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Abstract—This research presents a generic framework and
methods for mining temporal rules from multiple time-series data
and its application to ecological data. The aphids dataset that
tracks the trajectory of aphid infestations over time has been well
researched in a number of studies. Those studies concentrated
on predicting the scale of infestation over time. The focus of our
research is to identify environmental factors that predict, in a
temporal fashion, high incidence of aphid activity. This required
the development of a novel framework for knowledge extraction
from multiple time-series data and a method for discretization
of numeric data as well-known methods such as SAX did not
perform adequately due to the non-Gaussian nature of the data
involved. Our experimentation yielded new insights into the
environmental factors that may influence pest outbreak which
are captured in the form of simple actionable rules that would
be of interest to the farming community.

I. INTRODUCTION

Time-series data is ubiquitous in various scientific fields,
and analyzing time-series data is an active area of research
[1]. Although intensely researched from the numeric prediction
perspective relatively less research has focused on extraction of
temporal knowledge in the form of sequential rule discovery.
In an ecological context, knowledge of the environmental
factors associated with a pest invasion assumes equal if not
more importance than mere prediction as it enables end users
to make timely decisions on when to put in place suitable
pest control measures. The aphids dataset [2] provides a rich
source of information on numbers of aphids collected over
a period of 20 years. The trap is used as an indicator of
aphid abundance in nearby wheat crops. The grain crops are at
risk from serious viruses that can cause devastating economic
damage that is transferred to the plants when aphids feed on
them. Environmental factors such as temperature, wind speed,
humidity and other factors that are potentially conducive to
the growth of the aphid population are also available. Whilst
a number of studies have been conducted on this particular
dataset [3] and pest invasion in general [4][5], most of them
have been from the perspective of using these variables to
predict annual aphid abundance and none have addressed the
issue of extracting knowledge about pest outbreaks in the form
of temporal rules. This motivates the current research.

In general, knowledge extraction from temporal data in
the form of sequential rules from time series requires data
pre-processing to transform numeric data into nominal form
suitable for application of rule extraction methods. While a

number of discretization methods are available for time series
data, none of them were found suitable for this study due
to the highly skewed nature of species count time-series and
this required us to develop a new discretization method that is
generic in the sense that it does not assume that the underlying
data follows a particular distribution such as the Gaussian as
the well-known SAX method [6] requires.

In this study, we also describe a framework for sequential
rule extraction from multiple time series data that incorpo-
rates discretization; pattern specification for rule generation,
sequential rule mining, and finally rule evaluation methods.

Our empirical study on the aphids dataset revealed that
high confidence rules that predict an impending aphid outbreak
can be identified that gives growers an adequate window of
time to take preventive action. The knowledge encapsulated
by such rules could not be deduced by simple visualization
methods due to the complex inter-relationships between the
variables, thus reinforcing the need for application of rule
mining methods.

In Section II we review work in the two major themes that
relate to this study, namely time series discretization methods
and sequential rule mining methods. We give a formal defini-
tion of the research problem in Section III. The framework for
sequential rule mining and associated methods is presented in
Section IV. Section V presents the experimental design used
to study the effects of different discretization methods and
different settings for key parameters such as sliding window
size and aggregation size on the quality of the rules produced.
Finally in Section VI some concluding remarks are made and
some directions for future research are discussed.

II. RELATED WORK

One of the most widely used discretization methods for
time series is the Symbolic Aggregate approXimation (SAX)
proposed by Lin et al [6]. The SAX method uses the Gaussian
distribution to discretize data into bins that contain values that
occur with equal probability.

In [7], a clustering technique is used to transform the
time series into symbols representing the geometrical shape
of the time-series. In [13], a clustering method based on the
concept of Partial K-Completeness and Interestingness is used
on Hydrological data.
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In terms of temporal rule extraction, Das et al published
one of the very first studies on extracting rules from time-series
data, which uses a clustering method to discretize the time-
series based on geometrical shape and proposed a modified
Apriori algorithm to discover rules from a set of discretized
time-series [7]. Last et al proposed a general methodology
for knowledge discovery from time-series producing fuzzified
rules based on an information-theoretic and connectionist
approach [8].

Aside from these studies, research in time-series rule min-
ing has revolved mostly around improvement to certain aspects
of the aforementioned techniques, such as the discretization
step, and different applications of it. For example, Mörchen
and Ultsch proposed a new quality score to measure unsu-
pervised discretization of time series, by taking the temporal
information into account and searching for persistence, argued
as more suitable for knowledge discovery purposes, and of-
fered a discretization algorithm called Persist [9]. Pradhan and
Prabhakaran mined useful rules in multi-attribute medical data,
specifically from multiple surface electromyogram (EMG) data
to analyze muscle movement behaviors with sequential apriori
algorithm [10]. Rule mining as a part of an integrated time-
series data mining of medical therapy data as part of a hospital
information system has also been explored by Abe et al [11].
Temporal rule mining was also used by Warasup and Nukoolkit
[12] who proposed the usage of symbolic aggregate approxi-
mation (SAX) as the discretization technique for financial data
analysis.

III. PROBLEM DEFINITION

The temporal rule extraction problem in general can be
stated as the discovery of rules that associate the occurrence
of an event of interest B within a given time period T of
the occurrence of another event A. The events A and B are
represented by items or sets of items (henceforth referred to as
itemsets). We will first formally define the notion of itemsets
in the context of temporal rule extraction.

Given a set of n time series variables: X1, X2, ...., Xn that
are considered to be predictors of another time series Y , we
first obtain the discretized versions of the predictor variables
as sets D1, D2, .., Di, .., Dn respectively, where each Di is
itself a set of symbols obtained by discretizing variable Xi.
An itemset I can now be defined as:

I ⊆ DS (1)

where DS =
⋃

s=1,nDsI.

Thus an itemset is essentially a set of co-occurring items
as in classical association rule mining, but with the added
constraint that their occurrence is sequential in nature.

A temporal rule spanning a time period T is denoted by
(A

T⇒ B) where A,B are itemsets, supp(A) > minsup,
supp(B) > minsup represent the support of itemsets A and B
respectively, while minsup is a user defined minimum support
theshold; confidence of the rule c(A T⇒ B) = supp(A,B,T )

supp(A) >
minconf, a user defined threshold on confidence, and T is a
user defined time horizon that specifies that itemset B occurs
at most T units of time after the occurrence of itemset A.

Fig. 1: Discretization result comparison. Values of 0.1 and 0.2
have been selected to signify which part of the time-series
signal is discretized as a high-signal by SAX and our proposed
sliding window approach.
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In the context of the aphids dataset we restrict the itemset B
to strings containing the symbol that denotes high occurrence
of aphid count as the focus of the research is to discover events
that lead to high levels of aphid infestation.

IV. A GENERIC FRAMEWORK FOR TEMPORAL RULE
MINING FROM MULTIPLE TIME SERIES

This section will elaborate in detail on the framework
that we used to mine temporal rules. Three major steps are
involved, namely discretization of time series variables, rule
extraction and finally, rule evaluation.

A. Time-series discretization

Since most of sequential rule mining algorithms work on
data in the form of strings of symbols, one of the most crucial
steps in this framework is to find the most appropriate way to
transform numerical values of the time-series into symbolic
strings. Different strategies have been proposed by various
researchers to suit the needs of the data they worked on.

In this research, we use the simple but versatile Symbolic
Aggregate approXimation (SAX) proposed by Lin et al for
all but one of the time series variables. The result with SAX
on ecological species count observation series, which follows
a Poisson distribution, is not satisfactory. When faced with
such a problem the usual procedure is to log-transform the
numerical value to fit the Gaussian distribution, but such
transformation with ecological count data for the purpose
of satisfying the parametric assumption should be avoided
[14]. This is because ecological species count data is very
often sparse, containing many zero values and as such a log
transformation is not suitable. Fig. 1 shows that discretizing the
time-series into a low-high two-symbol string with SAX will
incorrectly assign many low-valued peaks to the high symbol.

In the case of such time-series data, we suggest that it is
better to use a simple sliding window algorithm to segment
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the series into two-symbol strings, which represents low and
high values. The sliding window algorithm that we propose
works by having two segments of a particular size starting
from the beginning of the series which slide across the series
incrementally. A model is built by using training data in the left
segment, and the model is then deployed on new unseen data
arriving in the right segment. If the root mean square error
of the model on the test (right) segment exceeds a certain
threshold, then the data element that defines the boundary
between the left and right segments is considered to be a cut
point. A cut point represents a transition from either a low
signal state to a high signal state or vice-versa. In order to
distinguish between the two cases we record the average signal
value between the left and right segments. If the average of
the right segment is larger, then a transition from a low state
to a high state is indicated, else the transition occurs in the
opposite direction, from high to low.

The comparison made in Fig. 1 shows that our proposed
algorithm is more selective in indicating which peaks are
considered to represent high occurrences of aphids. Moreover,
the change-detecting nature of the algorithm means that the
segmentation is not made according to the absolute value in the
time series, but the changes in the value which indicate concept
changes. This explains why the high symbol generated by the
sliding window algorithm seems to be segmenting a little bit
ahead of the actual peak. This behavior is expected to be useful
in detecting a pest outbreak, where the identification of when
a concept change happens is more important than identifying
when a peak occurs. Although there is no rigid objective
criterion as to which discretization is better, the effectiveness
of the discretization can be indirectly evaluated by looking at
the rules produced in the consequent steps.

The pseudo-code for this sliding window based discretiza-
tion algorithm is illustrated in Algorithm 1. The algorithm
is intuitive and has been explored before as a way to seg-
ment time-series along with variations in the selection of the
regression model (linear vs non-linear) to fit the data and
ways to measure the error [17]. This generic algorithm can
be implemented by utilizing any type of learning scheme.
In this research, we have chosen to use a multiple linear
regression model in conjunction with a lagged data, 1-step
ahead prediction training/testing regime. Regression was a
natural choice as the underlying data is numeric in nature and
the linear variant is efficient while being reasonably robust in
terms of predictive accuracy. In this algorithm, one important
parameter that has to be tuned is the ε, which will signify
the sensitivity of the change detection. This parameter can be
optimized by incrementing the value until there is no change
in the discretization result, which suggests that the detected
changes are significant enough.

B. Rule Extraction

As introduced in the Problem Definition section of this
paper, we used an association rule mining algorithm which
produces rules in the form:

if A occurs, then B occurs within time T.

where A,B are itemsets. Instead of representing symbols like
in [7], the A and B represent subsequences. If the above rule

Algorithm 1 Sliding-window model based discretization

Require: D, block-size, ε (threshold for change detection)
a← 1
i← 1
while not finished scanning the time-series do
b← a+block-size
model ← build-model(D[a:b])
error ← test-model(D[b:b+block-size])
if error > ε ∧ avg(D[a:b])<avg(D[b:b+block-size])
then

highpoint[i] ← b
i← i+ 1

end if
a← a+ 1

end while
return highpoint

is denoted as A T⇒ B, then we calculate the confidence of
each rule as:

c(A
T⇒ B) =

supp(A,B, T )

supp(A)
, (2)

where

supp(A,B, T ) =
∣∣{i | ai = A ∧B ∈ {ai+1, ..., ai+T−1}

}∣∣
(3)

and ai is the symbol that occurs in the ith time step.

Equation (3) represents the number of occurrences of A
that are followed by B within a given time period T . The
pseudocode of a generic implementation of this technique is
presented in Algorithm 2 and can be optimized or modified
in various ways to suit any need.

C. Rule Selection criteria

One issue with association rule mining in general and
sequential rule mining in particular is that a large amount
of rules may be generated, most of which may be trivial
and/or uninteresting. Thus, the selection of those rules that are
significant and interesting is a challenging task. Adopting the
idea of support and confidence from associative rule mining
could be useful. Confidence and support are the two most
commonly used metrics for measuring rule quality, but a
number of researchers have devised other measurements of
interestingness for association rules such as the J-measure and
Mutual Information, and have subjected these measures to
validation and testing [15][16]. The J-measure [19] could be
used here and is defined as:

j(A
T⇒ B) = p(A) ∗

(
p(B|A) · log

(p(B|A)
p(B)

)
+(1− p(B|A)) · log

(1− p(B|A)
1− p(B)

)) (4)
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Algorithm 2 Rule-mining algorithm

Require: D1,...,n, minsupp, minconf, T
I ← generate-itemset(D)
counter ← 0
for i=1 to n do

for all a in Ii do
for all b in Ii that occurs in T time steps after a do

confidence ← support(a,b,T) / support(a)
if confidence > minconf ∧ support(a) > minsupp
then

rules[counter] ← a
T⇒ b

counter ← counter + 1
end if

end for
end for

end for
return rules

In this context, p(A) is the probability of pattern A
occurring among all itemsets of the same length generated
from the sequence, while p(B|A) is the probability of pattern
B occurring within T time period after the pattern A. The
left-hand term gives weight to the frequency of the pattern A,
and the right-hand term is the cross-entropy or the information
gain. Since there are many rules with high confidence with
low support, and vice versa, J-measure is useful because it
combines and gives a balanced measurement between the
support and confidence. Practically, it can be used as a sound
method to create an additional criterion to rank rules.

In this research we consider T as an additional constraint
measuring the usefulness of the rules generated. There is
obviously little benefit in mining rules with high confidence
and support but which span over a long period of time. That is
the real world equivalent of saying a plane crash will happen
within the next decade. The statement carries a very high level
of confidence, but is not particularly useful because of the
excessive length of the prediction period.

D. Rule Format Extension

We extend the rule format and algorithm to accommodate
multiple antecedents from different time-series in the form:

if A1 and A2 and ... and Ah occur within V units
of time, then B occurs within T time units.

The above rule can be denoted by A1 ∧ ... ∧ Ah
V,T⇒ B. This

opens up the possibility of mining from multiple time-series
and extracting interactions between the variables involved.

V. EXPERIMENTAL STUDY

A. Experimental Configuration

The methods described in the previous section will be
empirically tested on a dataset which comprised of aphid
trap catches recorded by Crop & Food Research, Lincoln,
Canterbury, and weekly weather data consisting of 15 weather
variables recorded at the Canterbury Agricultural Research
Center, Lincoln, New Zealand, spanning over 19 years as
described in [2]. In this research, the number of variables used
are limited to: Cumulative weekly rainfall, Wind run (km/day),

Fig. 2: Number of rules generated with different minconf and
minsupp
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The experiment focused on whether the proposed frame-
work and methods could discover interesting rules from the
multiple time series on aphid infestation, and also to test
the sensitivity of parameter values on the results obtained.
Since the focus of interest is prediction of high incidence of
aphid infestation the rules extracted are restricted to those that
feature high aphid count occurrence on rule consequents. We
also conduct a sensitivity analysis on key parameters such as
window size (w ), prediction time horizon (T ), minimum sup-
port threshold (minsupp) and minimum confidence threshold
(minconf ).

All experiments were run on a Core i7 processor config-
uration running under Windows 7 with Matlab as the main
programming tool.

B. Effects of Minimum Support Threshold

Fig. 2 shows the effect on the number of rules generated
as the minsupp threshold is increased. As expected, when
minsupp increases from 0 a steady decrease in the number
of high confidence rules (with confidence ≥ 0.8) is observed.
Interestingly, with no constraint on support we observe that a
substantial number of rules (numbering 10) with confidence of
1 predict high occurrence of aphid infestation within a week
of the triggering event firing on the rule antecedent. This is
due to the fact that each time step represents a week as the
aphids data was collected on a weekly basis. The same trend
is observed for higher minsupp threshold values, although the
number of high confidence rules generated reduces by a factor
of 2 or more.
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Fig. 3: Number of rules generated with different window size
of discretization
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Fig. 4: Number of rules generated by different antecedent
variables
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C. Effects of Window Size

Fig. 3 shows that as the window size w increases from
1 a higher number of high confidence rules can be obtained.
Basically, the reason is that smaller window sizes are vul-
nerable to the effects of noise. Small window sizes capture
smaller transitions between states when compared to larger
window sizes, thus effectively identifying smaller peaks. The
problem with smaller peaks is that they are associated with
random behavior, thus trigger conditions on rule antecedents
are rendered ineffective, giving rise to low confidence rules.
As the window size increases from 2 the noise level decreases
and the number of high confidence rules increases.

TABLE I: Some rules produced by the method

w Antecedent Rule Supp.
(%)

Conf.
(%) J-Measure Fig.

4 Potential
deficit ddddaaa

1⇒ b 8.86 70 0.0036 5

4 Penman
evaporation aaaabcddd

2⇒ b 3.52 75 0.0024 6

4

Potential
deficit
& Mean
temperature

aaaaabbb, dddcb
4,1⇒ b

0.8 100 0.0009 7

However, increasing the window size from 6 to 8 results
in a reduction in the number of high confidence rules. Beyond
a certain threshold on window size, dependent on the nature
of the underlying dataset, some high valued peaks will not
be detected and thus some rules, including some with high
confidence rules will not be generated. Moreover, too large
a window size is undesirable because the period of time that
T represents corresponds to the window size. Having a wide
window size for T means that the rules produced have a longer
window of prediction, rendering them less useful. We decided
to use w = 4 as the window size, which is a trade-off between
the number of rules generated and the resolution of prediction.

D. Effects of Rule Antecedent Variable

A visualization of the difference in the ability of the
variables to produce rules with varying levels of confidence
is shown in Fig 4. The number of high confidence rules which
a variable can produce is an indicator of its relative importance
in influencing a high aphid count outcome. In this context, we
can infer that the cumulative rainfall is relatively less important
than the other variables, and on the other hand, the Penman
potential evaporation seems to be a very strong feature, being
able to produce very high confidence rules.

Table 1 shows some of the rules that are discovered using
the algorithm. These rules are visualized in Fig. 5, 6, and
7, which show the occurrence of high aphid count following
the triggering events which are captured by the antecedent
of the rule. The string symbols used as the antecedent and
the consequence of the rules are from the discretized time
series with 4 levels of intensity, the character a and d for
the lowest and the highest values respectively. Thus Fig. 5
shows that 4 consecutive occurrences of high potential deficit
values (denoted by symbol ”d”) followed by 3 consecutive
low level occurrences of potential deficit (denoted by symbol
”a”) triggers a high aphid count. This can be interpreted as the
occurence of a rapid drop after a period of high values in the
antecedent. The high confidence of the rule is evident from the
visualization that shows that the antecedent pattern is followed
almost always by a peak in the aphid count value. The support
of the rule is also evident from the number of co-occurrences
of the antecedent and consequent patterns - i.e. the number of
times that the string dddaaab occurs in the data.

Likewise, Fig. 6, and 7 visually show the confidence of
rules: aaaabcddd 2⇒ b and aaaaabbb, dddcb

4,1⇒ b respec-
tively. The latter rule clearly shows the effect of having
multiple variables in the rule antecedent. The inclusion of
Mean temperature with Potential deficit in the rule antecedent
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Fig. 5: Rule visualization: ddddaaa 1⇒ b
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Fig. 6: Rule visualization: aaaabcddd 2⇒ b
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Fig. 7: Rule visualization: aaaaabbb, dddcb
4,1⇒ b
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results in an increase in confidence of 30% over the use of
Potential deficit alone. However, the trade-off caused by the
inclusion of the additional variable has caused the support
and J measure metrics to decrease substantially. It is also
interesting to note that the Potential deficit signature(row 3
of Table 1) is completely different from that of its signature
in the first rule (row 1 of Table 1).

Overall, it is evident that the rules generated are useful
in identifying high levels of aphid infestation. For example,
rules 1 and 2 in Table 1 identify trends in Potential deficit
and Penman evaporation variables respectively that lead to
high aphid count with reasonably high levels of confidence
(70% and 75% respectively), while giving growers an adequate
time periods (1 week and 2 weeks, respectively) to implement
suitable pest control measures.

VI. CONCLUSIONS & FUTURE WORK

In this paper, a generic framework for mining temporal
rules from multiple time-series has been defined and a case
study on an ecological dataset has been demonstrated. The
methods described have been shown to be able to extract some
useful temporal rules and have the potential to be applied in
many other fields in which such rules could be used to improve
the ability of humans to predict the likelihood of an incident
happening based on currently available observations.

This work could be extended in various ways. The use of
fuzzy representations and rules is promising, since it reflects
better how the rules are represented in human language and
concepts, as has been done in [18]. Building a classifier
which is able to employ the mined rules to improve long-
term prediction is also a possible extension. Decomposing
the time-series into trend and seasonal decomposition is also
a promising way to pre-process the data, as it could better
reveal the interactions between the variables. Rule extension to
accommodate spatio-temporal information is also of interest, as
ecological modeling often involves both spatial and temporal
dimensions.
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