
Structure-from-Motion Reconstruction Based on
Weighted Hamming Descriptors

Guoyu Lu, Vincent Ly and Chandra Kambhamettu
Video/Image Modeling and Synthesis Lab

University of Delaware
Newark, DE, USA

Abstract—We propose a pipelined methods to reduce memory
consumption of large-scale Structure-from-Motion reconstruction
with the use of unsorted images extracted from photo collection
websites. Recent research is able to reconstruct cities based on
extracted images from photo collection websites. SIFT feature
is used to find the correspondences between two images. For
the large-scale reconstruction with unsorted images, the system
needs to store all the descriptors and feature points information in
memory to search for correspondences. As each SIFT descriptor
is a 128 dimensional real-value vector, storing all the descriptors
would consume a significant amount of memory. Based on
this limitation, we project the high dimensional features into a
low-dimensional space using a learned projection matrix. After
projection, the distance of the descriptors belonging to the same
point in 3D space is decreased; the distance of the descriptors
belonging to the different points is increased. Furthermore, we
learn a mapping function, which maps the real-value descriptor
into binary code. As Hamming descriptors contain only two
value options per bit and the length of the descriptor is limited,
there are usually multiple descriptors having the same Hamming
distance to the query descriptor. In dealing with this problem,
we give different weights to each dimension and rank each bit of
the Hamming descriptor based on each dimensions discriminant
power; this contributes to reduce the ambiguity in matching the
descriptors. The experiments show that our method achieves
dense reconstruction results with less than 10 percent of the
original memory consumption.

I. INTRODUCTION

3D reconstruction has large usage in many areas, such
as computer games, virtual realities, and movie industries.
There are mainly two kinds of image-based 3D reconstruction
techniques: stereo reconstruction and Structure-from-Motion
reconstruction (SfM). Compared with stereo reconstruction,
Structure-from-Motion reconstruction does not require the
cameras to be calibrated while capturing images. For this
reason, Structure-from-Motion reconstruction is suitable for
large-scale reconstruction tasks because the images are easier
to obtain. With an increase in smartphone usage, an increasing
number of images are uploaded to photo collection websites
(e.g. Flicker). This provides the possibility of collecting a
large number of unordered images, typically between sev-
eral hundred or several thousand, for reconstructing a large
building structure. SfM analyzes the images and builds a 3D
model based on matching interesting points among the images.
Agarwal et al. [1] reconstruct a scene based on a large number
of images from a photo collection website. To reconstruct a
multitude of images efficiently, the system separates the image

feature matching process to multiple stages, each of which
contains a proposal and verification step. The proposal step
determines the set of images. The verification step performs
the feature matching process among the image pairs. Images
passing the verification step are passed to the next step. The
whole system is based on parallel computing to accelerate the
whole reconstruction process.

SIFT feature is applied to detect the correspondences of the
images due to the property of invariance to rotation, transfor-
mation, scaling, and illumination changes. On an image with
rich textures, usually at least several hundred SIFT features are
detected. Each SIFT feature contains 128 dimension real-value
numbers, consuming a great amount of memory to store the
features. In order to deal with this large memory consumption,
we learn a projection matrix that projects the high dimensional
descriptors to a low dimensional space. The lower dimensional
real-value descriptors are mapped to the binary space to further
reduce the memory cost. With lower memory consumption,
the distance calculation is simplified. The projected lower
dimensional real-value descriptors are projected to Hamming
space. After projecting to Hamming space, multiple Ham-
ming descriptors may share the same distance to the query
descriptor. We solve the distance confusion in Hamming space
by giving different weights to each dimension based on the
discriminant power of each dimension. Our experiments show
that our weighted Hamming descriptor achieves good result
with less than 10 percent of the original memory.

Section II briefly introduces the related work. Section III
presents our method for learning the projection matrix and
the mapping method to learn Hamming descriptors. Section
IV introduces our binary bit weighting method in Hamming
space. Section V gives an introduction to the 3D reconstruction
pipeline. Section VI discusses the experiment result, and
section VII concludes the paper.

II. RELATED WORK

Stereo and SfM reconstruction are two dominant 3D re-
construction methods based on images. SfM reconstruction
does not restrict cameras to be calibrated and thus used in
many large-scale reconstruction with easily available images,
unlike stereo reconstruction. Hartley et al. [2] introduce the
reconstruction methods based on projective geometry and
3D reconstruction from un-calibrated cameras. Fundamental
matrix based approach [3] and factorization based approach

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 2367

[4] form the two main ways for projective reconstruction.
Fruh et al. [5] capture the 2D images and the corresponding
depth information through a video camera and two laser
scanners mounted on a truck. They reconstruct a city model
by the 2D images and the depth information calculated by
the laser scanners. Pollefeys et al. [6] realize a real-time city
reconstruction system for video streams based on GPS and
inertia technologies. Zebedin et al. [7] combine aerial images,
sparse line features delineating height discontinuities, and
dense depth data to build the dense city reconstruction model.
All of these methods are reliant on calibrated cameras or laser
scanners. Smartphone and internet technologies development
significantly increases the number of images on the Internet.
Snavely et al. [8], [9] extract Internet images to reconstruct
a structure based on SfM reconstruction method. Agarwal
et al. [1] build a large-scale reconstruction system using
images from photo collection websites; the system contains
several stages, each of which is composed by a proposal
and verification step to build the feature correspondences
among image pairs. The system is employed on a computer
cloud to accelerate the reconstruction procedure. Instead of
utilizing a computer cloud, Frahm et al. [10] obtain a highly
parallel implementation on graphics processors and multi-core
architectures with the application of geometry and appearance
constraints. Lu et al. [11] conduct the SfM reconstruction
based on reduced dimensional descriptors and learned Ham-
ming descriptors. However, the confusion may happen when
several Hamming descriptors have the same distance to the
query descriptor while selecting the best matching candidate.

Many high level descriptors contain high dimensionality,
such as 128-dimension SIFT feature [12] and 64-dimensions
SURF feature [13], [14]. The high feature dimensionality
would not be a big concern for dealing with small number
of features. However, for large-scale reconstruction problems,
the high dimensionality would consume a large portion of
the memory. Research has been invested to reduce the high
dimensional feature to the low dimensional space. Based on
Principal Component Analysis [15], Yan et al. [16] develop
PCA-SIFT, which reduces the SIFT feature dimensionality.
Hua et al. [17] adopt a discriminative approach from labeled
match and non-match pairs to learn a lower dimensional
embedding. Making use of Linear Discriminates Analysis [18]
and Powell minimization [19] , Brown et al. [20] reduce the
descriptors’ dimensionality through both linear and nonlinear
transforms. Philbin et al. [21] learn a projection matrix by
minimizing a margin-based cost function built on the basis
of three groups of descriptor pairs, which are positive pairs,
nearest neighbor negative pairs, and random negative pairs.

Distance computation in binary code is much easier than the
real-value numbers and the descriptors storing in Hamming
space could save a great amount of space. Kulis et al. [22]
generate locality-sensitive hashing for arbitrary kernel func-
tions and prove their usage in indexing local patch descriptors.
Spectral Hashing was proposed by Weiss et al. [23] to compute
binary code for a new data point by selecting a subset of
eigenvectors of graph Laplacian. Yagnik et al.[24] present

an embedding method (WTAHash) based on partial order
statistics. Their embedding method exhibits the simplicity in
implementation and effectiveness in distance computation. The
special case of their Hashing method when applied to binary
vectors is the well-known MinHash [25], [26] method.

III. PROJECTION MATRIX AND MAPPING FUNCTION
LEARNING

A. Projection matrix learning

The main reason for the large memory requirement is the
high dimensionality of the SIFT feature. To deal with this
problem, we learn a projection matrix that projects the high
dimensional SIFT features to the low dimension domain. Ide-
ally, after projection, the distance between positive descriptors
is reduced and the distance between negative descriptors is
enlarged. The positive descriptors represent the descriptors
from the same point in 3D point cloud. The positive descriptors
in different images should fit RANSAC transformation [27]
and negative descriptors mean that the descriptors are from
the different points. As a result, the descriptors of different
points cannot find the transformation matrix while running the
RANSAC. We learn the projection matrix based on the positive
and negative descriptor pairs. As mentioned above, positive
descriptors are strictly defined as the matching descriptors
satisfying the RANSAC transformation. Negative descriptors
are mainly the descriptor pairs that match each other, but not
satisfy the RANSAC transformation. However, we want to
keep the negative descriptor pairs the same number as the
positive descriptors, and normally matching descriptors that
do not fit RANSAC are less than the matching descriptors
satisfying the RANSAC transformation. To take this differ-
ence into consideration, we randomly select a group of non-
matching descriptors as the negative descriptor pairs. The
positive descriptors’ distance and the negative descriptors’
distance are represented by Eq.1 and Eq.2.

DPos =
∑

x,x′∈Pos
(Wx−Wx′)2 (1)

DNeg =
∑

x,x′∈Neg
(Wx−Wx′)2 (2)

In the above equations, W represents the projection matrix.
x, x′ are the original descriptors. Pos and Neg are separately
meaning the positive and negative descriptor pairs. We further
present the distance equation in terms of Trace function:

DPos =
∑

x,x′∈Pos
(Wx−Wx′)2 = Tr(WT (

∑
Pos

(x− x′)2)W)

(3)

DNeg

∑
x,x′∈Neg

(Wx−Wx′)2 = Tr(WT (
∑
Neg

(x− x′)2)W)

(4)
To learn the projection matrix, we build a cost function in

terms of increasing the negative descriptor pairs’ distance and

2368

decreasing positive descriptor pairs’ distance, as shown in Eq.
5.

cost = max
Tr(WT (

∑
Neg(x−x

′)2)W)

Tr(WT (
∑

Pos(x−x′)2)W)
(5)

[28] points out that minimizing Eq.6 is the same as calcu-
lating the root of equation f(η) = 0. Here, f(η) is described
in Eq. 7.

maxTr(W
TSmW)

Tr(WTSnW)
(6)

f(η) = maxTr(WT (Sm − ηSn)W) (7)

Sm and Sn are two matrices.

η = Tr(WTSmW)
Tr(WTSnW)

(8)

Similarly, we choose a value of λ as the Eq. 9 to optimize
projection matrix W for minimizing the Cost of Eq. 5.

λ =
Tr(WT (

∑
Pos(x−x

′)2)W)

Tr(WT (
∑

Neg(x−x′)2)W)
(9)

We initialize the projection matrix W as an arbitrary
orthogonal matrix, which satisfies WTW = I . And W
is optimized by performing the eigen-decomposition of
(
∑
Pos(x− x′)2 − λ

∑
Neg(x− x′)2) to change the value of

λ. This process is repeated until W converges. To increase the
convergence speed, Yang et al. [29] propose to substitute the
eigen-decompostion of (

∑
Pos(x− x′)2 − λ

∑
Neg(x− x′)2)

by the following steps.

1) Calculate the d eigenvectors (e1, e2, ..., ed) of
(
∑
Pos(x − x′)2 − λ

∑
Neg(x − x′)2). Repeat the following

two operations until W does not change any more.

2) Sort eiT (
∑
Pos(x−x′)2−λ

∑
Neg(x−x′)2)ei, i = 1, 2...d

in descending order and select the first d′ eigenvectors to
construct W . d′ is the final dimension of the descriptors.

3) Compute λ =
Tr(WT (

∑
Pos(x−x

′)2)W)

Tr(WT (
∑

Neg(x−x′)2)W)
.

After the above the steps converging, W is the projection
matrix that projects the original descriptor to d′ dimensions.

B. Hamming descriptor mapping

After projecting the original high dimensional descriptors
to low dimensional space, we map the low dimensional
descriptors to Hamming space. We adopt the hashing method
proposed by Strecha et al. [30] to further map the lower
dimensional descriptors to Hamming space. It is simpler
and faster to compute the distance in Hamming space than
Euclidean space. Since one dimension in Hamming space
takes only one bit, the memory cost is greatly reduced by
mapping the descriptor from Euclidean space to Hamming
space. Nonetheless, an integer value requires 8 bits and the
float spends 16 bits in most programming languages. The

mapping from real-value descriptor to Hamming descriptor is
through the following operation:

y = sign(x− T) (10)

x is the real-value descriptor. y is the corresponding value
in Hamming space. T represents the threshold. If (x − T) is
larger than 0, y is assigned to be 1 by the sign operation. On
the other hand, if (x − T) is smaller than 0, sign operation
assigns -1 to y. Thus, the Hamming descriptor is achieved by
comparing the real-value descriptor with a threshold.

The most essential step in mapping a real-value number
to a binary descriptor is to learn the threshold. The learned
threshold must minimize the false matching rate, composed
by the false positive rate and the false negative rate. The false
positive rate is calculated by the following equation:

FP (T) =Pr{min(xNeg, yNeg) ≥ T
∪max(xNeg, yNeg) < T)|Neg}

=1− cdf(min(xNeg, yNeg)|Neg)
+ cdf(max(xNeg, yNeg)|Neg)

(11)

where x and y are two descriptors after projection at this
situation. Neg represents the negative descriptor pairs, which
are the resource of the descriptor pair (x, y); T is the threshold;
cdf is the cumulative distribution function for each T value.
Similarly, the false negative rate is computed by Eq.12.

FN(T) =Pr{min(xPos, yPos) < T ≤ max(xP , yP)|Pos}
=Pr{(min(xPos, yPos < T)|Pos}+ 1

− Pr{(max(xPos, yPos) < T)|Pos}
=cdf{min(xPos, yPos)|Pos}
− cdf{max(xPos, yPos)|Pos}

(12)

The total false rate is the sum of the false positive rate and
the false negative rate, as Eq.13.

F (T) = FP (T) + FN(T) (13)

The threshold value which supplies the smallest F is the
threshold we use to map the real-value descriptors to Hamming
descriptors.

IV. BIT WEIGHTING IN HAMMING SPACE

After storing the descriptors in Hamming space, the storage
consumption can be largely reduced while the distance com-
putation between descriptor pairs is also getting much easier.
With the benefit of efficient storage and easy computation,
a problem of Hamming descriptor arises that the distance
between every descriptor pair is limited to a certain integer
range since the descriptor length is limited and each dimension
of the descriptor has only two value options, either 0 or 1. Due
to this limitation, usually more than one descriptors share the
same distance to the query descriptor, resulting in a relatively

2369

high false positive descriptor selection rate by randomly se-
lecting one descriptor among all nearest neighbors of the query
descriptor. To deal with this problem, [31] conducts a majority
vote based on the associated 3D points of the 10 nearest
neighbors to find the correspondence between 2D features and
3D points, making use of the fact that every 3D point has
multiple descriptors associated. Different from the localization
problem in [31], we are trying to find the correspondences
between 2D images, where every point has only one descriptor
associated. In our paper, this problem is addressed by giving
a weight to each dimension of the Hamming descriptor and
ranking the weighted bit. The weight is given based on the
learned discriminant power of the dimension, which helps
to reduce the distance ambiguity among all the matching
descriptors.

While learning the Hamming descriptors, we aim to reduce
the distance of the positive descriptors in Hamming space
as much as possible. In the best situation, the Hamming
descriptors coming from the positive pairs would have exactly
the same value in each dimension. However, this situation
does not happen in most cases. Usually, there are several bits
differ for the positive descriptors. The value of each dimen-
sion distributes differently among all of the descriptors. In
some dimensions, the different values may happen frequently
while the difference occurs rarely in some other dimensions.
This phenomenon results in the different discriminant powers
among all the dimensions of the learned descriptors. For
instance, two Hamming descriptors, Desc1 and Desc2, both
differ 1 bit to the query descriptor Desc3. Desc1 is different
from Desc3 on the m th bit, while Desc2 contains a different
value from Desc3 on the n th dimension. Assuming the
m th dimension has a power more discriminant than the
n th dimension, the distance between Desc1 and Desc3 is
considered larger than the distance between Desc2 and Desc3.

We learn the discriminant power with the purpose of de-
creasing the positive descriptors distance and increasing the
negative descriptors distance. The real-value descriptors after
projection are used in learning the weight of each dimension of
the descriptor due to the large information loss for Hamming
descriptors. Before hashing, on a certain dimension, if the
values of positive descriptors is quite close to each other
and very distant to other negative descriptors, this dimension
retains a high discriminant power and the derived Hamming
bit on this dimension is quite likely to generate an accurate
distance result; on the other hand, if the positive and negative
descriptors’ values cannot be really distinguished, we do not
hold high confidence on this dimension for getting the correct
Hamming bit. For the k th dimension, the average distance of
all the positive descriptor pairs is shown as Eq. 14.

DPk =

∑
(xk,yk)∈Pos

√
(xk − yk)2

Npos
(14)

In Eq. 14, Npos is the number of positive descriptor pairs.
xk and yk are the values of the k th dimension of a positive

descriptor pair. Similarly, the average distance of negative
descriptor pairs is described by Eq. 15,

DNk =

∑
(x′

k,y
′
k)∈Neg

√
(x′k − y′k)2

Nneg
(15)

where Nneg is the number of negative descriptor pairs. x′k
and y′k are the values of the k th dimension of the descriptors
from negative pairs. The weight of the k th dimension is
generated by the scale between DNk and DPk, shown as Eq.
16.

Wk =
DNk
DPk

=

∑
(x′

k
,y′

k
)∈Neg

√
(x′

k−y
′
k)

2

Nneg∑
(xk,yk)∈Pos

√
(xk−yk)2

Npos

=
Npos ∗ (

∑
(x′

k,y
′
k)∈Neg

√
(x′k − y′k)2)

Nneg ∗ (
∑

(xk,yk)∈Pos
√
(xk − yk)2)

(16)

We sum up all the descriptor pairs’ Euclidean distance and
further divide the distance sum by the negative descriptor
pairs number. The same for positive descriptors to get the
average negative descriptor distance on the k th dimension.
The scale between the average negative descriptor distance
and the average positive descriptor distance is assigned to this
dimension as the weight. The time complexity in computing
the positive and negative descriptor pairs’ distance is O(n2).
For the large scale structure from motion reconstruction task,
learning the Hamming descriptor dimensions’ weights would
consume a large amount of time. To address this issue, we use
the positive descriptor pairs’ standard deviation to substitute
the Euclidean distance in order to get the average positive
descriptor distance. And the standard deviation of all the
descriptors is used as the negative descriptors as the following
equations.

DN ′ =

√√√√ 1

N − 1

N∑
1

(yk − µ)2 (17)

DP ′ =

∑Np
1

√
1

NDes

∑NDes
1 (xk − µdes)

Np
(18)

In the equations above, we represent N as the number of all
the descriptors, and µ is the mean value of all the descriptors’
k th dimension value. For the positive standard deviation part,
Np describes the number of different points. Ndes is the
descriptor number of the current point. µdes represents the k th
dimension’s mean value of the positive descriptors. Eq.18 and
Eq. 17 provide the distribution of the descriptor’s value before
hashing. The new distance computed by standard deviation is
applied in calculating the weight of the k the dimesnion, shown
as Eq. 19.

2370

Wk =
DN ′

DP ′
=

√
1

N−1
∑N

1 (yk − µ)2∑Np
1

√
1

NDes

∑NDes
1 (xk−µdes)

Np

=
Np ∗ (

√
1

N−1
∑N

1 (yk − µ)2)∑Np
1

√
1

NDes

∑NDes
1 (xk − µdes)

(19)

Following the idea of Eq. 16, the weight of k th dimension is
generated by the division of average negative descriptor pairs
distance DN ′ and average positive descriptor pairs distance
DP ′. The larger negative descriptor value distance and the
smaller positive descriptor value distance, the more discrim-
inant power this dimension has and the more correctness
confidence we have for this dimension. Thus, we give a higher
weight to this dimension. As Eq.19 makes use of the standard
deviation, we get rid of computing the Euclidean distance of
each descriptor pair. In this way, the time complexity is O(n).
This could extensively reduce the time consumption while
computing the dimension weights of large datasets compared
with the method used in Eq. 16. The sum of the weights of
the corresponding dimensions that differ from each other is
the distance between these two Hamming descriptors.

V. RECONSTRUCTION PIPELINE

The basic reconstruction pipeline introduced by Agarwal
et al. [1] is adopted in our reconstruction pipeline. The first
step of the reconstruction is extracting features and performing
matching. SIFT is applied as the local feature to perform
matching. To reduce search cost, Approximate Nearest Neigh-
bor (ANN)[32] is used efficiently to determine the matching
point. Features of one image are inserted into a k-d tree
and features in other images are used as the queries. In the
construction of the vocabulary searching tree, hierarchical k-
means is used to quantize the features in an image. The
quantization is aggregated over all features in an image to
obtain a term frequency (TF) vector for the image and a
document frequency (DF) for the corpus of the images. SIFT
matching ratio is also used in the pipeline to retain the accurate
matching number, where the distance to the nearest neighbor
should be twice smaller than the one to the second nearest
neighbor.

RANSAC [27] is used to cull the outliers to enhance the
accuracy of the matches. Agarwal et al. [1] applied a computer
cloud to conduct the reconstruction task. However, our main
goal is to reduce the memory consumption so that we use a
single computer instead of a computer cloud to accomplish the
reconstruction; we do not deal with the additional complication
of retrieving images from various computers. The top k1
images with the highest TFIDF score are further utilized for
verification; meanwhile, another k2 images with the highest
TFIDF score after k1 are used to enrich the connected compo-
nents. The essential matrix between the image pair is estimated
to verify image pairs. Once the image pair meets the following
three conditions, a full Euclidean two-view reconstruction is

produced and stored in the memory. The 3 conditions are: 1)
Essential matrix estimation is successful. 2) A sufficient angle
exists between the directions of two cameras. 3) There are
enough matching points.

We further merge the connected components, where k2
images in the proposal play the role of connection. After
obtaining the Euclidean two-view reconstruction by k1 images
with the highest TFIDF score, the k2 images connect the two-
view reconstructions. Any two images in k1 matching with the
same image in k2 are connected. Hence, images in k2 that do
not match any image in k1 are discarded. A matching graph
could be practically built after the above steps. However, this
matching graph is usually not dense enough to build a good
reconstruction model. In order to make the model more dense,
the matched images create an expansion for seeking more
matched images. For instance, image i is connected to image j
and image j is connected to image k. We then check whether
image i is also connected to image k; this process should
be stopped after a certain number of iterations. Two images
are connected if there are enough matching features. After
connecting the entire image matching tracks, the matching
process is complete.

The last step is to perform the Structure-from-Motion re-
construction (SfM). Some photos from the Internet contain
important parts of the buildings with characteristic texures,
while some other photos consist of only small portion of the
buildings. Due to this difference, it is preferable to first recon-
struct a small image set that has essential image connectivity;
this connectivity is built through searching large loops within
the image connections. After the small essential image set is
reconstructed, we incrementally reconstruct all the remaining
images using pose estimation and triangulate all the remaining
points. Bundle adjustment [33] is applied to minimize the
reconstruction error of the reconstructed model.

VI. EXPERIMENTS

We use Notre Dame dataset in our experiments, which
contains 715 images extracted from Flickr. The photos capture
the different views of Notre Dame Cathedral. Due to the usage
of a single computer instead of a computer cloud, we randomly
select 50 images to do the reconstruction for verifying our
method. Some of our images used for reconstruction are shown
in Fig. 1.

As shown in Fig 1, images contain large rotation, transla-
tion, scaling, illumination change and occlusion. We first give
the reconstruction result using the original SIFT descriptor
describes in Fig. 2. There are 16895 points reconstructed with
the utilization of the original SIFT descriptor. A point cloud
of the gate of Notre Dame Cathedral is observed from Fig 2.

For Hamming descriptor, as indicated by [31] , 96 dimen-
sional Hamming descriptor usually provides the best trade-off
between the memory consumption and accuracy so that we
choose 96 dimensional Hamming descriptor for reconstruction.
The reconstruction result is given on Fig.3.

The reconstruction model contains 2656 reconstructed
points. Though the reconstruction model is much sparser

2371

Fig. 1. Images randomly selected for SFM reconstruction

Fig. 2. Reconstruction model using original SIFT descriptor. 16895 points
are reconstructed.

than the one using the original SIFT descriptor, the memory
consumption is just (1/8) ∗ (96/128) = 9.38%, which is less
than 10 percent of the original memory consumption. After
adding the weight to each dimension of the descriptor, the
reconstruction result is much denser, as shown in Fig. 4.

Fig. 3. Recontruction model using Hamming descriptor. There are 2656 points
in this reconstruction model.

After adding weights to different dimensions of the descrip-
tor, the matching confusion is greatly avoided. There are 8765
points reconstructed, which is a considerable improvement
based on the simple Hamming descriptor with the same
memory consumption. From the experiments, we can see that

2372

Fig. 4. Recontruction model using weighted Hamming descriptor. 8765 points
are reconstructed.

our weighted Hamming descriptors can perform very well on
reconstruction while saving large memory cost.

VII. CONCLUSION

In this paper, we present our method of Structure-from-
Motion reconstruction with the use of weighted Hamming
descriptors. The learned Hamming descriptors saves a signifi-
cant portion of space to store the descriptors by hashing real-
value descriptors to Hamming space. However, the descriptors
after hashing may result in the confusion of selecting best
matching candidate due to the descriptors information loss.
As a result, multiple descriptors have the same Hamming
distance to the query descriptor. To solve this problem, we
learn the discriminant power of each descriptor dimension
based on the projected real-value descriptors. According to
the discriminant power we learned, different weights are given
to each dimension of the Hamming descriptors. And the
importance of the different dimension Hamming bits is ranked
based on the associated weigths. This reduces the confusion of
finding correspondences when multiple Hamming descriptors
having the same distance to the query descriptors. Experiments
show that our methods can give dense reconstruction result
while largely reducing the memory consumption.

ACKNOWLEDGMENTS

The authors are grateful for the discussion with Dr. Yi
Yang from Queensland University. We would like to thank
to Dr. Noah Snavely from Cornell University for providing
the Bundler code and the Notre Dame dataset.

REFERENCES

[1] S. Agarwal, N. Snavely, I. Simon, S. Seitz, and R. Szeliski, “Building
rome in a day,” in ICCV, 2009, pp. 72–79.

[2] R. Hartley and A. Zisserman, Multiple view geometry in computer vision,
vol. 2, Cambridge Univ Press, 2000.

[3] O. Faugeras, Q.T. Luong, and T. Papadopoulo, The geometry of multiple
images: the laws that govern the formation of multiple images of a scene
and some of their applications, the MIT Press, 2004.

[4] P. Sturm and B. Triggs, “A factorization based algorithm for multi-image
projective structure and motion,” in ECCV, 1996.

[5] C. Fruh and A. Zakhor, “An automated method for large-scale, ground-
based city model acquisition,” International Journal of Computer Vision,
vol. 60, no. 1, pp. 5–24, 2004.

[6] M. Pollefeys, D. Nister, J.M. Frahm, A. Akbarzadeh, P. Mordohai,
B. Clipp, C. Engels, D. Gallup, S.J. Kim, P. Merrell, et al., “Detailed
real-time urban 3d reconstruction from video,” International Journal of
Computer Vision, vol. 78, no. 2-3, pp. 143–167, 2008.

[7] L. Zebedin, J. Bauer, K. Karner, and H. Bischof, “Fusion of feature-
and area-based information for urban buildings modeling from aerial
imagery,” in ECCV. 2008.

[8] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism: exploring
photo collections in 3d,” in ACM transactions on graphics (TOG), 2006,
vol. 25, pp. 835–846.

[9] N. Snavely, S. Seitz, and R. Szeliski, “Skeletal graphs for efficient
structure from motion.,” in CVPR, 2008, vol. 1, p. 2.

[10] J.M. Frahm, P. Fite-Georgel, D. Gallup, T. Johnson, R. Raguram, C. Wu,
Y.H. Jen, E. Dunn, B. Clipp, S. Lazebnik, et al., “Building rome on a
cloudless day,” in ECCV. 2010.

[11] G. Lu, V. Ly, and C. Kambhamettu, “Large-scale structure-from-motion
reconstruction with small memory consumption,” in The 11th Interna-
tional Conference on Advances in Mobile Computing and Multimedia.
2013.

[12] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[13] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (surf),” Computer Vision and Image Understanding, vol. 110,
no. 3, pp. 346–359, 2008.

[14] R. Kalia, Lee K., S. B.V.R., S.K. Je, and Oh W.G., “An analysis of the
effect of different image preprocessing techniques on the performance
of surf: Speeded up robust features,” in 2011 17th Korea-Japan Joint
Workshop on Frontiers of Computer Vision, 2011, pp. 1–6.

[15] I.T. Jolliffe, Principal Component Analysis, Springer Verlag, 1986.
[16] Y. Ke and R. Sukthankar, “PCA-SIFT: a more distinctive representation

for local image descriptors,” in CVPR, 2004, vol. 2, pp. 506–513.
[17] G. Hua, M. Brown, and S. Winder, “Discriminant embedding for local

image descriptors,” in ICCV, 2007, pp. 1–8.
[18] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.R. Mullers,

“Fisher discriminant analysis with kernels,” in Proceedings of the 1999
IEEE Signal Processing Society Workshop Neural Networks for Signal
Processing IX ., 1999, pp. 41 –48.

[19] M. Powell, “An efficient method for finding the minimum of a function
of several variables without calculating derivatives,” vol. 7, pp. 155–162,
1964.

[20] M. Brown, G. Hua, and S. Winder, “Discriminative learning of local
image descriptors,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 33, no. 1, pp. 43 –57, 2011.

[21] J. Philbin, M. Isard, J. Sivic, and A. Zisserman, “Descriptor learning
for efficient retrieval,” in ECCV, 2010, pp. 677–691.

[22] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for
scalable image search,” in ICCV, 2009, pp. 2130 –2137.

[23] Y. Weiss, A.B. Torralba, and R. Fergus, “Spectral hashing,” in NIPS,
2008, pp. 1753–1760.

[24] J. Yagnik, D. Strelow, D.A. Ross, and Ruei sung Lin, “The power of
comparative reasoning,” in ICCV, 2011, pp. 2431 –2438.

[25] A.Z. Broder, “On the resemblance and containment of documents,” in
Compression and Complexity of Sequences 1997. Proceedings, 1997, pp.
21 –29.

[26] A.Z. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher, “Min-wise
independent permutations,” Journal of Computer and System Sciences,
vol. 60, pp. 327–336, 1998.

[27] Martin A. Fischler and Robert C. Bolles, “Random sample consensus:
A paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[28] Y. Jia, F. Nie, and C. Zhang, “Trace ratio problem revisited,” IEEE
Transactions on Neural Networks, vol. 20, no. 4, pp. 729–735, 2009.

2373

[29] Y. Yang, F. Nie, D. Xu, J. Luo, Y. Zhuang, and Y. Pan, “A multimedia
retrieval framework based on semi-supervised ranking and relevance
feedback,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 34, no. 4, pp. 723–742, 2012.

[30] C. Strecha, A. Bronstein, M. Bronstein, and P. Fua, “LDAHash:
Improved matching with smaller descriptors,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 34, pp. 66–78, 2012.

[31] G. Lu, N. Sebe, C. Kambhamettu, and C. Xu, “Memory efficient
large-scale image-based localization,” Journal of Multimedia Tools and
Applications, 2014.

[32] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A.Y. Wu,
“An optimal algorithm for approximate nearest neighbor searching fixed
dimensions,” Journal of the ACM (JACM), vol. 45, no. 6, pp. 891–923,
1998.

[33] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, “Bundle
adjustmenta modern synthesis,” in Vision algorithms: theory and
practice, pp. 298–372. 2000.

2374

