
Efficient Class Incremental Learning for Multi-label
Classification of Evolving Data Streams

Zhongwei Shi
School of Computer Science and Engineering
Guilin University of Electronic Technology

Guilin, China
e-mail: jk_szw@163.com

Yun Xue
School of Municipal and Surveying Engineering

Hunan City University
Changsha, China

e-mail: yunxue1209@163.com

Yimin Wen*
Guangxi Key Laboratory of Trusted Software
Guilin University of Electronic Technology

Guilin, China
e-mail: ymwen2004@aliyun.com

Guoyong Cai
Guangxi Key Laboratory of Trusted Software
Guilin University of Electronic Technology

Guilin, China
e-mail: ccgycai@guet.edu.cn

Abstract—Multi-label stream classification has not been fully
explored for the unique properties of large data volumes, real-
time, label dependencies, etc. Some methods try to take into
account label dependencies, but they only focus on the existing
frequent label combinations, leading to worse performance for
multi-label classification. To deal with these problems, this paper
proposes an algorithm which dynamically recognizes some new
frequent label combinations and updates the trained classifier by
class incremental learning strategy. Experimental results over
both real-world and synthetic datasets demonstrate its better
predictive performance.

Keywords—class incremental learning; concept drift; evolving
data streams; multi-label classification

I. INTRODUCTION
In the real life, many applications, such as sensor networks,

traffic management, social networks, email systems, twitter
posts, blogs, etc., generate tremendous amount of data, which
is characterized by real-time, high speed, large data volumes,
etc. This type of data is called data stream. At present, stream
classification has become an important research field in data
mining community and made great research achievements.
Conventional approaches focus on classifying data streams
under single-label scenarios where each sample can only be
assigned to a single label.

However, in many emerging applications, each sample can
be assigned to more than one label i.e. the sample is assigned
to a label combination. For example, in the task of online news
page classification, a news article about “Alibaba will go
public” can be marked with labels like IT, economy, company,
etc., which makes it necessary to design an online multi-label
classification model to classify such pages into multiple topics.

On the other hand, the target concepts within data streams
are often not stable but change over time, which is known as

concept drift [1]. These changes often make the learning model
built on old data inconsistent with the new data. Then it’s
necessary to exactly and rapidly detect concept drift and update
the current learning model in real time [2]. In addition, for the
method of detecting concept drift based on the predictive
performance of learning model, the better the performance is,
the more efficient the detecting is.

Multi-label evolving data streams inherit the properties of
multi-label and concept drift, such as large data volumes, high
speed, label dependencies and changes within target concepts,
which make it more unique. For these properties, Read et al.
used Pruned Set (PS) [3] method to train one base classifier at
the leaf nodes of Multi-label Hoeffding Tree (EaHTps [4]) to
deal with the multi-label evolving data streams. Since the
whole data can seldom fit into the limit memory, the base
classifier is trained from the samples with frequent label
combinations in the buffer that is initialized with a number of
firstly arrived samples. By pruning away some infrequent label
combinations that bring about the over-fitting and complexity
problems, EaHTps has achieved good performance.

However, the size of the buffer needs to be set in advance.
The buffer being small can’t represent the whole distribution of
the data streams, but being large will take too long time to
build the base classifier, even though the buffer may include
more frequent label combinations. What’s more, the set of
frequent label combinations is fixed and doesn’t change over
time for training the base classifier. This leads to that some
potential frequent label combinations aren’t stored for class
incremental learning, making worse the predictive performance
of the learning model. The above factors make it become a
challenge to efficiently deal with these frequent label
combinations to get good predictive performance for handing
multi-label evolving data streams.

In the paper, we particularly analyses the reason why some
frequent label combinations can’t be selected by the buffer

* To whome correspondence should be addressed.

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 2093

scheme from the perspective of statistics and experimental
results. In order to deal with the challenge, we propose a class
incremental learning approach that dynamically recognizes
some new frequent label combinations and updates the set of
label combinations in real time, which makes the learning
model more accurate. Last but not least, multiple groups of
experiments with different size of buffer are taken to prove the
necessity of class incremental learning.

The rest of the paper is organized as follows. In Section II,
some related work is displayed. Section III analyzes the source
of the challenge. Section IV presents how to recognize new
frequent label combinations and train the class incremental
learning model. Experiments and results are showed in section
V. The last section concludes the paper.

II. RELATED WORK
The current approaches for multi-label stream classification

can be sorted to Binary Relevance and Label Combination [5],
[6]. Binary Relevance transforms a multi-label classification
problem into multiple binary problems, one for each label, but
Label Combination treats each label combination as an atomic
class to form a single-label problem.

Qu et al. [7] proposed an ensemble strategy to handle the
multi-label stream classification. It assumed that the multi-label
data streams arrived in chunk with fixed size. Then a group of
classifiers were trained: each for a single-label data chunk that
was transformed from a multi-label data chunk by the Binary
Relevance method. Based on this, an ensemble of classifiers
was trained on several successive multi-label data chunks.
Their following work [8] adopted the Stacked Binary
Relevance [9] method to learn from each data chunk, which
took the label dependencies into account and performed well
than their previous method. Similarly, Xioufis et al. [10] also
followed the Binary Relevance method to transform a multi-
label problem into multiple binary problems. To deal with class
imbalance and multiple concept drift, they employed two
windows with fixed ratio for each label, one for positive and
the other for negative samples.

Read et al. [11] proposed a Multi-label Hoeffding Tree that
was an extension of Hoeffding Tree [12]. They used the multi-
label information gain to filter the multi-label data streams to
different leaf nodes where a multi-label classifier was built by
PS [3] method based on Label Combination. Their subsequent
work, named as EaHTps [4], presented a method that was a
bagged ADWIN-monitored ensemble of Multi-label Hoeffding
Tree classifiers. ADWIN [13] was used to detect concept drift
through monitoring the change of predictive performance.
Comparing with the state of art methods including Multiple
Windows Classifier (MWC) [10] and Meta-BR (MBR) [8], they
drew a conclusion that the proposed method achieved the
overall highest predictive performance.

In the method of EaHTps, there’re two stages in the process
of training a multi-label classifier at leaf nodes. At first, at the
stage of initializing, a number of samples are buffered. Before
the buffer is full, a simple majority-label-set classifier (the
multi-label version of majority-class) needs to be employed to
make multi-label classification. While the buffer is full, all the
label combinations of the buffered samples are pruned

according to their occurring number by PS method. The multi-
label classifier is initialized by those samples with frequent
label combinations whose occurring number are larger than a
pre-set threshold.

Then, at the stage of updating, if the label combination of a
newly arrived sample is frequent, then the sample will be used
to update the built multi-label classifier directly. Otherwise, the
strategy of sub-sampling will take effect that the label
combination of the sample is replaced with a similar frequent
label combination. After that, the sample with altered label
combination is used to update the built multi-label classifier to
reduce information loss.

From the above process, it’s more possible that those label
combinations that don’t occur frequently in the buffer are
considered to be infrequent all the way. But in fact, they’re not
all infrequent and some potential frequent label combinations
should have been recognized and used to update the built
multi-label classifier.

III. MOTIVATION ANALYSIS
Before presenting the entire process of the proposed

algorithm, let us particularly analyze why some frequent label
combinations aren’t selected for training the multi-label
classifier. We assume: there is a multi-label data stream that
contains n (a finite number) samples and each sample is
assigned to a label combination. The m(c) denotes the
occurring number of a label combination c in the whole data
stream.

Then, in the process of randomly sampling b (namely the
size of buffer in EaHTps) samples from the whole data stream,
the probability of the label combination c not being selected
can be represented as follows:

1

0

() () () ()() (1) (1) (1) (1)
1 1

b

i

m c m c m c m cP c
n n n b n i

−

=
= − × − ×⋅⋅ ⋅× − = −

− − + −∏ (1)

Because n is much larger than b, the process of sampling b
samples is approximately equivalent to a simple random
sampling with replacement, then

1

0

() ()() (1) (1)b b
i

m c m cP c
n i n

−

=
= − ≈ −

−∏ (2)

Fig. 1. The curves of P(|L|)

2094

A frequent label combination is the one whose occurring
number isn’t less than k (k>0) times of an average value.

| |()
2 1L

nm c k≥ ×
−

 (3)

In (3), |L| represents the size of label set and 2|L|-1 is the
total number of all label combinations. Then | |2 1L

n
−

 denotes the

average occurring number of all label combinations.

Thus, for the frequent label combination c, the probability
of it not being selected is bigger than P(|L|):

()() (1) (| |)bm cP c P L
n

≈ − ≥ (4)

| |(| |) (1)
2 1

b
L

kP L = −
−

 (5)

According to (5), what influence the probability of c not
being selected are the size of buffer (b) and the size of label set
(|L|). In the following, we discuss how they take effect by
experimental results. EaHTps is run 100 times on synthetic
datasets and the average results are showed in Table II, III and
IV. The specific parameters of the algorithm and dataset are
showed in Section V.

At first, when b is set as 1000 [4], [11], the curves of P(|L|)
are showed in Fig 1. From Fig 1, it can be seen clearly that the
probability P(|L|) is becoming bigger along with the increasing
size of label set. Actually, many real-world datasets always
involve large size of label set like in Table I.

From Table II, it can be observed that the larger value of |L|
always lead to more frequent label combinations that aren’t
selected. This result is in favor of the observation from Fig 1.

Table III and IV illustrate the results over three datasets for
different size of buffer. In these two tables, for each dataset,
EaHTps [4] performs variously for different size of buffer.
Over the dataset RTG12, EaHTps performs best when the size
of buffer is set as 2000 for subset accuracy measure or 1000 for
exact match measure and over the dataset RTG15, EaHTps
performs best when the size of buffer is set as 5000. Over the
dataset RTG8, EaHTps performs best when the size of buffer is
set as 500. So the larger size of buffer doesn’t definitely lead to
better performance.

In a word, some frequent label combinations aren’t stored
for training in the buffer, which influences the predictive
performance of EaHTps. However, it can’t be efficiently
improved by changing the size of buffer.

TABLE I. STATISTICS OF REAL-WORLD DATASETS. |L| DENOTES THE
SIZE OF LABEL SET; |X| DENOTES THE NUMBER OF ATTRIBUTES; |D| DENOTES

THE NUMBER OF SAMPLES; AVG|Y| DENOTES THE AVERAGE NUMBER OF
LABELS PER SAMPLE

Dataset
Properties

|L| |X| |D| Avg|Y|

MediaMill 101 120 43907 4.4
TMC2007 22 500 28596 2.2
20NG 20 1001 19300 1.1
Slashdot 22 1079 3782 1.2
Enron 53 1001 1702 3.38

TABLE II. THE NUMBER OF FREQUENT LABEL COMBINATIONS OF NOT
BEING SELECTED ON RTG

|L|
The Size of Buffer

200 500 1000 2000 5000
8 10 3 5 2 1

12 38 46 57 40 29
15 50 66 103 76 46

TABLE III. SUBSET ACCURACY ON RTG

|L|
The Size of Buffer

200 500 1000 2000 5000

8
0.552

±0.073
0.560

±0.074
0.558

±0.074
0.559

±0.072
0.557

±0.073

12 0.336
±0.080

0.346
±0.085

0.347
±0.086

0.348
±0.090

0.330
±0.079

15 0.203
±0.053

0.227
±0.064

0.232
±0.058

0.242
±0.071

0.243
±0.067

TABLE IV. EXACT MATCH ON RTG

|L|
The Size of Buffer

200 500 1000 2000 5000

8
0.319

±0.058
0.333

±0.066
0.327

±0.065
0.328

±0.070
0.324

±0.067

12 0.165
±0.054

0.171
±0.056

0.178
±0.058

0.177
±0.060

0.164
±0.052

15 0.071
±0.032

0.093
±0.04

0.091
±0.039

0.094
±0.043

0.094
±0.041

IV. CLASS INCREMENTAL LEARNING
In order to address the above issue, the strategy of class

incremental learning is introduced. The learning process
consists of two stages. At the first stage, a number of samples
with frequent label combinations are collected to initialize the
learning model by PS method. The set of the frequent label
combinations is also saved for the next stage.

At the second stage, for each subsequent sample, if its label
combination isn’t in the set of frequent label combinations, the
label combination will be saved and its occurring number is
also updated in real time. These saved values are reset at the
interval of the same number of samples compared with the first
stage. Once the occurring number of one label combination is
larger than that of any existing frequent label combination,
then the corresponding samples will be used to update the
learning model by the class incremental learning strategy [14].
The label combination is also used to update the set of frequent
label combinations of the learning model. Otherwise, if the
label combination of the newly arrived sample is in the set of
frequent label combinations, it will be used to update the
learning model by the instance incremental learning strategy
[14].

The implementation of the proposed algorithms are showed
in the Fig.2 and Fig.3. Table V summarizes these notations
used in the proposed algorithms.

In Algorithm 1, at first, b samples are collected to initialize
the learning model by PS method (line 3 - line 13). In the
process of learning, the function PruneLC is called to prune the
infrequent label combinations by the pre-set parameter p

2095

(line 7). The min_N saves the minimum occurring number in N
(line 8) and C saves the frequent label combinations (line 9).

TABLE V. NOTATIONS

Notation Description

(xi, Yi) The ith sample in the data stream

Yi = {y1, ..., y|L|} The label combination of a sample

b The size of buffer

S = {(x1, Y1), ..., (xb, Yb)} The initial set of samples

p A pre-set parameter to prune the label
combinations

LC = {lc1, ... , lci } lci is the ith label combination

N = { n1, ... , ni } ni is the occurring number of lci

C The set of frequent label combinations

min_N The minimum occurring number of all
frequent label combinations

Fig. 2. The outline of the proposed algorithm

Fig. 3. The process of recognizing the frequent label combinations

After the learning model is initialized, for each newly
arrived sample (xi, Yi), if its label combination is not in C (line
17), the function UpdateLC will be called to estimate whether
the label combination is frequent or not according to its
occurring number. In Algorithm 2, when a new label
combination arrives, LC and N are updated (line 2 – line 7). If
the occurring number of a label combination is larger than
min_N, it will be considered to be frequent (line 9).

If the label combination is considered to be frequent(line 20)
by Algorithm 2, (xi, Yi) will be used to update the learning model
by class incremental strategy (line 21). In order to meet the
need of class incremental learning, we alter Naïve Bayes by
adding the prior probability of the new class and the new
conditional probability for each attribute and updating the prior
probabilities of the existed classes and the previous conditional
probability for each attribute. On the other hand, this new
frequent label combination is used to update C (line 22).

Otherwise, (xi, Yi) will be used to update the learning model
by the strategy of instance incremental (line 24). In the end, the
values of N and LC are reset at the interval of b samples.

V. EXPERIMENTS AND RESULTS
In this section, the proposed algorithm is evaluated on both

real-world and synthetic multi-label datasets. All algorithms
are implemented in Java with help of MOA [15] software
package.

A. Data Collection

a) Real-world datasets: Table I provides the particular
statistics of five real-world datasets, which can be found in
[4], [6], [10], [11], and [16]. MediaMill contains video
annotation data annotated with 101 labels. TMC2007 consists
of the aviation safety reports labeled with 22 types. 20NG
originates from 20 newsgroups around 20,000 articles data.
Slashdot contains the article blurbs which have 22 different
subject categories. Enron is the email data with 53 categories.

b) Synthetic datasets: The multi-label synthetic datasets
are generated by the multi-label stream generation framework

Algorithm 2: UpdateLC(c, min_N, LC, N)

Input: c, min_N, LC, N
Output: The frequent label combination lci

1 lci ← c
2 if lci ∉ LC then
3 ni ← 1
4 LC ← LC ∪ lci && N ← N ∪ni
5 else
6 ni ← ni+1
7 end if
8 if ni > min_N then
9 return lci
10 else
11 return Φ
12 end if

Algorithm 1:TrainModel(xi, Yi)

Input: (xi, Yi), p
Output: The learning model
1 counter1 = 0
2 counter2 = 0
3 if counter1 < b then
4 S ← S ∪ {(xi, Yi)}
5 counter1 = counter1 + 1
6 if counter1 >= b then
7 (LC, N) ← PruneLC(S, p)
8 min_N ← Min(ni ∈ N)
9 C ← LC
10 Model ← InitializeModel(S, C)
11 LC ← Φ && N ← Φ
12 end if
13 else
14 lc = Φ
15 if counter2 < b then
16 c ← (xi, Yi)
17 if c ∉ C then
18 lc ← UpdateLC(c, min_N, LC, N)
19 end if
20 if lc != Φ then
21 ClassIncremental(lc, (xi, Yi), Model)
22 C ← C ∪ lc
23 else
24 InstanceIncremental((xi, Yi), Model)
25 end if
26 counter2 = counter2 + 1
27 end if
28 if counter2 >= b then
29 LC ← Φ && N ← Φ
30 end if
31 end if

2096

[17], which needs a base generator. There’re two types of base
generator: Random Tree Generator (RTG) [12] and Radial
Basis Function (RBF) [11].

RTG: Random tree that has five values for each nominal
attribute and two values for each label, and its depth is five.
RTG8 denotes that the random tree has eight labels and ten
nominal attributes. RTG12 has twelve labels and sixteen
attributes. RTG15 has fifteen labels and twenty attributes.

RBF refers to fifty centers and two values for each label.
RBF8, RBF12 and RBF15 respectively have the same number
of labels and attributes like RTG8, RTG10 and RTG15.

For each multi-label data stream generated by RTG or RBF,
the parameter z (approximate average number of labels per
sample) is experimented with: z = 1.5 and |L| = 8, z = 1.8 and
|L| = 12, and z = 2.0 and |L| = 15.

To simulate the concept drift, |z| and ld (label
dependencies) are altered simultaneously or alone [4], [11].
The g represents the base generator in the following.

Drift-RTG8 (g = RTG8) contains the change of |z|: 1.8, 3.0,
2.5, and 4.5.

Drift-RTG15 (g = RTG15) contains the change of |z| and ld:
1.8 and 0%, 1.8 and 10%, 3.0 and 0%, and 3.0 and 20%.

Drift-RBF8 (g = RBF8) contains the change of |z| and ld:
1.5 and 0%, 1.5 and 10%, 3.5 and 0%, and 3.5 and 20%.

Drift-RBF15 (g = RBF15) contains the change of |z|: 1.5,
3.5, 2.0, and 4.5.

For the evolving multi-label data streams with T samples,
the three concept drifts take place at the position of T/4, 2T/4,
and 3T/4. The value of T is set to 1000000.

B. Evaluation Measures
For multi-label classification problem, new measures are

needed since the simple accuracy metric of single-label tends
to be overly harsh. The adopted measures are common and
used in [4], [5], [6], and [11]. Assume that a multi-label data
stream D has |D| (a finite number) samples (,)i ix Y , where

1 | |(,...,)i LY y y= represents the actual label set of the sample xi,

1 | |
ˆ ˆ ˆ(,...,)i LY y y= represents the predicted label set of the sample xi

and j
iy denotes the jth label of the sample xi.

Exact Match: A sample is thought to be classified correctly
only if its predicated label set is fully equal to the actual label
set. I is an indicator function that its value equals to 1, if the
condition is correct, otherwise 0.

| |

1

1 ˆ()
| |

D

i i
i

ExactMatch I Y Y
D =

= =∑ (6)

Subset Accuracy [4], [5], [6], [11]: It gives a score ([0, 1])
calculated from the actual and predicted label set for each
sample.

| |
| | () ()1

| |
1 () ()1

1
| |

L j jD i ij
L j j

i i ij

y y
SubsetAccuracy

D y y
=

=
=

∧
=

∨
∑∑
∑

 (7)

Hamming-accuracy [4], [5], [6]: The metric analyses the
binary relevance of each label for all samples.

| | | |

() ()
1 1

1 ˆ1 ()
| || |

D L
j j
i i

i j
Hamming accuracy I y y

L D = =

− = − =∑∑ (8)

 F1-macro [4], [11]: It’s a macro-averaged F1 over all labels
and F1 is the harmonic mean between Precision and Recall [9].

| |

1 1 (1) (| |) (1) (| |)
1

1 [(,...,), (,...,)]
| |

L
j j j j

D D
j

F macro F y y y y
L =

− = ∑ (9)

For evaluation methodology, we employ the most popular
prequential strategy [18] where each example is used for
testing before it’s used for training.

C. Experiment Design
In order to test and verify the reasonability and availability

of the proposed algorithm, we take two groups of experiments:
one for verification of the analysis in Section III and the
significance of the EaHTps method; the other for evaluation of
the proposed algorithm.

a) The first group: In Section III, EaHTps [4] is run over
the synthetic datasets to support the analysis of some frequent
label combinations not being selected. In this section, the
experimental results are included when EaHTps is compared
with MBR [8] and MWC [10]. The parameter p is set as 1.

b) The second group: We take experiments to compare
the proposed method with EaHTps on the synthetic and real-
world multi-label datasets. The size of buffer is set as 1000 for
the synthetic datasets, but the size of buffer is set as 200 for the
real-world datasets because the number of samples is small for
them.

For convenience, the proposed approach is called EaHTcl,
because it selects more new frequent label combinations to
update the learning model by class incremental learning
strategy. p = 1 is set the same in these two algorithms.

D. Experimental Results and Discussion
The final experimental results on the synthetic datasets are

averages of 100 runs, which are carried out over one million
prequential evaluation.

TABLE VI. SUBSET ACCURACY ON REAL-WORLD DATASETS

Methods
Dataset

MediaMill TMC2007 20NG Slashdot Enron
MBR 0.147 0.151 0.046 0.054 0.049
MWC 0.065 0.133 0.162 0.116 0.090
EaHTps 0.284 0.511 0.219 0.087 0.095

TABLE VII. EXACT MATCH ON REAL-WORLD DATASETS

Methods
Dataset

MediaMill TMC2007 20NG Slashdot Enron
MBR 0.002 0.032 0.038 0.018 0.004
MWC 0.006 0.049 0.057 0.072 0.068
EaHTps 0.010 0.229 0.070 0.055 0.073

2097

TABLE VIII. MEASURES ON SYNTHETIC DATASETS

Dataset
Subset Accuracy Exact Match Hamming-accuracy F1-macro

EaHTps EaHTcl EaHTps EaHTcl EaHTps EaHTcl EaHTps EaHTcl

Drift-RTG8 0.558±0.034 0.602±0.040 0.175±0.033 0.221±0.054 0.169±0.022 0.189±0.023 0.561±0.043 0.610±0.044

Drift-RTG15 0.361±0.033 0.395±0.044 0.069±0.019 0.092±0.029 0.170±0.017 0.188±0.019 0.368±0.050 0.422±0.052

Drift-RBF8 0.473±0.036 0.519±0.034 0.129±0.023 0.169±0.040 0.218±0.015 0.228±0.024 0.486±0.043 0.535±0.040

Drift-RBF15 0.272±0.039 0.296±0.037 0.028±0.009 0.036±0.014 0.238±0.018 0.248±0.024 0.336±0.056 0.383±0.043

TABLE IX. MEASURES ON REAL-WORLD DATASETS

Dataset
Subset Accuracy Exact Match Hamming-accuracy F1-macro

EaHTps EaHTcl EaHTps EaHTcl EaHTps EaHTcl EaHTps EaHTcl

MediaMill 0.284 0.301 0.010 0.013 0.051 0.058 0.035 0.043

TMC2007 0.511 0.545 0.229 0.254 0.067 0.072 0.248 0.274

20NG 0.219 0.244 0.070 0.109 0.099 0.104 0.217 0.269

Slashdot 0.087 0.096 0.055 0.059 0.098 0.095 0.061 0.070

Enron 0.095 0.103 0.073 0.079 0.090 0.091 0.007 0.021

Table VI and VII display the comparative results over the
real-world datasets when EaHTps is compared with other
baseline methods.

From Table VI and VII, EaHTps makes the overall best
performance on the total real-world datasets except Slashdot.
In addition, EaHTps has evident advantage over other baseline
methods on the MediaMill and TMC2007 datasets. These all
demonstrate the significance of EaHTps.

Table VIII and IX show the experimental results of
comparing the proposed algorithm with EaHTps. Specifically,
Table VIII shows the results over the synthetic datasets, while
Table IX shows the results over the real-world datasets

From Table VIII and IX, it can be seen that EaHTcl
performs well over EaHTps under almost all measures on
synthetic and real-world datasets except the case of hamming-
accuracy on Slashdot.

The reason why the proposed algorithm outperforms
EaHTps lies in that: When a new frequent label combination is
recognized, the learning model will be updated by the sample
with this new frequent label combination, and then the updated
learning model can efficiently make multi-label classification
before concept drift takes place. However, EaHTps uses PS
method to alter the new frequent label combination and keeps
the set of frequent label combinations the same before concept
drift takes place.

VI. CONCLUSION
In this paper we have analyzed why some frequent label

combinations aren’t selected for training the multi-label
classifier and proposed an algorithm which dynamically
recognizes some new frequent label combinations and updates
the trained classifier by class incremental learning strategy.

The experimental results show that the proposed algorithm is
promising, which indicates that the proposed algorithm is
effective in classifying multi-label evolving data streams.

 Future work involve 1) try a new method to detect concept
drift from the aspect of label dependencies that doesn’t occur
in single-label data streams scenarios 2) consider how to
handle the class imbalance brought about by new class to
efficiently deal with multi-label evolving data streams.

ACKNOWLEDGMENT
This work was supported in part by Guangxi Key

Laboratory of Trusted Software (KX201311), and the National
Natural Science Foundation of China (61363029).

REFERENCES
[1] G. Widmer and M. Kubat. “Learning in the presence of concept drift

and hidden contexts,” Machine learning, vol. 23(1), pp. 69-10, 1996.
[2] A. Tsymbal. “The problem of concept drift: definitions and related

work,” Technical Report TCD-CS. Trinity College Dublin, 2004.
[3] J. Read, B. Pfahringer, and G. Holmes. “Multi-label classification using

ensembles of pruned sets,” IEEE International Conference on Data
Mining, pp. 995-1000, Pisa, Italy, 2008.

[4] J. Read, A. Bifet, G. Holmes, and B. Pfahringer. “Scalable and efficient
multi-label classification for evolving data streams,” Machine learning,
vol. 88(1-2), pp. 243-272, 2012.

[5] G. Tsoumakas and I. Katakis. “Multi-label classification: An overview,”
International Journal of Data Warehousing and Mining, vol. 3, pp. 1-13,
2007.

[6] G. Tsoumakas, I. Katakis and I.Vlahavas. “Mining multi-label data,”
Data mining and knowledge discovery handbook, O.Maimon and L.
Rokach, Eds. Springer, 2010, pp. 667- 685.

[7] W. Qu, Y. Zhang, J. P. Zhu and Y. Wang. “Mining Multi-label
Concept-Drifting Streams Using Ensemble Classifiers,” IEEE Sixth
International Conference Fuzzy Systems and Knowledge Discovery,
vol. 5, pp. 275-279, Tianjin, China, 2009.

2098

[8] W. Qu, Y. Zhang, J. P. Zhu and Q. Qiu. “Mining multi-label concept-
drifting data streams using dynamic classifier ensemble,” Proceedings
of the 1st Asian Conference on Machine Learning, vol. 5828, pp. 308-
321, Nanjing, China, 2009.

[9] S. Godbole and S. Sarawagi. “Discriminative methods for multi-labeled
classification,” Proceedings of the 8th Pacific-Asia Conference on
Knowledge Dsicovery and Data Mining, pp. 22-30, 2004

[10] E. Xioufis, M. Spiliopoulou, G. Tsoumakas, and I. Vlahavas. “Dealing
with concept drift and class imbalance in multi-label stream
classification,” Proceedings of the Twenty-Second international joint
conference on Artificial Intelligence, Barcelona, Spain , vol. 2, pp.1583-
1588, 2011.

[11] J. Read, A. Bifet, G. Holmes, and E. Frank. “Efficient multi-label
classification for evolving data streams,” Technical Report 04.
University of Waikato, 2010.

[12] P. Domingos and G. Hulten. “Mining high-speed data streams,”
Proceedings of the sixth ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 71-80, 2000.

[13] A. Bifet and R. Gavalda. “Learning from Time-Changing Data with
Adaptive Windowing,” SIAM International Conference on Data
Mining, vol. 7, pp. 443-448, 2007.

[14] Z. H. Zhou and Z. Q. Chen. “Hybrid decision tree,” Knowledge-based
systems, vol. 15(8), pp. 515-528, 2002.

[15] A. Bifet, G. Holmes, R. Kirkby and B. Pfahringer. “Moa: Massive
online analysis,” Journal of Machine Learning Research, vol. 99, pp.
1601-1604, 2010.

[16] J. Read. “Scalable multi-label classification,” Ph D Thesis, University
of Waikato, 2010.

[17] J. Read, B. Pfahringer, and G. Holmes. “Generating synthetic multi-
label data streams,” ECML/PKKD 2009 Workshop on Learning from
Multi-label Data. pp. 69-84, 2009.

[18] J. Gama, R. Sebastião and P. P. Rodrigues. “Issues in evaluation of
stream learning algorithms,” Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining. pp.
329-338, 2009.

2099

