adaptation

If the current affective state determined by Pt and At is
out of phase with the provided training signal (falls outside

the 45o sector), the amount of affects contributed by the
previously recognized activities should be adapted so that
Pt and At are moving towards the provided training signal.
As discussed earlier in Section III.A, P and A values are
computed independently. Moreover, the altitude parameter a
and the bandwidth parameter b defined in Eq. (1) should
be respectively adapted according the dominance values
and the recency effects. Furthermore, not all the previously
recognized activities should be adapted. Only a number of
them, which contribute the most to Pt and At, are selected.
The chosen number is 7 according to the magic number 7±2
[31], which is the limit of the number of objects or events
that human can hold in the working memory.

Each step of the overall learning algorithm are introduced
with mathematical equations in Table II. The training signals
(see Section III.B, Category C) provided (Step 1) should not
be directly transformed and applied to AAM for knowledge
adaptations. Instead, the relative amount of the difference
(Step 3) between the given training signal and the current

1553



10 20 30 40 50 60 70 80 90
−1.5

−1

−0.5

0

0.5

1

1.5

Annotation: Excited

Annotation: Miserable

Annotation: Sleepiness

Time (6:00am to 5:45am in 15−minute intervals, 96 time stamps)

P
le

as
ur

e−
M

is
er

y

Fig. 3. Affective values in the pleasure-misery dimension before training
according to the artificially recognized activities of Elderly-1 in Day-1. The
dashed line represents the actual pleasure value Pt. Each annotation denotes
the position of the corresponding training signal. If at time t′, an activity x
is recognized, then the amount of influence of x is at the peak (determined
by a defined in Eq. (1)) in time t′. As time elapses, the influence of x
decreases (the effective duration is determined by b defined in Eq. (1)). At
any time t, Pt (defined in Eq. (2)) is the sum of the individual P values
contributed by all the previously recognized activities.

Pt and At values should be adapted to the selected activity-
affect association rules. There are two concurrent selection
criteria (Step 2): dominance values and recency effects.
The altitude parameters of the rules selected according to
the dominance values (Steps 4 to 7) and the bandwidth
parameters of the rules selected according to the recency
effects (Steps 8 to 11) are adapted in AAM (Steps 12 and 13)
according to the respective equations. The learning algorithm
runs recursively until no more learning is triggered.

V. EXPERIMENTAL RESULTS AND VISUALIZATIONS

To show AAM is capable of adapting the pre-inserted
AAK, we generate two days of artificial daily lives for
two artificial elderly, respectively. Altogether there are 51
activities (with overlaps, taken from either Category A or
Category B introduced in Section III.B) and 14 training
signals (with overlaps, taken from Category C introduced
in Section III.B). The P and A values of Elderly-1 in Day-1
are plotted in Figs. 3 and 4, respectively. The corresponding
mood transitions of Elderly-1 throughout Day-1 are plotted
in Fig. 5.

To maintain the specific AAK according to different in-
dividuals, two AAM networks are implemented for the two
elderly, respectively. However, the two AAM networks use
the same set of parameter values:

• Vigilance parameter ρ = {1, 0, 0}. Because F c11 rep-
resents the index of each activity, an exact match is
required (i.e. ρ1 = 1). Because each activity only
associates with one set of P and A values, ρ2 = ρ3 = 0.

• Learning rate parameter β = {0, 0.8, 0.8}. Because an
exact match is required in F c11 , β1 can be set to any
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Fig. 4. Affective values in the arousal-sleepiness dimension before training
according to the artificially recognized activities of Elderly-1 in Day-1. The
dashed line represents At defined in Eq. (2).
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Fig. 5. The mood transitions of Elderly-1 in Day-1 before training. The
radius of the circle is 1, which defines the emotional safety boundary.

value in the [0, 1] interval. Because this experiment is
conducted in a relatively stable and recursive manner, β2

and β3 are set to relatively high values for fast learning.
• Contribution factor γ = {0.8, 0.1, 0.1}. Because for

most of the time, the knowledge retrieval process only
depends on the index of the activity, γ1 is much favored.

After applying the learning algorithm shown in Table II,
the P and A values of Elderly-1 in Day-1 are now plotted
in Figs. 6 and 7, respectively. The corresponding mood
transitions are plotted in Fig. 8. Moreover, the example rules
previously given in Table III are now shown in Table IV.

It is noticeable by comparing Table IV to Table III that
Rule A.71 (triggered at time stamp 37 to Elderly-1 in Day-1)
is drastically changed. It is shown in Table I that Elderly-
1 received a message from Twitter that an old friend got
cancer. It is discussed earlier in Section III.B that this kind
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Fig. 6. Affective values in the pleasure-misery dimension after training
according to the artificially recognized activities of Elderly-1 in Day-1.
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Fig. 7. Affective values in the arousal-sleepiness dimension after training
according to the artificially recognized activities of Elderly-1 in Day-1.

TABLE IV
ADAPTED VALUES OF THE EXAMPLES SHOWN IN TABLE III.

ID ART-Pa ART-Pb ART-Aa ART-Ab

A.71 0.0883 0.862 0.5291 0.747
B.1 0.7042 0.776 0.7692 0.768

of negative sentiment is expected to affect the elderly greatly.
Because Elderly-1 posts online: “I just heard... I feel so
miserable right now...” at time stamp 40 (45 minutes later),
this particular training signal boost up the P value towards
the negative direction.

Comparing Table IV to Table III, Rule B.1 (triggered at
time stamp 1) is not significantly changed. However, it is
clearly shown that the bandwidth parameters for P and A
are differentiable despite of the slight changes.

Comparing Fig. 8 to Fig. 5, the line segments representing
the mood transitions of Elderly-1 in Day-1 are noticeably
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Fig. 8. The mood transitions of Elderly-1 in Day-1 after training.

smoother because there are less sharp and backwards turns.
At any time, whenever the affective state of the elderly

moves beyond the circle representing the safety boundary in
the emotional aspect, the agent generates a corresponding
notification to the elderly. In this context, according to Fig.
5, before knowledge adaptation is performed, the agent sends
two different notifications to Elderly-1 in Day-1. According
to Fig. 8, after training, the agent sends three different noti-
fications to Elderly-1. Moreover, because multiple warnings
are sensed in sequence, the agent also sends a text message
to the concerned party, say the daughter of Elderly-1, “Your
mother feels depressed earlier around 8:30 pm, would you
like to call her or pay her a visit to see whether she is
OK now?” Because the affective states of the elderly can be
better sensed after training (less sharp or backwards turns and
parameter values converges to ensure Pt and At are closer
to and in phase with the training signals), the agent is able
to provide more specific and appropriate tender care to the
elderly, other than the relatively simple notification services.
For example, whenever the agent senses that the elderly is
feeling too excited (without exceeding the safety boundary),
it may play a peaceful piece of music. Another example is
that whenever the elderly feels sleepy (not in the evening
around bed time), the agent may suggest activities such
as an interesting interactive game to provide some mental
stimulation or taking a nap if there is no scheduled event.

VI. CONCLUSION AND FUTURE WORK

This paper shows how our proposed humanoid agent
residing in the smartphone platform models mood awareness
of the elderly to provide better tender care. To characterize
the affective states in a computational way, the mobile
agent employs a neural network to model the activity-affect
knowledge for each individual elderly. The initial activity-
affect knowledge is taken from published work in psychol-
ogy and gerontology. However, user-specific knowledge can
be captured if adequate training signals are provided. The
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transitions of the affective states can be represented in the
2-D space for visualizations. Although the data set in use
is artificial, we argue that all the involved activities are
recognizable by smartphones, computers, and robots with
mobility and visual inputs, if authorized. Furthermore, we
show that by employing the computational model for real-
time mood awareness of the elderly, the agent is capable
of providing more specific and appropriate tender care to
support the elderly in the emotional aspect.

This paper is the first step towards the ultimate goal of
actual deployments. Numerous challenges are waiting ahead
along the rough road. There are mainly two directions to
approach the ultimate goal: performing more reliable activity
recognition with richer context (including real-time health
monitoring through designated wearable gadgets with wire-
less connectivity) and introducing more capable and dynamic
models to deal with the naturally complex and fast-changing
human minds.

Other plausible future work includes taking the mental
illness history (if any) and the current mental health status of
the elderly into consideration, collecting or generating more
daily lives of the elderly for a longer duration to illustrate
the differences among them, and deploying the agent in a
virtual world or a game environment for case studies.
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