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Abstract— Neural networks have been used in many different
robot motor-control experiments, however, so far the complexity
of these neuro-controllers have remained at the similar level.
The focus of this paper is to demonstrate that it is possible to
scale-up these neuro-robotic controllers with GPUs leading to
richer, more realistic and more complex motor control.

I. INTRODUCTION

HUMANS are able to acquire many skilled behaviors
during their life-times. The learning of complex be-

haviours is achieved through a constant repetition of the
same movements over and over, with certain components
segmented into reusable elements known as motor primi-
tives. These motor primitives are then flexibly reused and
dynamically integrated into novel sequences of actions. For
example, the action of lifting an object can be broken down
into a combination of multiple motor primitives. Some motor
primitives would be responsible for reaching the object, some
for grasping it and some for lifting it. These primitives are
represented in a general manner and should therefore be
applicable to objects with different properties. This capacity
is known as generalisation, which also refers to the ability
to acquire motor tasks by different ways. This means that
the learning of new motor tasks can be done by using
any body effector, or simply by imagining the actual task
itself (see for example [1]). In addition, one might want to
reach for the object and throw it away, instead of lifting
it up. Therefore these motor primitives need to be flexible
in terms of their order within a particular action sequence.
The amount of combinations of motor primitives grows
exponentially with their number and the ability to exploit
this repertoire of possible combinations of multiple motor
primitives is known as compositionality. The hierarchically
organised human motor control system is known to have the
motor primitives implemented as low as at the spinal cord
level whereas high-level planning and execution of motor
actions takes place in the primary motor cortex (area M1).
The human brain implements this hierarchy by exploitation
of muscle synergies and parallel controllers. These have
various degrees of complexity and sophistication that are able
to address both the global aspects of the motor tasks as well
as fine-tune control necessary for the tool use [2].

The flexibility of the motor control system allows humans
to execute behavioural actions, dynamically set the end point
and degrees of freedom used for next task while being
able to quickly adapt to various disturbances. Fogassi et
al. argue that the flexibility of choosing different effectors
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is crucial to adaptability and related to the existence of
peripersonal space [3]. Pioneering experiments on adaptation
to rotating artificial gravity environments led to the general
belief that humans would not be able to adapt to rotating
environments with angular velocities over around 3 to 4
rpm (see [4]). An important study conducted by Lackner
and DiZio showed that this sensorimotor adaptation is pos-
sible even with angular velocities reaching 10 rpm [5]. The
experimental results showed that this can be achieved by
making the same movement repeatedly, which allows the
neural system to estimate and compensate for the Coriolis
forces generated by a moving reference plane. These studies
are clearly demonstrating the robustness and the flexibility
of the human motor control system, which is capable of
exploiting the use of motor primitives in order to reach higher
level goals.

The existence of motor primitives and their recombination
into sequences of actions is supported by the biological
observations of both humans and animals. Sakai et al.
conducted experiments in visiomotor sequential learning
and demonstrated that his subjects spontaneously segmented
motor sequences into elementary movements [6]. Thorough-
man and Shadmehr showed that the complex dynamics of
reaching motion is achieved by flexibly combining motor
primitives [7]. d’Avella et al. analysed the data recorded
from electromyographic activity from 19 shoulder and arm
muscles and concluded that: ”the complex spatiotemporal
characteristics of the muscles patterns for reaching were cap-
tured by the combinations of a small number of components,
suggesting that the mechanisms involved in the generation
of the muscle patterns exploit this low dimensionality to
simplify control” ([8], p. 7791). Experiments conducted on
animals are also consistent with these findings. For example,
it has been shown that the electrical stimulation of primary
motor and premotor cortex in monkeys triggers coordinated
movements such as reaching and grasping [9]. Giszter et al.
found that a frog’s leg contains a finite number of modules
organised as linearly combinable muscle synergies [10].

Several action learning models have been proposed that
implement functional hierarchies via explicit hierarchical
structure, as with the MOSAIC model [11] or the mixture of
multiple Recurrent Neural Networks (RNN) expert systems
[12]. In these models the motor primitives are represented
through local low-level modules, whereas higher-level mod-
ules are in charge of recombining these primitives using
extra mechanisms such as gate selection systems. These
systems carry great potential benefits. For example, the
learning of one module does not interfere with the learning
of other modules. Moreover, with the adding of extra low-
level modules, the number of acquirable motor primitives can
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increase as well. However, it has been demonstrated that the
similarities between various sensorimotor sequences result in
competition between the modules that represent them. This
leads to a conflict between generalisation and segmentation,
since generalisation requires the representation of motor
primitives through many similar patterns present in the same
module whereas different primitives need to be represented
in different modules to achieve a good segmentation of
sensorimotor patterns. Because of the conflict that arises
when there is an overlap between different sensorimotor
sequences, it is not possible to increase the number of motor
primitives by simply adding extra low-level modules [13].
The learning of motor primitives (low-level modules) and
sequences of these primitives (hi-level modules) need to be
explicitly separated through subgoals [14], [12].

Yamashita and Tani [15] were inspired by the latest
biological observations of the brain to develop a com-
pletely new model of action sequence learning known as
Multiple Timescales Recurrent Neural Network (MTRNN).
The MTRNN attempts to overcome the generalisation-
segmentation problem through the realisation of functional
hierarchy that is neither based on the separate modules nor
on a structural hierarchy. Hierarchies are rather based on
multiple time-scales of neural activities that are responsible
for the process of motor skills acquisition and adaptation,
as well as perceptual auditory differences between formant
transition and syllable level [16], [17], [18], [19], [20].

Neural networks have been used in many different robot
motor-control experiments, however, so far the complexity
of these neuro-controllers have remained at the similar level.
The focus of this paper is to demonstrate that it is possi-
ble to scale-up these neuro-robotic controllers with GPUs
(Graphics Processing Unit) leading to richer, more realistic
and more complex motor control. It is also worth noting
that, when these neuro-controllers reach certain sizes, the
forward activation will take significant time on standard
CPUs, which renders these controllers unsuitable for real-
time robot control tasks with typical update time of 50-
100ms. The most computationally intesive operations in both
traiing and running of neural networks are typically matrix-
vector multiplications, which are an ideal match for the SIMT
(Single Instruction Multiple Threads) model of a modern
GPU processor notoriously famous for outperforming CPUs
in parallel computing tasks.

II. MOTIVATION

Around the year 2003, to overcome the energy consump-
tion and heat-dissipation problems of standard PC processors,
manufacturers started to produce computers with multiple
cores. In the meanwhile, manufacturers have been looking
into new technologies that would increase the number of
transistors per wafer. However, reducing these dimensions
comes at a price since the current leakage becomes a prob-
lem.

Since 2003, the production of semiconductors has been
divided into multicore and manycore design trajectories.
Manycore design aims to increase the processing power by

increasing the number of cores in a processor. This number
was doubling with each semiconductor process generation
starting with dual-core chips and reaching hyper-threaded
hexa-core systems. A manycore system is fundamentally
different with regards to its design philosophy. While CPUs
are optimised for the processing of sequential code and
feature sophisticated control logic and large cache memories,
the GPU design philosophy emerged from the fast growing
video industry where massive numbers of floating point
operations are required to render every single frame. As
a result, a GPU chip has most of its area dedicated to
processing of the floating point operations and features only
tiny cache memories.

In 2006, NVidia released GeForce 8800 GPU, which
was capable of mapping separate programmable graphics
processes to an array of GPUs, which paved the way to
first general purpose computing using parallel GPU pro-
cessors. GPGPU was an intermediate step where graphics
card programmers had to use the OpenGL or DirectX API
to implement their programs. Using the GPGPU technique
many different applications have achieved dramatic speed
improvements.

Parallel computing using GPU devices is being increas-
ingly taken up by industry and academies. Many commercial
and research applications have migrated from using solely
standard CPU processors to a heterogeneous CPU-GPU
environments where each architecture does what is best at.
Most of these applications achieve tremendous speed-ups in
performance [21].

Since quantum computing is still in its infancy and CPUs
are approaching the processing limits constrained by the
physical laws, we have adopted the heterogeneous CPU-GPU
computing paradigm and implemented Aquila 2.0 Cognitive
Robotics Architecture (REF). Aquila implements various
hi-performance modules that help conducting scientific ex-
periments in the field of cognitive robotics. One of these
modules is the above-mentioned MTRNN, which has been
optimised for the latest NVIDIA Kepler GPU architecuture.
This allowed us to scale-up MTRNN and use it to control
all the 53 motors of the iCub humanoid robot (see section
III-A) and thus produce more complex and realistic motor
control.

III. METHOD

A. iCub Humanoid Robot Platform

The iCub (www.icub.org) [22] is a small humanoid robot
that is approximately 105cm high, weights around 20.3kg
and its design was inspired by the embodied cognition
hypothesis. This unique robotic platform with 53 degrees of
freedom (12 for the legs, 3 for the torso, 32 for the arms and
six for the head) was designed by the RobotCub Consortium
[23], which involves several European universities and it
is now widely used by the iTalk project and few others.
The iCub platform design is strictly following open-source
philosophy and therefore its hardware design, software as
well as documentation are released under general public
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license (GPL). Tikhanoff et al. have developed an open-
source simulated model of the iCub platform [24], [25].
This simulator has been widely adopted as a functional tool
within the developmental robotics community, as it allows
researchers to develop, test and evaluate their models and
theories without requiring access to a physical robot.

While some of our preliminary experimnets used MTRNN
to control all the 53 joints of the iCub, in this experiment
we did not need to use legs and therfore only needed to
control 41 joints (see table I). The sensorimotor states of the
iCub were sampled at 50ms rate and were used for training
both the self-organising maps (section III-B) and MTRNN
section ( III-C). The next section describe the MTRNN model
in detail.

body part degrees of freedom
head 6
left arm 16
right arm 16
torsol 3

TABLE I
DEGREES OF FREEDOM USED.

B. Self Organising Maps for Input Sparse Encoding

The MTRNN system used Self-Organising Maps (SOMs)
as means of preserving the topological relations in the
multidimensional input space to reduce the possible overlap
between various sensorimotor sequences and to aid the
learning process.
The self-organising map was trained prior to the MTRNN’s
BPTT training using a slight variation of the standard SOM
unsupervised learning algorithm [26]. The data set consisted
of all the sequences used to for the MTRNN training as well
as additional sequences, which involved variations to achieve
smoother representation of the input space and minimise data
loss incurred during the process of vector transformation.
Equation (1) shows the description of these vectors where
l(i) defines their dimensions.

vi = {vi,1, vi,2, vi,3, ..., vi,l(i)} (1)

The transformation of a vector to a self-organising map
(SOM) is given by equation (2) where vsample = l(i), σ
defines the distribution shape of pi,t and N represents the
overall size of the self-organising map.

pi,t =
exp

{
− ||vi−v

sample||2
σ

}
∑
j∈N

exp
{
− ||vi−v

sample||2
σ

} (2)

The neural activations on the output layer are assumed to
correspond to an activation probability distribution of the
self-organising map whose inverse transformation generates
multidimensional vector that directly sets the target joint
angles of the iCub. Equation (3) describes this transformation
where vi represents the target position for the ith joint index,

yj,t is the MTRNN’s jth output activity, sij is the ith index
of the vector corresponding to the SOM’s node j.

vi =
∑
j∈N

yj,tsij (3)

Fig. 1. Trained self-organising map. The picture on the left side shows
the map used for encoding the vision (6 joints) and the picture on the right
shows map encoding proprioception (35 joints).

C. Online Control

The MTRNN’s core is based on a continuous time recur-
rent neural network characterised by the ability to preserve
its internal state and hence exhibit complex dynamics. The
system receives sparsely encoded proprioceptive input from
the robot (see section III-B), which is used to predict next
sensorimotor states and therefore acts as a forward kinemat-
ics model (e.g. [27]).

The neural activities were calculated following the classi-
cal firing rate model where each neuron’s activity is given
by the average firing rate of the connected neurons. In
addition to this, the MTRNN model implements a leaky
integrator and therefore the state of every neuron is not only
defined by the current synaptic inputs but also considers its
previous activations. The differential equation (4) describes
the calculation of neural activities over time where ui,t is
the membrane potential, xj,t is the activity of jth neuron,
wij correspond to synaptic connections from the jth to the
ith neuron and finally the τ parameter that defines the decay
rate of ith neuron.

τiui,t = −ui,t +
∑
j

wijxj,t (4)
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Fig. 2. The system receives proprioceptive information as a multidimen-
sional vector mt subsequently activating a self-organising map, the activity
of which is associated to the network’s input. The neural network then
predicts the next sensorimotor state mt+1 based on its current state and
input. At this stage, the neural activations on the output layer are assumed
to correspond to the activity of the self-organising map whose inverse
transformation generates multidimensional vector that directly sets the target
joint angles of the iCub.

The decay rate parameter τ modifies the extent to which
the previous activities of the neuron affect its current state.
Therefore, when the neurons are set with large τ values
their activities will be changing more slowly over time as
compared to those neurons set with smaller τ values.

In this experiment, 640 input-output neurons were set to
τ = 2 while the hidden neurons consisted of two different
categories where each had a different time integration con-
stant. The first category comprise of 64 fast neurons with
τ = 5 and the second of 64 slow neurons set to τ = 70.
These two categories are attempting to capture the dynamics
of complex behavioural patterns by flexible recombination
of motor primitives into novel sequences of actions. As
described in the introduction, the multiple timescale systems
have been suggested as the underlying system that facilitates
this behavioural compositionally.

The network is fully connected and hence every neuron is
connected to every other neuron including itself. There is one
exception where the slow neurons are not directly connected
to the input-output layer but rather indirectly via the fast
neurons.

The continuous time integration model of the MTRNN’s
neurons were defined by the differential equation (4) while
the actual membrane potentials are calculated by its numer-
ical approximation defined by equation (8).

ui,t+1 =

(
1− 1

τi

)
ui,t +

1

τi

∑
j∈N

wijxj,t

 (5)

The activity of neuron is calculated in two different ways
(equation (6)) depending on whether a neuron belongs to the
input-ouput (i ∈ Z) or the hidden layer.

yi,t =


exp(ui,t)∑

j∈Z

exp(uj,t)
if i ∈ Z

f(ui,t) otherwise
(6)

Therefore, the input-output neuron activations are calculated
using the Softmax function (the top part of equation (6))

while the hidden neurons use conventional Sigmoid function
(equation (7)).

f(x) =
1

1 + e−x
(7)

The Softmax function was used to achieve an activation
distribution that is consistent with that of the self-organising
map. The system receives proprioceptive information as a
multidimensional vector mt subsequently activating a self-
organising map, the activity of which is associated to the
network’s input. The neural network then predicts the next
sensorimotor state mt+1 based on its current state and input.
At this stage, the neural activations on the output layer are
assumed to correspond to the activity of the self-organising
map whose inverse transformation generates multidimen-
sional vector that directly sets the target joint angles of the
iCub. The iCub then updates the positions of its joints, which
are again fed back through the SOM into the MTRNN system
as xi,t+1. Hidden neurons are simply copied as the recurrent
states for the next time step, see equation (8).

xi,t+1 =

{
pi,t+1 if i ∈ 0
yi,t otherwise (8)

D. Back Propagation Through Time

The MTRNN needs to be trained via an algorithm that
considers its complex dynamics changing through time and
for this reason we used the BPTT algorithm as it has been
previously demonstrated to be effective with this recursive
neural architecture [15].

This learning process is defined by finding the suitable
values for the synaptic connections minimising the global
error parameter E, which represents the error between the
training sequences and those generated by the MTRNN. The
error E is calculated using the Kullback-Leibler divergence
as described in equation (9) where y∗i,t is the desired activa-
tion value of the ith output neuron at the time t and yi,t is
its actual output.

E =
∑
t

∑
i∈O

y∗i,tlog

(
y∗i,t
yi,t

)
(9)

The synaptic connection values are updated according to
equation (10) where their optimal levels are approached
through minimising their values with respect to ∂E/∂w
that defines the gradient. The learning rate is given by α
parameter and n represents the learning iteration step.

wij (n+ 1) = wij (n)− α
∂E

∂wij
(10)

The already mentioned gradient ∂E/∂w is defined by equa-
tion (11) while the recurrence equation (6) is used to recur-
sively calculate ∂E∂ui, t.

∂E

∂wij
=
∑
t

1

τi

∂E

∂ui,t
xj,t−1 (11)
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∂E

∂uk,t
=


yi,t+1 − yi∗i,t+1 +

(
1− 1

τi

)
if i ∈ 0

∑
k∈N

∂E
∂ui,t+1

[
δi,k

(
1− 1

τi

)
+ 1

τk
wki

∫ ′

(ui,t)
]

otherwise
(6)

The
∫ ′

() is the derivative of the sigmoid function defined by
equation (7). The δi,k is Kronecker’s delta, which is set to 1
when i = k otherwise it is 0.

The initial values of the synaptic connections were ran-
domly generated between -0.025 and 0.025.

IV. EXPERIMENTS AND RESULTS

This experiment was designed to test the scaled-up
MTRNN and its ability to learn a complex action while
controlling a high number of joints in real-time. The task
required the robot to touch an object on a table with either
left or right hand depending on the position of the object. If
the object is located more on the right side of the table, the
robot would touch it with the right hand and vice versa. The
object could be positioned anywhere within the rectangular
area outlined by the outer circles in fig. 3 below.

Fig. 3. Experimental setup

The Sequence Recorder module of Aquila was used to
record the sensorimotor patterns while the experimenter was
guiding the robot by holding its arms and performing the
action for each object position defined by the inner 32 circles
separed by 5cm distance (see fig. 3). Each recording lasted
5 second and the encoder values of 41 joints were sampled
at 50ms interval, producing the total of 3200 sensorimotor
states used for the training of self-orgnainsing maps and
MTRNN.

During this data collection stage, the Aquila’s tracker
module was used to keep the robot’s head and eyes centered
on the object regardless of its position. Different object

positions would therefore yield different encoder values of
the 6 joints in the head and eyes. Since this information was
passed as the input, the MTRNN was able to distinguish
between different object positions and perform the action in
the correct way.

A total number of 20 trials were conduced where each
could run for the maximum of 10000 iterations. Each training
trial was initialised with different initial seed used for gen-
erating neural network weights. At the end of the training,
the neural network from each trial was tested on the robot,
which needed to be able to touch the object at the correct
position and with the correct arm.1

When the neural network error was less than approxi-
matelly 0.00001, the robot was able to successfully execute
the action whatever the object position was. Our experimental
results show (see table II) that 15 our of 20 trials were
successful and resulted in capable neuro-controllers.

r
¯
un e

¯
rror

1 0.000009
2 0.000108
3 0.000033
4 0.000019
5 0.000006
6 0.000009
7 0.000007
8 0.000008
9 0.000007
10 0.000008
11 0.000007
12 0.000007
13 0.000007
14 0.000009
15 0.000042
16 0.000007
17 0.00001
18 0.000006
19 0.000009
20 0.000035

TABLE II
TRAINING RESULTS

V. CONCLUSIONS

Neural networks have been used in many different robot
motor-control experiments, however, so far the complexity of
these neuro-controllers have remained at the similar level. In
this paper, we have demonstrated the it is feasable to scale-
up neural networks using GPUs and thus develop complex
nero-controllers able to controll a high number of joints
leading to more realistic action execution. Our preliminary
experiments also suggest that it is possible to train high
number of different actions using a single neural network
with higher number of neurons.

1This video shows one of the trained neural networks controlling iCub
humanoid robot: http://www.youtube.com/watch?v=PtaPaEjkMJ0
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Fig. 4. Training errors of the best trial.
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