
Optimal Bayesian Classification in Nonstationary Streaming
Environments

Jehandad Khan, Nidhal Bouaynaya, Robi Polikar

Abstract—A novel method of classifying data drawn from a
nonstationary distribution with drifting mean and variance is
presented. The novelty of the approach is based on splitting the
problem of tracking a nonstationary distribution into separate
classification and time series state estimation problems. State
space models for drift in both the mean and variance are
presented, which are then successfully tracked using a Kalman
filter and a particle filter for the linear and non-linear parts
respectively. Preliminary results, which show the promising po-
tential of the approach, are also presented, along with concluding
remarks for potential uses of the proposed approach.

I. INTRODUCTION

Most classification algorithms rely on the underlying as-

sumption that the distribution generating the data is stationary.

However, this is a very restricting assumption, since many real-

world problems generate data whose underlying distributions

change over time. Real world applications that generate such

nonstationary data include climate change, remote-sensing

applications, metagenomic applications (genomic analysis of

environmental samples, where species abundance change dra-

matically along unknown environmental gradients), analysis of

web-user interest, identification of financial fraud from trans-

action data, prediction of energy demand and pricing, among

many others. Also relevant are installations with limited access

(e.g., oil pipelines, building foundations, extreme geographic

locations, etc.), where subsequent data later collected from

embedded sensors can be subject to a variety of nonstationary

changes; e.g., cracks from freeze-thaw cycles, shifting tec-

tonic plates, etc. The stationarity assumption is often used to

simplify the mathematical setting of the problem, and thus

also simplify the derived solutions. However, this simplifying

assumption forces the problem into a subspace of the original

problem, often resulting in suboptimal solutions. Taking the

nonstationary nature of the problem into consideration would

allow us to take advantage of the full richness of the data,

resulting in more accurate classification and prediction in

tracking nonstationary environments.

The nonstationarity, also known as concept drift, can be

treated using a variety of approaches such as domain adapta-

tion [1] [2], covariate shift [3] or more generally as sample

selection bias [4], or with specific ensemble based approaches

J. Khan, N. Bouaynaya and R. Polikar are with the Dept. of
Electrical & Computer Engineering at Rowan University. (email:
khanj6@students.rowan.edu, {bouaynaya,polikar}@rowan.edu).

This material is based upon work supported by the National Science
Foundation grants ECCS-1310496, CRI CNS-0855248, EPS-0701890, EPS-
0918970, MRI CNS-0619069, and OISE-0729792. This project is also sup-
ported by Award Number R01GM096191 from the National Institute Of
General Medical Sciences (NIH/NIGMS).

such as Learn++.NSE [5], DWM [6] and SEA [7]. These

techniques acknowledge that the probability distribution which

generated the data at any point in time is different from the

probability distribution on which the classifier will make its

prediction i.e., ps(x, y) �= pt(x, y) where ps and pt are the

source and target distributions, respectively, for the features x
and labels y. These approaches rely on different assumptions

about the source and target distributions: for example, in

covariate shift it is assumed that the support of ps(x, y)
contains the support of pt(x, y) [8], thus the source and target

distributions may be different but still are related. Moreover,

it is also assumed that there is sufficient amount of labeled

and unlabeled data available in the source and target domain,

respectively.

The aforementioned algorithms also require a large amount

of labeled data (at least from the source domain), rendering the

availability or the high cost associated with obtaining labeled

data a potential obstacle in using these approaches. In medical

diagnostics, for example, it is highly desirable that the learning

algorithm is trained using a minimum number of subjects,

typically due to the scarcity of consenting subjects, the mon-

etary cost associated with running diagnostic tests, or even

the rarity of the disease. Semi Supervised Learning (SSL) has

been used for such scenarios of limited availability of labeled

training data, wherein the class information is propagated from

small number of labeled data to more abundant unlabeled

data instances [9] using such approaches as density separation,

decision boundary detection or by constructing a graph. The

primary focus of SSL techniques has been in stationary data

environments, but there has been some recent advances that

deal with data generated from nonstationary data distributions.

These methods still have the canonical SSL implementation

at their core with an exterior modification that caters for

the drifting probability distributions. However, most such ap-

proaches still require that labeled data be available at each time

point [10]. Active Learning (AL) is another approach used to

tackle the limited data availability by selecting instances from

the data that provide maximum information about the class

boundaries, and then requesting the corresponding labels. AL

algorithms rely on the imminent availability of the labels for

any requested instances, an unrealistic expectation in certain

applications.

Our work focuses on the nonstationarity of the source and

target distributions generating the data, as well as the scarcity

of labeled data instances. As stated above, these two problems

are typically dealt with separately; but it is not unusual that

both scenarios manifest themselves at the same time, hence

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 609

warranting concurrent solution. We have previously addressed

this problem within the context of initially labeled streaming

environment scenario (ILSE). In ILSE, very few labeled in-

stances (e.g., 5% as suggested in [11]) are available initially,

followed by a stream of unlabeled instances —with no future

labeled instances —drawn from a nonstationary environment,

for which we proposed the COMpacted POlytope Sample

Extraction (COMPOSE) algorithm.

COMPOSE deals with the problem of nonstationary data

stream using α-shapes. α shapes are geometrical constructs,

generalizations of convex hulls, which are then compacted

(shrunk) to determine the core (central) region that represent

the space from which the current data points are most likely to

be drawn at the next time step. These instances are called core
supports and serve as the labeled instances to be propagated

to the next time step, to help the next step’s SSL algorithm

in labeling the new unlabeled instances. Under the generally

mild assumption of gradual drift, the region of probability

distribution represented by these instances would be shared

by the class distributions at both time points [12].

The COMPOSE algorithm as described in [12] is an in-

tuitive computational geometry-based algorithm. In this con-

tribution, we propose an entirely different statistical point of

view for the same problem, namely, classification of streaming

nonstationary data drawn from an ILSE. We consider the data

as generated from a nonstationary stochastic process. Under

the Gaussianity assumption, characterization of the nonstation-

ary distribution is equivalent to determining the time-varying

mean and variance, which provide the complete information

regarding the time evolution of the distribution. Hence, we

propose to formulate the nonstationary classification problem

as a state estimation problem, the state vectors being the mean

and variance of the data that are subsequently estimated using

the Kalman filter or the particle filter, respectively, for each

class of data. A Bayes classifier is employed for classification

of newly received data, and the newly classified data are

then used to update the mean and variance state estimates

for all classes. This iterative procedure is repeated at each

time point without the requirement of new labels in the future.

Like COMPOSE, and its sister algorithm COMPOSE.AL [13]

labeled data —if available at subsequent time steps —can

easily be incorporated in the algorithm, but certainly is not

a requirement and would only serve to improve the state

estimates. Unlike COMPOSE, which relies on a geometrical

construct (α-shapes) to develop a sense of the data, we here

use a stochastic state space formulation to summarize the in-

formation contained in the data, giving a complete description

of the underlying probability distributions and their dynamics.

The rest of this paper is organized as follows: In Section

II we provide an overview of the problem along with the

formulation of the state space models. In Section III, we

discuss the Bayesian estimation framework and explain how

we use the Kalman filter to track the mean of the distribution,

and how a Gaussian time series may be transformed into a state

space model with observable variance, and then a particle filter

may be used to track it. Finally in Section IV we present the

results of simulations using the proposed scheme. Finally, we

provide our conclusion and some recommendations for future

work.

II. PROBLEM FORMULATION

We assume that each class of data is drawn from a time

varying probability distribution p(x(t), θ(t)) where x(t) is the

set of features and θ(t) is the set of time varying parameters at

time t, which completely describe the probability distribution

function. While, for the purposes of this approach, we assume

that the data are generated from a Gaussian distribution, the

proposed approach may be applied to any distribution if i) the

distribution is completely defined by a set of parameters; ii)

the parameters are related to the observed data in a state space

formulation. For example, and in particular, any distribution

that can be described by a Gaussian Mixture Models (GMM)

can easily be represented using the proposed scheme. Without

any loss of generality, we assume that the parameters θ are

following a random walk model, and can therefore be written

in a state space form as (1)

θ(t) = θ(t− 1) + v(t) (1)

x(t) = f(θ(t)) + w(t) (2)

where v(t) is the source of Gaussian noise for the random

walk, f(θ(t)) is a function of the parameters of the distribu-

tion, and w(t) is a random noise modeling the uncertainty of

the observation x(t). For Gaussian data, mean and variance

constitute sufficient parameters since they completely define

the distribution, though they cannot be written in a single state

space for reasons described later.

At the initial time step (t = 0), and only at this initial time

step, we receive labeled data instances for each class. Using

these labeled instances we estimate the distribution parameters

for each class. At the next time step, the distribution of each

class is assumed to have changed in accordance with Equation

(1), forming a new distribution namely p(x(t+ 1), θ(t+ 1)).
For example, if the data are Gaussian and the mean shifts by a

small random amount, then any new data generated would be

from a different distribution governed by the new mean. The

random walk model is a very general framework for evolution

dynamics, and is capable of modeling any random perturbation

that the data distribution may undergo. The system proceeds in

this manner generating new data at each time instance from a

distribution with updated parameters. A graphic representation

of the general procedure is shown in Figure 1.

Ideally, all parameters for a given class distribution should

be governed by the same state dynamics and be observable

using a single observation model. Such a model would enable

the use of only one tracking algorithm. However, in the present

scenario, i.e., Gaussian class distributions with the mean and

variance drifting in a random walk, only the mean can readily

be observed using a linear observation dynamics [14], while

the variance cannot be directly observed from the data sam-

ples. A transformation of the problem is therefore necessary,

as outlined in section III-B. Moreover, the mean observation

dynamics is linear allowing us to estimate the distribution in

610

Fig. 1. The general problem description. At the initial time step only a set
of labeled data are generated, thereafter the distribution undergoes transition
in parameters while generating data at each time step.

an optimal manner using a Kalman Filter, whereas the variance

of the class distribution does not afford this luxury, and hence

requires an asymptotically optimal particle filter . We address

both issues by splitting up the distribution parameter state

space for the mean and variance with estimation procedures

running separately; more specifically, the Kalman filter esti-

mates the mean of the class distribution, and the particle filter

estimates the variance of the class distribution as depicted in

Figure 2.

Algorithm Outline

The proposed algorithm comprises the following steps: 1)

the initial labeled data are used to estimate the initial values of

the distribution parameters, i.e., the mean and variance; 2) each

new batch of data received at time t is classified based on the

previous estimates of the parameters using a Bayes classifier;

3) the mean of the data for each class is updated based on the

newly classified data points; 4) the newly estimated mean is

used to centralize the data around the mean; 5) the centralized

data are then used to estimate the data variance. Thereafter the

algorithm repeats with each subsequent arrival of new batch of

data at the next time point. Figure 2 and Algorithm 3 outline

these steps in their sequential order.

III. BAYESIAN ESTIMATION OF THE DRIFTING DENSITY

Bayesian estimation pertains to the estimation of system

state based on its state space description. Most commonly, the

estimation is done in a recursive manner with a prediction step

and an update step. Under certain conditions, Bayesian esti-

mation provides guarantees for the accuracy of the estimation

and bounds on the errors. These guarantees make Bayesian

estimation an attractive approach for time series problems.

Kalman filter is a class of Bayesian state estimators for a linear

system, perturbed by Gaussian noise, and it is a recursive

minimum mean square error estimator, which provides the

optimum estimate [14]. We now describe how we use the

Kalman filter to track the mean of each class.

A. Kalman Filtering of the Drifting Mean

We assume no particular model for the drift of the distribu-

tion and model it as a random walk. The mean of each class

distribution is modeled using the following dynamics

μck = μck−1 + wck (3)

xck = μck + vck (4)

with

wck ∼ N (0, Q)

vck ∼ N (0, σck)

where k is the time index, c = 0, 1, · · · is the class index,

μck and μck−1 is the estimate of the mean at time k and k −
1, respectively for the class c. xck is the observed sample at

time k for class c. Q is the variance of the random walk

perturbation and σck is the variance of the cth class distribution.

A separate state space is maintained for each class of data and

is tracked independently. Under the independence assumption

of the features, each feature may be tracked independently in

a similar manner. Hence, in Eqs. (3) and (4) μck is the mean

of each feature considered independently.

The Kalman filter equations that solve the system described

by Equations (3) and (4) are outlined in Algorithm 1, where

μ̂i|j denotes the estimate of the mean μ at time i given

observations up to time j, and Pi|j is the error covariance

matrix at time i given observations up to time j. Kk is the

Kalman gain computed at each time point and σck−1 is the

variance of class c at time k − 1. The Kalman filter runs at

each time step when a new observation becomes available,

thus giving us the estimate of the mean for each class at each

time point k. Once the mean of the distribution is known, the

next step is to estimate the variance of each class.

Algorithm 1 Tracking the mean using the Kalman Filter

1: Initialization
2: μ0 = sample mean and σc0 = sample variance from the

labeled data and P0|0 = I
3: Prediction

μ̂k+1|k = μ̂k|k
Pk+1|k = Pk|k +Q

4: Measurement update

Kk = Pk+1|k(Pk+1|k + σck−1)
−1

μ̂k+1|k+1 = μ̂k+1|k +Kk(xk − μ̂k+1|k)
Pk+1|k+1 = (I −Kk)Pk+1|k

B. Particle Filtering of the Drifting Variance

Unlike the mean of a probability distribution, which can

be directly estimated from the data samples we receive, the

variance cannot be estimated from the data directly. This is

because we cannot write in state space form the data that we

have and the variance of the class distribution, as in Eq. (4).

More specifically, we wish to have an observation dynamics

that would relate each data element to the distribution variance.

611

Fig. 2. The outline of the algorithm indicating each step necessary, the initial labeling steps and the steps required at each time point when new data is
available to be classified.

Fig. 3. The parameter estimates for each class may be updated in parallel both at the Kalman filter stage and the Particle filter stage at each time point. If
the features are independent, they may also be processed in parallel shown above as the letters A, B and C, indicating the high level of parallelism of our
approach.

Thus, we seek a functional mapping f that would relate to the

observed data as

x(t) = f(θ(t)) (5)

where θ is the distribution parameter, variance in this case.

To overcome this problem and make the variance of the data

directly observable from the data, we follow the approach

adopted in [15, Chapter 13]. The time-series is first trans-

formed so that a state-space model with variance as the state

can be formulated. However, in this process, the model is no

longer a Gaussian; and hence the Kalman filter is no longer the

optimum state estimator. We, therefore, use the particle filter,

which is a class of Sequential Monte Carlo(SMC) methods, to

estimate the variance in the non-Gaussian model [16].

This transformation requires the following assumptions: i)

the features of the data are independent; and ii) the variance

of data samples at subsequent time points is the same. The

transformation squares the original data elements and adds

them together according to the following formula:

sm = x̃2
2m−1 + x̃2

2m. (6)

where m is the time index for the transformed series since two

samples from the original time series contribute to only one

observation. x̃m is the centralized data sample, where the mean

estimated in the previous step of the algorithm is subtracted

from the received data, to make it zero mean, and sm becomes

the data element for the transformed series. The requirement

for zero mean data in this step necessitates that the Kalman

612

filter estimate of the mean be made available prior to the

estimation of the variance, which enables the centralization

of the data. Recall our assumption that the variance of two

consecutive samples is the same, i.e., σ2
2m−1 = σ2

2m. This

assumption is somewhat similar to the gradual drift assumption

adopted in COMPOSE [12], as well as many other concept

drift algorithms.

Since the sum of square of two zero-mean Gaussian random

variables follows the Chi-Squared distribution, we have the

following distributions for the random variables mentioned in

Eq. (6)

x̃2m−1 ∼ N (0, σ2
2m−1)

x̃2m ∼ N (0, σ2
2m)

sm ∼ X 2(2)

The probability distribution function for sm is therefore given

by

p(sm) =
1

2σm
e(−

sm
2σm

).

We define a new random variable as the logarithm of sm,

zm = log(
sm
2
), (7)

which then follows the double exponential distribution, with

mean tm = log(σ2
m), pdf given by Eq. 8 and denoted as

D(μ = 0, β = 1).

g(zm) = e(zm−log σ2
m)−e(zm−log σ2m)

. (8)

The state space model for the transformed series zm can now

be written as

tm = tm−1 + um (9)

zm = tm + nm (10)

where

um ∼ N (0, 1)

nm ∼ D(μ = 0, β = 1)

tm = log(σ2
m) is now the trend of the transformed time series.

Thus, tracking tm leads to the estimate of σ2
m. The state space

enumerated above is nonlinear since the observation dynamics

are perturbed by a non-Gaussian noise. Therefore, we employ

the particle filter [16] to track the system in (9).

C. Implementation of the Particle Filter

The particle filter (PF) is a Monte Carlo method that

sequentially approximates a target density using a set of

samples, called particles. Unlike the Kalman filter, which

assumes the underlying distributions to be Gaussian and re-

quires the state dynamics to be linear, the PF is a general

Bayesian estimation framework that makes no assumptions

about the state, observation dynamics or the distributions of

the noise, rendering it a very general and powerful technique

capable of solving a much wider and more general class of

state estimation problems. PF is a numerical technique that

estimates the posterior probability of the state in a recursive

manner, where the integration necessary for the mean estimates

is done using a Monte Carlo approximation.

Algorithm 2 gives the outline of our procedure adopting the

particle filter for tracking the drifting variance. The PF samples

from a proposal density denoted as π(t), which expresses our

belief in the likely location of the state. Based on the new

observation received, we calculate the weight of each particle

using (11). It is well known that, with the evolution in time, the

particle weights tend to degenerate [16]; hence we determine

the number of effective samples using (12), and resample the

particles according to their weight distribution. This step is

also known as the survival of the fittest since particles with

higher weight are more likely to be resampled than the ones

with lower weights. Finally, the weighted sample mean of the

particles gives the posterior state estimate of the system. With

each new observation that becomes available, these steps are

repeated, and the variance estimate of each class is updated.

Algorithm 2 Tracking the variance using the particle filter

1: Initialization Sample i particles from the proposal density

∀i = 1, · · · , N
tm ∼ π(tk|t(i)0:m−1, z0:m)

2: Update state particles according to state dynamics (Eq 9)

3: Calculate the weight of each particle

w∗(i)
m = w

∗(i)
m−1

p(zm|t(i)m)p(t
(i)
m |t(i)m−1)

π(t
(i)
k |t(i)0:m−1, z0:m)

(11)

4: Normalize the weights

w̃(i)
m =

w
∗(i)
m

∑N
j=1 w

∗(j)
m

(12)

5: Resample if required

N̂eff =
1

∑N
i=1(w̃

(i)
m)2

if(N̂eff < Nthresh) re-sample particles

6: Estimate State

tm =

N
∑

i=1

w̃(i)
m t(i)m

D. Classification of Nonstationary Gaussian Data

Algorithm 3, and the following paragraphs, describe the

complete outline of the proposed algorithm. The only input

required to the algorithm is the number of classes in the data.

1) Initial Batch of Labeled Data: As soon as the first batch

of labeled data becomes available, we compute the sample

mean and covariance to determine the initial estimate of the

mean and covariance. Hence, we have an initial estimate of

the mean and covariance of each class separately; and thus,

613

Algorithm 3 Classification of nonstationary Gaussian Data

Input: Number of Classes: Nc

Initial labeled data

for each class c = 0, 1, · · ·Nc

calculate sample mean μc0 and sample variance σc0
end for
for t = 1, 2, · · ·

receive unlabeled data

call Bayes Classifier and assign class labels using

mean μct−1 and variance σct−1

for each class c = 1, · · ·Nc

call Kalman Filter to update mean μct
end for
for each class c = 1, · · ·Nc

subtract mean μct from data

transform data using Eq. (6) and (7)

call particle filter to update variance σct
end for

end for

every class can be tracked independently. The parallelism

of the problem in the number of classes simplifies both the

analysis and renders the problem more amenable to parallel

implementation. Figure 3 illustrates how different classes can

be processed in parallel. At each tracking step, mean and

variance of each class can be processed independently and

in parallel. More details on the computational aspects of the

algorithm are discussed in section IV-D.

2) Bayesian Classification: After the first batch of data is

used to estimate the initial distributions of the classes, the

algorithm is ready to accept the next batch of data. At each

time step, we receive a new batch of data whose classes are

unknown. Bayes Classifier is used to determine the classes of

the incoming samples using the previously calculated mean

and variance. The classes are assumed to be independent of

each other; hence, the likelihood of a sample is determined

as the product of the likelihoods corresponding to each class.

Each sample is then assigned to the class with the maximum

posterior probability. All new data instances are now split into

sub-datasets for each class to be processed independently.

3) Kalman Filtering Step: Once the data has been classified

into the different classes, the Kalman filter is used for each

class to update its mean, as detailed in Section III-A.

4) Particle Filter Step: Once the mean for each class is

available from the Kalman filter, the data are centralized for

that class. Thereafter, the data are transformed into the new

time series zm using (6). The particle filter then provides the

estimate for the class variance, hence, the algorithm iteratively

updates the estimates for the mean and variance of each class,

which are then used by the Bayes classifier to determine the

class of each newly received data instance.

IV. SIMULATION RESULTS

We designed two types of experiments to determine the

effectiveness of the algorithm. Initially we consider only one

class of data, to establish the tracking performance of the

approach, which would later form the cornerstone of the

classification step. Having ascertained tracking performance,

we present results for a two-feature, two-class classification

problem with stochastic variation in both the mean and vari-

ance, where the proposed algorithm successfully tracks the two

classes and gives a classification accuracy that follows the op-

timal Bayes classifier - ran in a completely supervised manner

with all parameters known - remarkably closely, despite the

unsupervised and nonstationary nature of the setting.

A. Design of the Experiment

Bivariate Gaussian distributions for each class with means

and variances that are constantly drifting over time are gen-

erated. The mean and variance of the pdf generating data

belonging to each class is governed by the following equations.

[

μcx(t)
μcy(t)

]

=

[

r cos(φ(t) + c× (π/Nc)) + ux
r sin(φ(t) + c× (π/Nc)) + uy

]

(13)

σc(t) = σc(t− 1) + s(t) (14)

where c = 0, 1, · · · is the class index, Nc is the total number of

classes in the system, μcx and μcy are the x and y components

of the mean of the cthth class distribution, r is the radius of

rotation, and ux and uy are zero-mean Gaussian perturbations

to the deterministic dynamics, adding a measure of uncertainty

to the evolution dynamics. φ is the time dependent angle

of rotation which advances with each time step in a linear

manner. σc(t) is the variance of the cth class distribution,

which follows a random walk state update, perturbed by a

zero mean Gaussian noise s(t). Observe from Eq. (13) that

the mean of this distribution rotates around the origin.

During the evolution of the simulation, the two distributions

rotate about the origin, 180◦ out of phase, and by the end of

the simulation the two distributions have completely replaced

each other in the position of their means. We observed, as

described below, that the proposed algorithm was easily able

to track this nonlinear motion path as well as the variance

giving a classification accuracy that closely matched that of

the optimal Bayes classifier running in a supervised manner.

Figure 4 (next page) illustrates the evolution of the probability

distributions for the two classes during the simulation.

B. Tracking Performance

Since a large part of the algorithm pertains to tracking the

mean and variance of the class distributions, it is important

to assess the tracking accuracy of the algorithm. The state

dynamics used by the Kalman and the particle filters are

given by (4) and (9) respectively. For these experiments, the

particle filter employed a zero mean Gaussian distribution with

variance 10 as its initial proposal density, 1000 particles and a

re-sampling threshold set to 80%. Only one class of data for

the system described in section IV-A is (initially) generated

for 100 time steps. Each time step has an epoch of 100 data

instances. Figure 5 shows the percent tracking error during

the evolution of the mean of the distribution in the x-axis

614

−5

0

5

−5−4−3−2−1012345
0

0.02
0.04
0.06
0.08 C 1

C 2

−5

0

5

−5−4−3−2−1012345
0

0.02

0.04

0.06

0.08

C 1

C 2

(a) t = 1 (b) t = 25

−5

0

5

−5−4−3−2−1012345
0

0.02

0.04

0.06

0.08

C 1

C 2

−5

0

5

−5−4−3−2−1012345
0

0.02

0.04

0.06

0.08
C 1

C 2

(c) t = 50 (d) t = 75

Fig. 4. The shifting probability distributions are shown during the different phases of the simulation

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

Time points

P
er

ce
nt

 E
rr

or

Tracking error in Mean (μ)
Error in x−axis
Error in y−axis

Fig. 5. Tracking performance of the algorithm for the mean of a single
distribution (Showing both x and y components of the multivariate Gaussian
distribution)

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

Time points

P
er

ce
nt

 E
rr

or

Tracking error in Varaince (σ)
Error in x−axis
Error in y−axis

Fig. 6. Tracking performance of the algorithm for the variance of a single
class distribution

(blue) and y-axis (green), of the drifting two dimensional

distribution. The algorithm is able to track the mean to an

error of 2%. The error curves are averaged over 100 Monte

Carlo runs. Successful tracking of the mean to a high degree

of confidence is crucial because estimation of the variance

relies on an accurate knowledge of the mean. Thus, errors in

the estimation of the mean will propagate to the estimation of

the variance. Figure 6 shows the tracking performance for the

variance of the same distribution to an accuracy of 5% of the

actual value of σ (variance).

0 10 20 30 40 50 60 70 80 90 100
1.6

1.8

2

2.2

2.4

2.6
Classification Error for two class data

Time points

P
er

ce
nt

 C
la

ss
ifi

ca
tio

n
E

rr
or

Fig. 7. Classification error over the course of time

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

Time points

P
er

ce
nt

 C
la

ss
ifi

ca
tio

n
E

rr
or

Classification Error for two class data

Optimal Bayesian Classifier in NSE
Bayes Classifier

Fig. 8. Error comparison of the proposed algorithm with completely super-
vised Bayes Classifier

C. Classification Performance

To test the classification performance of the data, two

probability distributions based on the parameter evolution

dynamics described in (13) were generated. At each time step,

100 data samples from each distribution were generated and

shuffled to form a monolithic data stream (except for the first

time step, t=0, where the labels were provided to initialize the

algorithm). Thereafter, with each time step, the distribution

parameters (mean and variance) were updated according to Eq.

(13) and then sampled from unlabeled data only. The variance

of the random walk components ux and uy in Equation (13)

were set as 0.1 for both classes, while the variance of s(t)

615

was set as 0.05. The radius of rotation for the distributions r
was chosen as 3 and the initial variance of both classes was

set to 2. Once again 100 Monte Carlo runs were carried out.

Figure 7 shows the mean percent classification error for Monte

Carlo runs for these experiments. The performance is also

compared to a completely supervised Bayes Classifier with

complete knowledge of the mean and variance of the data at

all times. Figure 8 shows that the algorithm is able to perform

remarkably well - following the optimal Bayes classifier very

closely - irrespective of such an unfair comparison against the

proposed approach that runs in an unsupervised manner.

D. Computational Complexity

One of the major advantages of the proposed approach

over COMPOSE [12] and other numerical techniques is its

lower computational complexity. There are two computational

aspects to the algorithm: the computation required for the

Kalman filter, which must precede the particle filter, and the

computation required for the particle filter itself. The com-

putational operations required by the Kalman filter are matrix

operations which can easily be performed on a general purpose

computer using conveniently available software technology

such as MATLAB. For a sufficiently high state dimension

(of the order 1000) the algorithm can be coded in a High

Performance Computer (HPC)-friendly high level language to

leverage the available computational power. Moreover, instead

of keeping track of a group of data elements, only the mean

and variance are tracked, substantially reducing the memory

requirements. The particle filter requires a fixed number of

particles to track the state variable (variance in this case).

The number of particles is closely related to the dimension

of the state vector and the non-linearity or non-Gaussianity

of the model, but not the amount of data, thus the memory

requirements of the particle filter are also independent of the

amount of data that need to be processed. This is in contrast

to COMPOSE and other related methodologies which have a

computational complexity related to both cardinality and the

amount of the data [12] (in fact, COMPOSE is exponential in

data dimensionality). The price paid, however, is the cost of the

knowledge of the probability distributions generating the data.

Depending on the application at hand this might be a restrictive

assumption or may be easily managed if either the distributions

are assumed to be Gaussian or known a priori. A Second

prominent computational aspect of the proposed approach is

its parallelism. As depicted in Figure 3, the approach can

leverage the parallelism of modern computing systems by

breaking the task at the class level, and if independent, even

at the feature level. These assumptions are not uncommon in

machine learning paradigms.

V. CONCLUSION AND FUTURE WORK

We proposed a novel proof-of-concept approach for para-

metric tracking of drifting class distributions. A state space

formulation for tracking the mean and variance of each class

distribution is shown, for which simulation results have been

quite promising in both tracking and classification. Our future

work includes relaxing the independence assumption of the

features for both the Kalman filter and the particle filter. More-

over, the assumption of two consecutive data samples having

the same variance may also be relaxed. Future work also

includes extending the proposed approach to Gaussian Mixture

Models (GMMs) and general multimodal distributions.

REFERENCES

[1] Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer,
and Neil D Lawrence, Dataset shift in machine learning, The MIT
Press, 2009.

[2] Anna Margolis, Automatic Annotation of Spoken Language Using Out-
of-Domain Resources and Domain Adaptation, Ph.D. thesis, University
of Washington, 2011.

[3] Hidetoshi Shimodaira, “Improving predictive inference under covariate
shift by weighting the log-likelihood function,” Journal of statistical
planning and inference, vol. 90, no. 2, pp. 227–244, 2000.

[4] James J Heckman, “Sample selection bias as a specification error,”
Econometrica: Journal of the econometric society, pp. 153–161, 1979.

[5] Ryan Elwell and Robi Polikar, “Incremental learning of concept drift in
nonstationary environments,” Neural Networks, IEEE Transactions on,
vol. 22, no. 10, pp. 1517–1531, 2011.

[6] J Zico Kolter and Marcus A Maloof, “Dynamic weighted majority:
An ensemble method for drifting concepts,” The Journal of Machine
Learning Research, vol. 8, pp. 2755–2790, 2007.

[7] W Nick Street and YongSeog Kim, “A streaming ensemble algorithm
(SEA) for large-scale classification,” in Proceedings of the seventh ACM
SIGKDD international conference on Knowledge discovery and data
mining, San Francisco, CA, USA, 2001, pp. 377–382.

[8] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando
Pereira, and Jennifer Wortman Vaughan, “A theory of learning from
different domains,” Machine Learning, vol. 79, no. 1-2, pp. 151–175,
2010.

[9] Olivier Chapelle, Bernhard Schölkopf, Alexander Zien, et al., Semi-
supervised learning, vol. 2, MIT press Cambridge, 2006.

[10] Gregory Ditzler and Robi Polikar, “Semi-supervised learning in non-
stationary environments,” in IEEE International Joint Conference on
Neural Networks (IJCNN 2011), San Jose, California, USA, 2011, pp.
2741–2748.

[11] Karl B Dyer and Robi Polikar, “Semi-supervised learning in initially
labeled non-stationary environments with gradual drift,” in IEEE Inter-
national Joint Conference on Neural Networks (IJCNN 2012), Brisbane,
Australia, 2012, pp. 1–9.

[12] Karl B Dyer, Robert Capo, and Robi Polikar, “Compose: A semisuper-
vised learning framework for initially labeled nonstationary streaming
data,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 25, no. 1, pp. 12–26, 2014.

[13] Robert Capo, Karl B. Dyer, and Robi Polikar, “Active learning in
nonstationary environments,” in IEEE International Joint Conference
on Neural Networks (IJCNN 2013), Dallas, Texas, USA, 2013, pp. 1–8.

[14] Dan Simon, Optimal state estimation: Kalman, H infinity, and nonlinear
approaches, Wiley. com, 2006.

[15] Genshiro Kitagawa, Introduction to time series modeling, CRC press,
2010.

[16] Arnaud Doucet and Adam M Johansen, “A tutorial on particle filtering
and smoothing: Fifteen years later,” Handbook of Nonlinear Filtering,
vol. 12, pp. 656–704, 2009.

616

