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Abstract—Grid operators are tasked to balance the electric
grid such that generation equals load. In recent years renewable
energy sources have become more popular since they are both
clean and sustainable. Because of intermittency of renewable
energy sources like wind and solar, the operators are required
to predict renewable generation and allocate some operating
reserves to mitigate errors. If they overestimate the renew-
able generation during scheduling, they do not have enough
generation available during operation. So overestimation of
resources create a more serious problem than underestimation.
However, many researchers who study the solar radiation
forecasting problem evaluate their methods using symmetric
criteria like root mean square error (RMSE) or mean absolute
error (MAE). In this paper, we investigate solar radiation
forecasting under LinLin and LinEx which are asymmetric cost
functions that are better fitted to the grid operator problem. We
formulate the problem as an optimization problem and we use
linear programming and steepest descent algorithm to find the
solution. Simulation results show substantial cost saving using
these methods.

I. INTRODUCTION

Balance of load and generation is necessary for the electric

grid. Independent system operators (ISO) at each hour esti-

mate the loads and schedule for generation of conventional

power plants. Integration of renewable generation to the grid

have been increasing because renewable energy sources are

both clean and sustainable. However, renewable generation

like solar and wind are intermittent and change with time.

For this reason grid operators need to predict the intermittent

generation as well as load. To mitigate forecasting errors

they allocate some operating reserves to ensure that during

operation, generation always meets load.

Underestimation means that true renewable generation

during operation time is more than what the ISO scheduled

for it. So the scheduled generation is more than load. In

this case during operation by automatic generation control

(AGC) the desired generation of conventional power plants

is decreased such that generation equals load [1].

On the other hand, overestimation means that true re-

newable generation during operation time is less than what

the ISO scheduled for it. So the scheduled generation is

not enough to meet load. Small overestimation errors could

be compensated by using of operating reserves, but for

larger errors the ISO is forced to decrease the load to

keep the balance between load and generation. The act of

disconnecting customers power to keep the stability of grid
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is called load shedding. Unscheduled load shedding is very

undesirable for customers and it must be avoided as much

as possible [2].

As a result, in case of overestimation of generation, the

ISO may encounter shortages of generation and may be

forced to do load shedding, however, in case of underes-

timation of generation, they can curtail the excess power.

So the overestimation is more serious than underestimation.

Therefore the solar and wind generation forecasting problem

in the ISOs’ view is not symmetric.

There has been a lot of research on solar radiation forecast-

ing using different methods based on statistical time series

methods like autoregressive (AR) [3] and auto-regressive

with moving average (ARMA) [4] or artificial intelligence

techniques such as neural networks [5],[6] and recurrent

neural networks[7],[8] . However, they tried to minimize the

root mean square error (RMSE) or relative root mean square

error (rRMSE) in their methods [9] which is symmetric for

both underestimation and overestimation.

Previous researchers studied the forecast value of solar

radiation based on market price in California [10], similarly

in [11] cost of wind generation prediction errors in electricity

market was analyzed. Holttinen discussed handling of wind

power forecast errors in the Nordic power market [12]. The

value of wind forecasting was also studied in [13].

There are many factors in determining market price that

help the system operates economically and increases the

revenue of both producers and customers. However, market

price is not always available in electric systems managed

by utility monopoly. For example in Hawaii, in Oahu, Maui

and the Big island only one company is responsible for

electricity and all ancillary services. For this reason we use

insight from economics and market intuition which leads

us to an asymmetric cost function. Insufficient generation

is very costly for the utility monopoly, similarly in a real

market when available generation is scarce the price surges

to a very high value. On the other hand, in case of abundant

generation the price only decreases to marginal cost of more

efficient generators for both market and the utility monopoly.

In 1969, Granger mentioned that in many practical prob-

lems in economics the cost function is asymmetric. He

introduced LinLin function as an asymmetric linear func-

tion and suggest a useful although sub-optimal way for

considering asymmetry by adding a constant bias value to

the predictor [14]. The LinLin loss function is the simplest

asymmetric cost function we can use to distinguish between

overestimation and underestimation, but per unit cost does

not depend on magnitude of error.

The second popular asymmetric loss function is LinEx
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which was originally introduced for real estate assessment

[15] and comprehensively discussed by Zellner. Many other

applications require the use of asymmetric cost function. For

example in dam construction underestimation of peak water

level is more serious than overestimation[16]. In estimation

of average life of the components of a spaceship, overes-

timation is usually more serious than underestimation [17].

In this study we also have that overestimation of renewable

generation is more serious than underestimation.

In this paper we consider both LinLin and LinEx cost

functions as more suitable functions for the utility problem.

Since solar radiation is a non-stationary process (i.e. its

mean and variance change with time) we show that a biased

forecasting method which consider loss function gives better

result than biasing an unbiased forecast. However, we used

both biased forecasting and biasing the unbiased forecast to

emphasize the importance of using biased forecasting in this

problem.

The rest of the paper is organized as follows. In section II,

the forecasting problem is formulated based on both LinLin

and LinEx cost functions. Section III discusses suboptimal

solution by adding constant bias value to unbiased prediction

and an optimal solution using direct optimization for both

LinLin and LinEx cost functions. To find optimal solution,

we used linear programming for LinLin and steepest de-

scent algorithm for LinEx . Section IV is dedicated to the

simulation results and discussion. Summary of results and

conclusion is presented in section V.

II. PROBLEM STATEMENT

Our objective is to minimize expected loss by adjusting

forecasting hypothesis parameters. Let the actual solar radi-

ation at time n be xn and corresponding forecast be x̂n. We

are interested in k step ahead forecasting using a window of

past observations.

Xn = [xn, xn−1, ..., xn−m+1]
T

where m is window size.

Let us assume that k step ahead forecast is a function of

past observations

x̂n+k = h(Xn)

min
h

M
∑

i=1

Loss(h(Xi)− xi+k)

Where Loss is loss function either LinLin or LinEx and M
is total number of samples.

Here we use forecasting method using zenith angle which

was introduced in [21]. So our hypothesis h is linear

combination of past data converted to the time of prediction:

x̂n+k = (α0+
α1xn

cos θz(n)
+...+

αmxn−m+1

cos θz(n−m+1)
) cos θz(n+k)

(1)

where θz(n) is solar zenith angle at time n and α0, α1, ..., αm
are the adjusting parameters.

If the ISO ignores all intermittent generation and schedules

for the grid, there are enough operating reserves at any time.

However, those reserves cost about 20% of per unit price

of energy (i.e. in Hawaii about $0.06/kWh). So forecasting

of intermittent generation is useful to avoid that cost. On

the other hand if the generation is overestimated, they may

encounter shortage of generation and are forced to do load

shedding. The ISOs consider load shedding cost very expen-

sive. The value of lost load (VOLL) due to load shedding is

different for various cities and reported around $8/kWh to

$24/kWh [18][19][20]. For this study we assume VOLL to

be $10/kWh.

Let ε be forecast error given by

εn+k = x̂n+k − xn+k

So overestimation which means the predicted value exceeds

the actual value, corresponds to a positive error and under-

estimation which means the forecasted value is less than

actual generation, corresponds to a negative error. So the

asymmetric trade off between underestimation ($0.06/kWh

loss of revenue) and overestimation ($10/kWh penalty fee)

lead to a LinLin loss function.

LinLin(ε) =

{

C1ε if ε > 0, C1 ≈ 10$/kWh
−C2ε if ε ≤ 0, C2 ≈ 0.06$/kWh

(2)
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Fig. 1. Lin-Lin (C1 = 10$/kWh,C2 = 0.06$/kWh)and Linex (b =
2, a = 0.03$/kWh) cost functions

The system usually is robust so that it can tolerate small

errors, hence we assume the load shedding cost is exponen-

tially distributed among errors in the way that small errors

pay less penalty fee but larger errors pay a more expensive

penalty fee. In this case we have the LinEx loss function

given by

LinEx(ε) = b(eaε − aε− 1) (3)

In Fig. 1 the two cost functions in equation (2) and (3)

are shown.
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III. METHODS

In the previous section we formulated the problem as a

minimization problem based on loss function. If the loss

function is symmetric like squared error, there is no differ-

ence between negative and positive errors, so the predictor

is unbiased and mean of errors equals zero. The least square

predictor is a popular unbiased predictor which has analyt-

ical solution and is extensively used in many applications.

The bias is a constant value added to unbiased predictor

to compensate effect of asymmetry in loss function. The

biased forecast means that we considered asymmetric cost

function at the beginning and directly solved the optimization

problem.

This section is divided into two subsections. Subsection A

is devoted to solutions for LinLin cost functions. We find a

suboptimal solution by selection of optimal bias value added

to unbiased forecast to compensate effect of asymmetry

in loss function. The optimal solution is also given by

direct optimization using linear programming. Subsection B

uses LinEx and both suboptimal and optimal solution are

discussed.

A. Lin-Lin cost function

Adding bias to unbiased forecast: Let our unbiased

forecast error be ε and cumulative distribution function

(CDF) of error be Fε and probability density function of

errors be f(ε). If we add bias value β to the unbiased

forecast, the error also add with the β so cumulative loss

with LinLin cost function becomes:

Losstotal =

∫ +∞

−∞
LinLin(ε+ β)f(ε)dε

= −C2

∫ −β

−∞
(ε+ β)f(ε)dε+ C1

∫ +∞

−β
(ε+ β)f(ε)dε

For unbiased forecast mean of errors equal to zero so
∫ −β

−∞
εf(ε)dε = −

∫ +∞

−β
εf(ε)dε

Losstotal =− (C1+C2)(βFε(−β) +
∫ −β

−∞
εf(ε)dε) + C1β

To find bias value β which minimizes cumulative loss, we

have:

∂Losstotal
∂β

=− (C1 + C2)Fε(−β) + C1

⇒ β =− F−1ε (
C1

C1 + C2
)

Direct biased forecasting: Our objective is

min
α0,α1,...,αm

M
∑

n=1

LinLin(x̂n+k − xn+k)

where x̂n+k computed using equation (1).

The LinLin loss function could be expressed by

LinLin(ε) = λ1|ε|+ λ2ε

So we have

min
α0,α1,,...,αm

M
∑

n=1

{λ1|(α0 +
α1xn

cos θz(n)
+ ...

+
αmxn−m+1

cos θz(n−m+ 1)
) cos θz(n+ k)− xn+k|

+ λ2[(α0 +
α1xn

cos θz(n)
+ ...

+
αmxn−m+1

cos θz(n−m+ 1)
) cos θz(n+ k)− xn+k]}

In order to get rid of absolute value segment, let us introduce

new decision variables such that

|(α0+
α1xn

cos θz(n)
+...+

αmxn−m+1

cos θz(n−m+1)) cos θz(n+k)−xn+k|≤wn
So we have

min
w1, w2, ..., wM
α0, α1, ..., αm

M
∑

n=1

{λ1wn + λ2[(α0 +
α1xn

cos θz(n)
+ ...

+
αmxn−m+1

cos θz(n−m+1)
) cos θz(n+ k)− xn+k]}

subject to ∀n
wn ≥ 0

(α0+
α1xn

cos θz(n)
+...+

αmxn−m+1

cos θz(n−m+1)) cos θz(n+k)−xn+k≤wn

(α0+
α1xn

cos θz(n)
+...+

αmxn−m+1

cos θz(n−m+1)) cos θz(n+k)−xn+k≥−wn
which is a linear programming problem.

B. LinEx cost function

Adding bias to unbiased forecast: Again let our unbiased

forecast error be ε and probability density function of errors

be f(ε). If we add bias value β to the unbiased forecast, the

error also add with the β so cumulative loss with LinEx cost

function becomes:

Losstotal =

∫ +∞

−∞
LinEx(ε+ β)f(ε)dε

= b

∫ +∞

−∞
(ea(ε+β) − a(ε+ β)− 1)f(ε)dε

To find optimal bias value β which minimizes cumulative

loss, we have:

∂Losstotal
∂β

=abeaβ
∫ +∞

−∞
eaεf(ε)dε− ab

⇒ β =− 1

a
log(

∫ +∞

−∞
eaεf(ε)dε)

similar to Zellner’s suggestion [16] :

β = −1

a
log(Eεe

aε)

Direct biased forecasting: Here again we use forecasting

method using zenith angle as in equation(1), however for

selection of parameters we consider LinEx cost function. We
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want adjust α0, α1, ..., αm such that the following objective

function be minimized.

J =

M
∑

n=1

LinEx(x̂n+k − xn+k)

where x̂n+k computed using equation (1). Since this opti-

mization does not have analytical answer we used steepest

descent algorithm. Let α = [α0, α1, ...αm]T then the α
iteratively updated by following equation.

αi+1 = αi − η∇J
where η is step size and ∇J is gradient vector and is

computed by following equations

∇J = [
∂J

∂α0
,
∂J

∂α1
, ...,

∂J

∂αm
]T

∂J

∂α0
= ab

M
∑

n=1

[cos θz(n+ k)(ea(x̂n+k−xn+k) − 1)]

similarly for j = 0, 1, 2, ...,m− 1

∂J

∂αj+1
= ab

M
∑

n=1

[
xn−j cos θz(n+ k)

cos θz(n− j) (ea(x̂n+k−xn+k) − 1)]

IV. SIMULATION RESULTS

For simulation, we downloaded solar irradiation of several

sites from http://www.nrel.gov/midc/. The name and specifi-

cation of sites are shown in table 1. Resolution of the original

data for LaOla and Los Angeles is one minute and for

Elizabeth City is five minutes. The data removed night hours

and low irradiation times in the morning and the evening .

So only nine hours per day is considered.

Latitude:20.76685 N 1/1/2010
Hawaii Longitude:156.92291 W to

La Ola Lanai Elevation: 381 meters AMSL 12/31/2011
Latitude:36.28 N 1/1/2005

North Carolina Longitude:76.22 W to
Elizabeth City Elevation: 26 meters AMSL 12/31/2013

California Latitude:33.966674 N 1/1/2011
Los Angeles Longitude:118.42282 W to

27 meters AMSL 12/31/2013

The revenue is the annual cost which is avoided by using

forecasting method ( i.e. annual cost without using forecast

minus annual cost using the forecasting method ). We use

revenue of perfect forecast as a base line of per unit revenue.

So the per unit revenue is the revenue of forecasting method

divided by maximum possible revenue (perfect forecast).

To compare the benefit of forecasting using both biasing

unbiased forecast and biased forecasting we used one year

data for training to forecast an hour ahead and the next year

for validation. The Average annual revenue for LinLin cost

function is shown in Fig. 2 and for LinEx loss function is

shown in Fig. 3. As it is clear from the figures in both

cases revenue of biased forecasting is significantly more than

revenue from adding bias to an unbiased prediction.
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Fig. 2. The linear programming method have more advantage over adding
bias to unbiased forecast.(LinLin loss function)
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Fig. 3. Direct biased forecasting method have more benefit than adding
bias to unbiased forecast.(LinEx loss function)

For simulation of LinLin loss function, one year of data is

used for training and the next year for testing. The graphs in

Fig. 2 are results of averaging per unit revenue of 2005-

2013 of Elizabeth City data set. The black dashed line

is used for training revenue for biased forecasting using

linear programming and the blue dashed line is training

revenue of adding bias to the unbiased forecast. The green

and red solid lines are respectively used for validation of

biased forecasting and adding bias to the unbiased forecast.

Although increasing number of taps improves the training

revenue for linear programming method, the test revenue

decreases for more than four taps due to over fitting. So by

using linear programming approach we can reach to about

18% of maximum possible benefit which is around twice

as good as the 9% achieved from adding bias to unbiased

forecast.

For simulation of LinEx loss function, again one year of

data is used for training and the next year for testing. Fig. 3

shows averaging per unit revenue of 2005-2013 of Elizabeth

City. While training revenue slightly improves by increasing

number of taps, the validation revenue decreases for more

than one tap.

Because of large difference between test and train revenue

specially for adding bias to unbiased forecast, we find out

that one year data is not sufficient for training. So by using

cross validation technique, we used eight years for training

and one other year for testing. The results of the cross valida-

tion are shown in Fig. 4. In this way there is fair agreement
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Fig. 4. More training data gives better agreement between training and
testing results (nine fold cross validation)

between training and test. We have achieved about 38% of

maximum possible revenue using direct biased forecasting

which is significantly more than 26% achievement of adding

bias to unbiased forecast.

It worth noting that LinEx loss have less penalty for

small errors which gives us opportunity to use intermittent

generation more efficiently; on the other hand by having huge

penalty for larger errors prevents from serious problems that

may lead to load shedding hence we have more stable grid

operation.

Distribution of errors for LinLin shown in Fig. 5. For

unbiased forecast we have many positive errors as well as

negative errors since there is no difference between positive

and negative errors, also a large portion of errors are located

around -0.12. By adding bias (negative number) to unbiased

forecast total graph shifted to the left since underestimation

have less cost than overestimation. So the large portion which

was located around -0.12, is located around -0.45 now. On

the other hand, linear programming method shifted errors to

the left so that small portion of errors are positive; at the

same time by effective use of input features errors deviated

from zero less.

Again in Fig. 6 distribution of errors for unbiased fore-

casting are symmetric and large portion of errors are located

around zero. By adding bias (negative number) to unbiased

forecast total graph shifted to the left since underestimation

have less cost than overestimation, however the large portion

which was located around zero, is located around -0.4 now.

On the other hand, direct biased forecasting shifted errors to

the left so that small portion of errors are positive; at the

same time by effective use of input features errors deviated

from zero less.

V. CONCLUSION

While many researchers studied the problem of forecast-

ing of solar radiation, they evaluated their methods using

symmetric criteria like root mean square error(RMSE) or

mean absolute error (MAE). However, grid operators have

more concern about shortage of production rather than its

abundance, i.e. overestimation of resources have more seri-

ous problem than underestimation. So in ISO’s view the cost

function is not symmetric. For this reason we discussed solar
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Fig. 5. Histograms of forecasting Errors for for three different scenarios
for LinLin loss function (unbiased, adding bias to unbiased, and linear
programming)
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Fig. 6. Histograms of forecasting Errors for for three different scenarios for
LinEx loss function (unbiased, adding bias to unbiased, and direct biased
forecasting)

radiation forecasting under Lin-Lin and LinEx as asymmetric

cost functions which are better fitted to the grid operator

problem. For each of these loss functions we used two

scenarios i.e. adding bias to unbiased forecast or formulating

biased forecasting which consider the loss function at the

beginning. Under LinLin loss the forecasting is formulated

as linear programming and for LinEx loss we formulated

the problem as convex optimization and solved by steepest

descent algorithm. Our simulations showed that direct biased

forecasting have significantly more advantage. The methods

used are batch algorithms and on-line biased forecasting

methods are also interesting and left for future research.
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