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Abstract— This paper presents a general method of parameter 

estimation for large-scale non-linear dynamic models a with 

particular focus on parameter estimation for spike-in, spike-out 

neural models. The aim is to provide a convex optimization 

algorithm for tuning parameters of such a model which enables 

solving large-scale estimation problem in a linear time. 

Parameter estimation for a single layer neural network 

containing hundreds of synapses is addressed and 

efficiency/performance of the proposed methodology is 

demonstrated by solving a few examples. It will be also 

demonstrated that parameters of the model for mapping CA3 

output of hippocampus cell into CA1 output,   under patch clamp 

experiment, can be successfully estimated by utilizing the 

methodology of this paper.  

 
Index Terms—hippocampus, nonlinear dynamical system, 

parameter estimation for linear dynamical systems, time variant 

models, spiking neural network, plasticity  

I. INTRODUCTION 

PIKE-IN, SPIKE-OUT models for processing neural activities 

have become a focusing topic in the field of neural 

engineering and machine learning during last decade. Though 

modeling spiking activities of the entire brain's neurons is the 

driving force for creation of these models, neural engineering 

applications are the other emerging technology which require 

spiking models for processing, encoding and decoding of 

brain's spiking signals.  Wide variety of neural engineering 

applications have been developed thus far requiring spike-in, 

spike-out models; some examples are: 1) neural prosthetic 

devices to substitute a specific region of the brain which has 

input-output structure such as those are being developed in 

research for  enhancing or restoring damaged or lost cognitive 

functionality of the brain (cognitive prosthesis). More 

specifically, in case of some diseases –  anterograde amnesia, 

stroke, epilepsy, Alzheimer’s –  or accidents, Hippocampus of 

the brain will no longer form new long-term memories. To 

restore the lost functionality of the Hippocampus, 

mathematical models of the Hippocampus regions are 

developed to map spiking activities of the Entorhinal Cortex 
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through Dentate Gyrus –  input of the hippocampus –  to the 

CA1 which is the output of the Hippocampus [1]. 2) Spiking 

models are used in the domain of re-animating paralyzed 

muscles of patients who have spinal cord injury. To achieve 

this goal, either healthy residual neurons is stimulated or direct 

electrical stimulation of muscle fibers is performed. In this 

scenario, activities of the motor cortex is projected to the 

muscle fibers utilizing the mathematical approach mentioned 

in the example one. 3) Adaptive biventricular pacemaker with 

a spiking neural network coprocessor is another application in 

which optimal pacing intervals for a given heart condition is 

estimated and provided to the heart. 4) Machine vision for 

controlling robots and pattern recognition applications in 

decision making require a brain like models which broadens 

the spike-in spike-out model application. 

The commonality between all these applications is the 

utilization of bio-inspired mathematical models which receive 

inputs from real neurons i.e, spike and generate output spikes 

to the next layer of biological cells. 

It is widely accepted that the underlying signal processing 

capability of a neuron is derived from its capacity to change 

input sequences of inter-spike intervals into different, output 

sequences of inter-spike intervals [2,3]. In all brain areas, the 

resulting input/output transformations are strongly nonlinear, 

highly dynamic, and may be non-stationary which are due to 

the inherent nonlinearities, and nonstationarities embedded in 

the molecular, and cellular mechanisms of neurons and its 

synapses. The nervous system in macroscopic and 

microscopic scale is dynamic and has plasticity in short and 

long term (STP, LTP). Biological evidences show that nervous 

system responds to sensory and cognitive tasks in less than a 

few millisecond indicating that neurons operation is based on 

exact spike timing. Though a significant number of models 

have been proposed for Spike Time Dependent Processing – 

STDP – of stimulus, utility of these models has remained 

limited for neural engineering applications. While the models 

have represented essential nonlinear dynamic and temporal 

capabilities of the neuronal systems, their parameter 

estimation/adaptation for large scale modeling tasks has not 

been explored and in general application of such models has 

been limited to small size problems. This is due to the high 

degree of nonlinear dependency between the input-output of 

the model and the free parameters of the nonlinear system 

rendering the parameter estimation of the these systems to be a 

very challenging task. 

 Main focus of the current study is to present a methodology 

for parameter estimation/adaptation of highly temporal, 

nonlinear, and large scale spike-in-spike-out models. 
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Mathematical formulation for estimating and optimization of 

the model parameters is provided. The proposed method has 

the property that unknown parameters of the nonlinear 

dynamic system establishes an affine relationship between 

state variables and input-output of the model. The presented 

methodology enables online tuning of the parameter through 

the time utilizing linear programming approaches (this is not a 

topic of this paper). A large scale spiking neural network built 

upon Dynamic Synapse concept is considered as a case study. 

The Dynamic Synapse Neural Network of this study had 500 

synapses consisting of 1000 unknown parameters. The 

parameters were estimated under two conditions: a) random 

spike trains provided to the dynamic synapse model with 

known parameters and output spike train was generated by the 

model. The task was to reproduce the parameters of the 

dynamic synapse model employing the same input and output, 

and b) input-output spiking activities of rat's Hippocampus 

recorded from CA3-CA1 neurons was modeled and 

reproduced utilizing the dynamic synapse model and the 

methodology of the current paper. 

II. PARAMETER ESTIMATION FOR NONLINEAR DYNAMICAL 

SYSTEMS 

The presented models for neural  processing have the 

following general structure:  

                                 (1) 

The equation stated in (1) is a set of nonlinear ordinary 

differential equations in which       is a vector of 

unknown parameters (e.g. facilitation and depression factors in 

synaptic transmission models),   is the time,       is time 

dependent input spike train, and       is a time dependent 

state variables. The nonlinearity embedded in neural process is 

modeled by   which maps                   . In 

order to estimate unknown parameters of the system,  , and 

calculate the state variables,  , there is a need for sufficient 

number of observations. Some of state variables can be 

observable, i.e.,  neuron's membrane potential which their 

value is known only at the time of firing. Excluding the 

observable variables, the rest of state variables cannot be 

observed and represent phenomenological mechanisms of the 

corresponding synapse or neuron. If number of observable 

states to be denoted by      then there will be           
     unobserved states. The observations can be collected 

either from weighted summation of the state variables (e.g., a 

neuron's inputs from multiple synapses) and/or from 

individual state variables depending on the physical structure 

of the system. Therefore: 

          
 
        ,         , (2) 

in which    is the     component of the state variables – may 

or may not be observed –  and    is known constant weights. 

Observations only take place at the time of spikes at which the 

membrane potential exceeds a firing threshold. In this 

scenario, the equation (2) can be rewritten as following: 

      
        ,            (3) 

where      is the membrane's firing threshold and   is the time 

index at which membrane voltage has reached the threshold 

voltage. Error between the observations and the model 

presented by equation (1) can be defined as:  

      
          

       ,          ,   (4) 

The method of estimating unknown parameters depends on 

the assumptions and knowledge about the measurement errors. 

Though in the following sections, least square objective 

function for error minimization is considered, other objective 

functions will be also discussed in the future publications. 

A. Solving Nonlinear State Space Model 

In order to find unknown parameters  , it is assumed that 

unknown parameters are constant,     , and therefore 

equation (1) can be reformulated as: 

 
 
 
 
 
 
 
  

  

 
   

  

 
    

 
 
 
 
 
 
 

 

 
 
 
 
 
 
  

            

             
 

              
 
 
  

 
 
 
 
 
 

         

 (5) 

For simplicity, the equation (5) can be presented in an 

abstract form which is   

           ,              
         

    (6) 

The first step in estimating unknown parameter is 

expanding the function   around a sample point   using 

Taylor series (higher order terms are ignored). Therefore: 

    
                 

            (7) 

in which      (       ) represents new state variables  

i.e.  
     

     
  and: 

    
 

 
 
 
 
 
 
 
   

   

   
  
   

   

   
     

   
   

   
  
   

   

   
   

 
 

   
    

   
 
  
    

   
  

   
    

   
 
   

    

   
  

      
 
 
 
 
 
 

   

 (8) 

is the Jacobin of   at step   and   is a      zero matrix. 

Please note that linearization is performed with respect to state 

variables and not variable  . 

Equation (7) is the key equation in the simulations; it is a 

first order linear differential equation which is an 

approximation for the nonlinear ordinary equation which was 

expressed by (1). Solution of a linear differential equations is 

linear combination of particular,     , and homogeneous, 

    , solutions where particular solution      is the response 

of the system to its inputs with known initial conditions and 
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     is the impulse (or zero  input) response of the system. 

Therefore at any step  , the solution of the (7) can be 

expressed as: 

                                  
   

    (9) 

in which unknown parameters of the system are expressed in a 

linear weighted summation of homogenous and particular 

solutions. The particular solution of (7) is found by: 

                  
       ,           (10) 

and impulse (or zero input) response of the equation (7) is: 

       
    (11) 

The impulse response   should be solved under different 

initial  conditions for each state variables:  

       

     

 
         

  ,        

         

 
         

   ,   ...    , 

   
     

            

 
   (12) 

B. Optimization  

Parameter estimation in dynamical models is 

computationally intensive process, since it requires a repetitive 

numerical solution for the underlying set of differential 

equations. Efficient and robust methods for solving this 

problem is important for the development and improvement of 

the processing models. It is recommended that the reference 

[6] to be studied for techniques regarding general information 

about parameter estimation for nonlinear dynamical systems. 

The set of equations presented in (9) is an affine 

transformation with respect to the unknown parameters. The 

parameters can be estimated after solving the homogenous and 

particular solution's differential equations stated in (10) and 

(11). Therefore: 

                              
      

   
   
 
   

   (13) 

where      , and            is a     vector which   is 

the time duration of simulation. A subset of the state variables 

  which presents membrane potential, are observed at the time 

of spike. The observed value of the states in   is set to be 

    , because at the time of spike, membrane potential reaches 

to a firing threshold. Equation (13) can be solved under 

different constraints depending on how the mathematical 

model has been formed. Since  membrane potential is greater 

than a threshold voltage at the time of firing so one may 

reformulate and solve (13) under constraint that       . 

III. CASE STUDY OF DYNAMIC SYNAPSE NEURAL MODEL  

A.  Dynamic Model of Synapse and Neuron 

Throughout the rest of this paper a few examples will be 

considered. A simple case of a single synapse which is 

connected to a single neuron is described in this section. 

Dynamic model of synapse which is built upon Facilitation-

Depression (FD) model [4] has been used in this article which 

is defined as: 

                                     (14) 

                                  (15) 

The state variable   describes facilitation dynamics in 

response to incoming action potentials, APs, and variable   

represents the portion of release-ready vesicles. Parameter    

controls calcium influx in the presynaptic terminal of a 

synapse, and it is the main biological factor in modulating 

synaptic dynamics. Facilitation increase and vesicle release 

dynamics process are both driven/adjusted by action potentials 

where the AP time is defined by          . Post Synaptic 

Potential – PSP – is generated by integrated sum of released 

vesicles:  

        
      

           
   

 
        
   

                
   (16) 

                
    

  
                     

    (17) 

PSP of a single synapse in equation (15) is a non-linear 

function of synapse state variables –       – and it is the 

interplay of facilitation and vesicle recovery/release that 

determines the temporal dynamics of the synaptic response. 

Equation (16) is a third order differential equation which 

utilizing  parameter values shown in Table I, it generates an 

alpha exponential function. Parameter      is a post-synaptic 

dependent factor which represents number of neurotransmitter 

receptors or simply synaptic strength and          is the 

number of synaptic connections. The FD model proposed in 

equation (14-17) defines the fundamental biological 

TABLE I: PARAMETERS OF THE SYNAPSE MODEL 

Symbol Quantity Typical value 

   Facilitation time 

constant 
          mili-second 

   Resting facilitation          

   Facilitation factor         

   Vesicle recovery time 

constant 
            mili-second 
   

     Maximum number of 

release sites 
           

  ,   ,    15, 75, 125      ,       ,      ; 

    , 
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Fig. 1:  Connection between multiple synapses and a neuron 
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components shaping synapse temporal dynamics. 

Considering the neuron/synapse model introduced by 

equations (14) through (17), and with applying a minor 

modification on the state equations, the following state space 

model is formed: 

 
 
 
 
 
 
 

 
 
  

  

 
  

     
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

                         

                     
                                

  

  

 
  

 
 
 
 
 
 

 (18) 

in which      ,       
     are state variables of the 

equation (16).  The model expressed by (18) transforms input 

spike train    – input to the synapse – into another spike train 

generated by neuron's membrane. The input,      , is known 

and given for the simulations. Membrane potential   is 

partially observed and its value is only known at neuron's 

firing time; therefore                 . The unknown 

parameters of the (18) are   , and      (facilitation factor 

and synaptic strength respectively) which are supposed to be 

estimated using the observed data.  

To show performance of the algorithm, case study of a 

single synapse, single neuron was simulated with        , 

and         . A random input spike train was produced 

and provided to the synapse and output spike train was 

generated when membrane potential exceeded the threshold 

        milivolt. Figure 2 shows the simulations of the 

equation (17) when the model parameters are known. 

 Then it was assumed that     , and    are unknown so 

the methodology presented in the sections II.A and II.B was 

implemented to find the unknown parameters. The authors 

leave deriving intermediate equations to the reader however 

would like to note that the initial conditions required for 

solving particular and homogenous solutions i.e., equations (9) 

and (10). The initial conditions are: 

                                 (18) 

                                  (19) 

                                  (20) 

To obtain unknown parameters, the equation (13) has to be 

formed at each iteration   and solved at the firing times. For 

 

 

Fig. 2:  Blue is the membrane potential, black vertical bars are input action potentials and red vertical bars (top graph) are membrane's action potential (t = 286, 

608, 849, 1410 millisecond). The red horizontal is the           threshold line. In this example, the simulation parameters are         , and        . 

 

Fig. 3:  Parameter optimizationfor single synapse, single neuron: 

convergence of      , and   . 

Fig. 4:  Training progress of the network with 500 synaptic connections 

consisting 1000 unknown parameters, a) Desired synapse parameters and 

initial guess of synapse parameters b) Desired and trained synapse 

parameters of Type I DSNN with 1500 training samples  
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the example shown in the Figure 2 we have: 

 
 
 
 

              

              

              

                 
 
 
 

 

 
 
 
 
 

  
          

      

   
          

      

   
          

      

  
           

        
 
 
 
 

 
  

    
  

It is worth mentioning that membrane potential is 

represented by variable   which is the fifth element of space 

vector          
    . In addition,       and   

     are fifth 

row of particular and homogeneous solutions. The 

convergence of the parameter has been shown in the Figure 3. 

B. Large-scale Model  

Scalability and repeatability of the presented algorithm were 

examined using a large-scale simulation. A network consist of 

a single neuron and 500 synapses was set up and the network 

parameters were randomly chosen. The output spike train of 

the neuron was generated using equations (13) through (16) 

There were 1000 parameters to estimate. 

Due to large number of parameters, demonstrating detailed 

convergence graph in the limited space of the paper won't be 

feasible. However parameters at the initial step and after the 

convergence are shown in the graphs of the Figure 4. 

The simulation results identify that the convergence to an 

optimum parameter set is repeatable and scalable. The 

simulation results also suggest that the neuron membrane 

potential is a unique function of incoming spike train and 

synapse parameters. Thus, the parameter convergence 

progress in predicting synapse parameters corresponds to the 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 5: CA1 PSP dynamics and facilitation-depression model response a) Input spike train to the CA1 pyramidal neuron synaptic pathway, b) Single CA1 neuron 

PSP response and its AP activity, c) Predictive model of CA1 neuron PSP dynamics plus synapse FD model PSP response, d) Spiking activity of the CA1 neuron 

plus synapse FD model. The model with only one synaptic connection predicts CA1 neuron spiking activity with an average of 6.6 millisecond jitter accuracy 

plus firing an extra spike. 

TABLE II: PARAMETERS OF THE MODEL FOR PREDICTION OF CA1 NEURON 

Symbol Quantity Typical value 

   Facilitation time 

constant 

200 millisecond 

   Resting facilitation  0 

   Facilitation factor 0.115 

   Vesicle recovery time 

constant 
200 millisecond 

     Maximum number of 

release sites 

10.132 

  ,   ,    15, 75, 125      ,       ,      ; 
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simultaneous improvement of state variables in particular 

membrane potential prediction and the unknown parameters. 

The results of simulations show that estimation of unknown 

parameters of the large-scale model can be accurately 

converge to the desired value in a significantly less number of 

iterations.  

IV. MODELING AND PREDICTING HIPPOCAMPUS CA1 NEURON 

ACTIVITIES 

A single pyramidal cell of the CA1 hippocampus area was 

excited by injecting APs on its pre-synaptic pathway with a 2-

Hz Poisson spike timing. The patch-clamp technique was 

utilized for recording the somatic membrane potential of the 

CA1 neuron in response to the spiking train impinging on its 

Schaffer collateral synaptic pathway. Figure 5.a shows 13 

seconds of the CA1 pyramidal neuron membrane potential and 

its AP activity in response to the impinging spike train. The 

input-output property of the CA1 cell was modeled by the 

equation (18) and utilizing the methodology of section II.A 

and II.B. Free parameters of a single synapse model were 

adjusted to replicate the PSP dynamics of the CA1 cell 

including its spiking activity. Figure 5.b presents the PSP 

prediction and spiking activity using (18). The average error in 

PSP prediction was %9. The model predicts CA1 neuron 

spiking activity with a 6.6 millisecond accuracy while 

generating no extra or missing spikes. The parameter 

adaptation was applied for the whole recording time – 215 

seconds –  where the recorded neuron’s PSP  dynamics 

showed other nonlinear dynamic processes including 

facilitation regulation and vesicle depression. For a short 

recording period, adjusting only           parameters 

suffice to build a precise predictive model of the recorded 

neuron’s PSP response whereas a longer period was required 

to capture other dynamics such as facilitation regulation and 

vesicle depression.  

V. SUMMARY AND CONCLUSIONS 

In this research was presented an algorithm for parameter 

estimation of a nonlinear dynamic systems with a focus on 

spike-in, spike-out models. In general, models representing 

neural mechanisms are highly nonlinear and temporal which 

makes their parameter estimation to be challenging. Algorithm 

of this paper transforms nonlinear parameter estimation 

problem into an affine model in which parameters can be 

estimated by any linear programming methodologies. 

Utility of the proposed algorithm was demonstrated by a 

few examples. The examples were based on employing 

facilitation-depression model. Free parameters of a single 

neuron with a single synapse was estimated to map input spike 

train into a set of another spike train which was generated by 

the model. The parameter optimization successfully achieved 

estimating the unknown parameters of the system in Five 

iterations. In another example, a larger neural model 

consisting of 1000 parameters was trained. In the third 

example, facilitation-depression model and algorithm of this 

paper were utilized for development of a  predictive model for 

Hippocamus CA1 cell's PSP and its spiking activity. 

 There are many unknown questions about neural dynamics 

and the synaptic adaptation mechanisms. The learning 

algorithm presented in this paper is limited to a single layer 

dynamic synapse but can be extended to multiple layers or a 

cascade neural structure as observed in the brain layers. The 

spike-domain mappings performed in this paper addressed a 

small subset of possible spike domain mappings observed in 

the brain. The next question is how the learning and neural 

model can be modified to perform more diverse neural 

processes. The authors’ future research will focus on applying 

dynamic synapse modeling in predicting spiking activity of 

the hippocampus cortical region where it requires a cascade 

neural structure. 
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