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Abstract—Multi-label stream classification has not been fully 
explored for the unique properties of large data volumes, real-
time, label dependencies, etc. Some methods try to take into 
account label dependencies, but they only focus on the existing 
frequent label combinations, leading to worse performance for 
multi-label classification. To deal with these problems, this paper 
proposes an algorithm which dynamically recognizes some new 
frequent label combinations and updates the trained classifier by 
class incremental learning strategy. Experimental results over 
both real-world and synthetic datasets demonstrate its better 
predictive performance. 

Keywords—class incremental learning; concept drift; evolving 
data streams; multi-label classification 

I. INTRODUCTION  
In the real life, many applications, such as sensor networks, 

traffic management, social networks, email systems, twitter 
posts, blogs, etc., generate tremendous amount of data, which 
is characterized by real-time, high speed, large data volumes, 
etc. This type of data is called data stream. At present, stream 
classification has become an important research field in data 
mining community and made great research achievements. 
Conventional approaches focus on classifying data streams 
under single-label scenarios where each sample can only be 
assigned to a single label.  

However, in many emerging applications, each sample can 
be assigned to more than one label i.e. the sample is assigned 
to a label combination. For example, in the task of online news 
page classification, a news article about “Alibaba will go 
public” can be marked with labels like IT, economy, company, 
etc., which makes it necessary to design an online multi-label 
classification model to classify such pages into multiple topics.  

On the other hand, the target concepts within data streams 
are often not stable but change over time, which is known as 

concept drift [1]. These changes often make the learning model 
built on old data inconsistent with the new data. Then it’s 
necessary to exactly and rapidly detect concept drift and update 
the current learning model in real time [2]. In addition, for the 
method of detecting concept drift based on the predictive 
performance of learning model, the better the performance is, 
the more efficient the detecting is.  

Multi-label evolving data streams inherit the properties of 
multi-label and concept drift, such as large data volumes, high 
speed, label dependencies and changes within target concepts, 
which make it more unique. For these properties, Read et al. 
used Pruned Set (PS) [3] method to train one base classifier at 
the leaf nodes of Multi-label Hoeffding Tree (EaHTps [4]) to 
deal with the multi-label evolving data streams. Since the 
whole data can seldom fit into the limit memory, the base 
classifier is trained from the samples with frequent label 
combinations in the buffer that is initialized with a number of 
firstly arrived samples. By pruning away some infrequent label 
combinations that bring about the over-fitting and complexity 
problems, EaHTps has achieved good performance. 

However, the size of the buffer needs to be set in advance. 
The buffer being small can’t represent the whole distribution of 
the data streams, but being large will take too long time to 
build the base classifier, even though the buffer may include 
more frequent label combinations. What’s more, the set of 
frequent label combinations is fixed and doesn’t change over 
time for training the base classifier. This leads to that some 
potential frequent label combinations aren’t stored for class 
incremental learning, making worse the predictive performance 
of the learning model. The above factors make it become a 
challenge to efficiently deal with these frequent label 
combinations to get good predictive performance for handing 
multi-label evolving data streams.  

In the paper, we particularly analyses the reason why some 
frequent label combinations can’t be selected by the buffer 
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scheme from the perspective of statistics and experimental 
results. In order to deal with the challenge, we propose a class 
incremental learning approach that dynamically recognizes 
some new frequent label combinations and updates the set of 
label combinations in real time, which makes the learning 
model more accurate. Last but not least, multiple groups of 
experiments with different size of buffer are taken to prove the 
necessity of class incremental learning.  

The rest of the paper is organized as follows. In Section II, 
some related work is displayed. Section III analyzes the source 
of the challenge. Section IV presents how to recognize new 
frequent label combinations and train the class incremental 
learning model. Experiments and results are showed in section 
V. The last section concludes the paper. 

II. RELATED WORK 
The current approaches for multi-label stream classification 

can be sorted to Binary Relevance and Label Combination [5], 
[6]. Binary Relevance transforms a multi-label classification 
problem into multiple binary problems, one for each label, but 
Label Combination treats each label combination as an atomic 
class to form a single-label problem.  

Qu et al. [7] proposed an ensemble strategy to handle the 
multi-label stream classification. It assumed that the multi-label 
data streams arrived in chunk with fixed size. Then a group of 
classifiers were trained: each for a single-label data chunk that 
was transformed from a multi-label data chunk by the Binary 
Relevance method. Based on this, an ensemble of classifiers 
was trained on several successive multi-label data chunks. 
Their following work [8] adopted the Stacked Binary 
Relevance [9] method to learn from each data chunk, which 
took the label dependencies into account and performed well 
than their previous method. Similarly, Xioufis et al. [10] also 
followed the Binary Relevance method to transform a multi-
label problem into multiple binary problems. To deal with class 
imbalance and multiple concept drift, they employed two 
windows with fixed ratio for each label, one for positive and 
the other for negative samples. 

Read et al. [11] proposed a Multi-label Hoeffding Tree that 
was an extension of Hoeffding Tree [12]. They used the multi-
label information gain to filter the multi-label data streams to 
different leaf nodes where a multi-label classifier was built by 
PS [3] method based on Label Combination. Their subsequent 
work, named as EaHTps [4], presented a method that was a 
bagged ADWIN-monitored ensemble of Multi-label Hoeffding 
Tree classifiers. ADWIN [13] was used to detect concept drift 
through monitoring the change of predictive performance. 
Comparing with the state of art methods including Multiple 
Windows Classifier (MWC) [10] and Meta-BR (MBR) [8], they 
drew a conclusion that the proposed method achieved the 
overall highest predictive performance.  

In the method of EaHTps, there’re two stages in the process 
of training a multi-label classifier at leaf nodes. At first, at the 
stage of initializing, a number of samples are buffered. Before 
the buffer is full, a simple majority-label-set classifier (the 
multi-label version of majority-class) needs to be employed to 
make multi-label classification. While the buffer is full, all the 
label combinations of the buffered samples are pruned 

according to their occurring number by PS method. The multi-
label classifier is initialized by those samples with frequent 
label combinations whose occurring number are larger than a 
pre-set threshold.  

Then, at the stage of updating, if the label combination of a 
newly arrived sample is frequent, then the sample will be used 
to update the built multi-label classifier directly. Otherwise, the 
strategy of sub-sampling will take effect that the label 
combination of the sample is replaced with a similar frequent 
label combination. After that, the sample with altered label 
combination is used to update the built multi-label classifier to 
reduce information loss.  

From the above process, it’s more possible that those label 
combinations that don’t occur frequently in the buffer are 
considered to be infrequent all the way. But in fact, they’re not 
all infrequent and some potential frequent label combinations 
should have been recognized and used to update the built 
multi-label classifier. 

III. MOTIVATION ANALYSIS 
Before presenting the entire process of the proposed 

algorithm, let us particularly analyze why some frequent label 
combinations aren’t selected for training the multi-label 
classifier. We assume: there is a multi-label data stream that 
contains n (a finite number) samples and each sample is 
assigned to a label combination. The m(c) denotes the 
occurring number of a label combination c in the whole data 
stream.  

Then, in the process of randomly sampling b (namely the 
size of buffer in EaHTps) samples from the whole data stream, 
the probability of the label combination c not being selected 
can be represented as follows: 

1

0

( ) ( ) ( ) ( )( ) (1 ) (1 ) (1 ) (1 )
1 1

b

i

m c m c m c m cP c
n n n b n i

−
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Because n is much larger than b, the process of sampling b 
samples is approximately equivalent to a simple random 
sampling with replacement, then 
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Fig. 1. The  curves of  P(|L|) 
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A frequent label combination is the one whose occurring 
number isn’t less than k (k>0) times of an average value. 

| |( )
2 1L

nm c k≥ ×
−

                                  (3) 

In (3), |L| represents the size of label set and 2|L|-1 is the 
total number of all label combinations. Then | |2 1L

n
−

 denotes the 

average occurring number of all label combinations. 

Thus, for the frequent label combination c, the probability 
of it not being selected is bigger than P(|L|): 

( )( ) (1 ) (| |)bm cP c P L
n

≈ − ≥                           (4) 

| |(| |) (1 )
2 1

b
L

kP L = −
−

                              (5) 

According to (5), what influence the probability of c not 
being selected are the size of buffer (b) and the size of label set 
(|L|). In the following, we discuss how they take effect by 
experimental results. EaHTps is run 100 times on synthetic 
datasets and the average results are showed in Table II, III and 
IV. The specific parameters of the algorithm and dataset are 
showed in Section V. 

At first, when b is set as 1000 [4], [11], the curves of P(|L|) 
are showed in Fig 1. From Fig 1, it can be seen clearly that the 
probability P(|L|) is becoming bigger along with the increasing 
size of label set. Actually, many real-world datasets always 
involve large size of label set like in Table I. 

From Table II, it can be observed that the larger value of |L| 
always lead to more frequent label combinations that aren’t 
selected. This result is in favor of the observation from Fig 1. 

Table III and IV illustrate the results over three datasets for 
different size of buffer. In these two tables, for each dataset, 
EaHTps [4] performs variously for different size of buffer. 
Over the dataset RTG12, EaHTps performs best when the size 
of buffer is set as 2000 for subset accuracy measure or 1000 for 
exact match measure and over the dataset RTG15, EaHTps 
performs best when the size of buffer is set as 5000. Over the 
dataset RTG8, EaHTps performs best when the size of buffer is 
set as 500. So the larger size of buffer doesn’t definitely lead to 
better performance. 

In a word, some frequent label combinations aren’t stored 
for training in the buffer, which influences the predictive 
performance of EaHTps. However, it can’t be efficiently 
improved by changing the size of buffer. 

TABLE I.  STATISTICS  OF REAL-WORLD DATASETS. |L| DENOTES THE 
SIZE OF LABEL SET; |X| DENOTES THE NUMBER OF ATTRIBUTES; |D| DENOTES 

THE NUMBER OF SAMPLES; AVG|Y| DENOTES THE AVERAGE NUMBER OF 
LABELS PER SAMPLE 

Dataset 
Properties 

|L|    |X| |D| Avg|Y| 

MediaMill 101 120 43907 4.4 
TMC2007 22 500 28596 2.2 
20NG 20 1001 19300 1.1 
Slashdot 22 1079 3782 1.2 
Enron 53 1001 1702 3.38 

TABLE II.  THE NUMBER OF FREQUENT LABEL COMBINATIONS OF NOT 
BEING SELECTED ON RTG 

|L| 
The Size of Buffer 

200 500 1000 2000 5000 
8 10 3 5 2 1 

12 38 46 57 40 29 
15 50 66 103 76 46 

TABLE III.  SUBSET ACCURACY ON RTG 

|L| 
The Size of Buffer 

200 500 1000 2000 5000 

8 
0.552 

±0.073 
0.560 

±0.074 
0.558 

±0.074 
0.559 

±0.072 
0.557 

±0.073 

12 0.336 
±0.080 

0.346 
±0.085 

0.347 
±0.086 

0.348 
±0.090 

0.330 
±0.079 

15 0.203 
±0.053 

0.227 
±0.064 

0.232 
±0.058 

0.242 
±0.071 

0.243 
±0.067 

TABLE IV.  EXACT MATCH ON RTG 

|L| 
The Size of Buffer 

200 500 1000 2000 5000 

8 
0.319 

±0.058 
0.333 

±0.066 
0.327 

±0.065 
0.328 

±0.070 
0.324 

±0.067 

12 0.165 
±0.054 

0.171 
±0.056 

0.178 
±0.058 

0.177 
±0.060 

0.164 
±0.052 

15 0.071 
±0.032 

0.093 
±0.04 

0.091 
±0.039 

0.094 
±0.043 

0.094 
±0.041 

 

IV. CLASS INCREMENTAL LEARNING 
In order to address the above issue, the strategy of class 

incremental learning is introduced. The learning process 
consists of two stages. At the first stage, a number of samples 
with frequent label combinations are collected to initialize the 
learning model by PS method. The set of the frequent label 
combinations is also saved for the next stage.  

At the second stage, for each subsequent sample, if its label 
combination isn’t in the set of frequent label combinations, the 
label combination will be saved and its occurring number is 
also updated in real time. These saved values are reset at the 
interval of the same number of samples compared with the first 
stage. Once the occurring number of one label combination is 
larger than that of any existing frequent label combination, 
then the corresponding samples will be used to update the 
learning model by the class incremental learning strategy [14]. 
The label combination is also used to update the set of frequent 
label combinations of the learning model. Otherwise, if the 
label combination of the newly arrived sample is in the set of 
frequent label combinations, it will be used to update the 
learning model by the instance incremental learning strategy 
[14].  

The implementation of the proposed algorithms are showed 
in the Fig.2 and Fig.3. Table V summarizes these notations 
used in the proposed algorithms. 

In Algorithm 1, at first, b samples are collected to initialize 
the learning model by PS method (line 3 - line 13). In the 
process of learning, the function PruneLC is called to prune the 
infrequent label combinations by the pre-set parameter p     
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(line 7). The min_N saves the minimum occurring number in N 
(line 8) and C saves the frequent label combinations (line 9). 

TABLE V.  NOTATIONS 

Notation Description 

(xi, Yi) The ith  sample in the data stream 

Yi = {y1, ..., y|L|} The label combination of a sample 

b The size of buffer 

S = {(x1, Y1), ..., (xb, Yb)} The initial set of samples 

p A pre-set parameter to prune the label 
combinations 

LC = {lc1, ... , lci } lci is the ith label combination 

N  =  { n1, ... , ni } ni is the occurring number of lci 

C The set of frequent label combinations 

min_N The minimum occurring number of all 
frequent label combinations 

 

 
Fig. 2. The outline of the proposed algorithm 

 
Fig. 3. The process of recognizing the frequent label combinations 

After the learning model is initialized, for each newly 
arrived sample (xi, Yi), if its label combination is not in C (line 
17), the function UpdateLC will be called to estimate whether 
the label combination is frequent or not according to its 
occurring number. In Algorithm 2, when a new label 
combination arrives, LC and N are updated (line 2 – line 7). If 
the occurring number of a label combination is larger than 
min_N, it will be considered to be frequent (line 9).  

If the label combination is considered to be frequent(line 20) 
by Algorithm 2, (xi, Yi) will be used to update the learning model 
by class incremental strategy (line 21). In order to meet the 
need of class incremental learning, we alter Naïve Bayes by 
adding the prior probability of the new class and the new 
conditional probability for each attribute and updating the prior 
probabilities of the existed classes and the previous conditional 
probability for each attribute. On the other hand, this new 
frequent label combination is used to update C (line 22).  

Otherwise, (xi, Yi) will be used to update the learning model 
by the strategy of instance incremental (line 24). In the end, the 
values of N and LC are reset at the interval of b samples.  

V. EXPERIMENTS AND RESULTS 
In this section, the proposed algorithm is evaluated on both 

real-world and synthetic multi-label datasets. All algorithms 
are implemented in Java with help of MOA [15] software 
package.  

A. Data Collection 

a) Real-world datasets: Table I provides the particular 
statistics of five real-world datasets, which can be found in 
[4], [6], [10], [11], and [16]. MediaMill contains video 
annotation data annotated with 101 labels. TMC2007 consists 
of the aviation safety reports labeled with 22 types. 20NG 
originates from 20 newsgroups around 20,000 articles data. 
Slashdot contains the article blurbs which have 22 different 
subject categories. Enron is the email data with 53 categories. 

b) Synthetic datasets: The multi-label synthetic datasets 
are generated by the multi-label stream generation framework 

Algorithm 2: UpdateLC(c, min_N, LC, N) 

Input:  c, min_N, LC, N 
Output: The frequent label combination lci 

1       lci  ←  c 
2       if   lci ∉ LC  then 
3            ni  ← 1 
4            LC ← LC ∪ lci  && N ← N ∪ni  
5       else  
6             ni ← ni+1 
7       end if 
8       if   ni  >  min_N   then 
9            return lci 
10     else  
11          return Φ 
12     end if  

Algorithm 1:TrainModel(xi, Yi) 

Input: (xi, Yi ), p 
Output: The learning model 
1      counter1 = 0 
2      counter2 = 0 
3      if    counter1 < b   then 
4            S ← S ∪ {(xi, Yi)} 
5            counter1 = counter1 + 1 
6            if    counter1  >=  b  then 
7                  (LC, N) ← PruneLC(S, p) 
8                  min_N ← Min(ni ∈ N) 
9                  C ← LC 
10                Model ← InitializeModel(S, C) 
11                LC ← Φ && N ← Φ 
12          end if 
13    else 
14          lc  =  Φ 
15          if    counter2  <   b   then 
16                c ← (xi, Yi) 
17                if    c ∉ C    then 
18                      lc ← UpdateLC(c, min_N, LC, N ) 
19                end if 
20                if    lc != Φ   then 
21                      ClassIncremental(lc, (xi, Yi ), Model) 
22                      C ← C ∪ lc 
23                else 
24                      InstanceIncremental((xi, Yi), Model) 
25                end if 
26                counter2  =  counter2 + 1 
27          end if 
28          if    counter2  >=  b   then 
29                LC ← Φ && N ← Φ 
30          end if 
31    end if  
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[17], which needs a base generator. There’re two types of base 
generator: Random Tree Generator (RTG) [12] and Radial 
Basis Function (RBF) [11]. 

RTG: Random tree that has five values for each nominal 
attribute and two values for each label, and its depth is five. 
RTG8 denotes that the random tree has eight labels and ten 
nominal attributes. RTG12 has twelve labels and sixteen 
attributes. RTG15 has fifteen labels and twenty attributes.  

RBF refers to fifty centers and two values for each label. 
RBF8, RBF12 and RBF15 respectively have the same number 
of labels and attributes like RTG8, RTG10 and RTG15.  

For each multi-label data stream generated by RTG or RBF, 
the parameter z (approximate average number of labels per 
sample) is experimented with: z = 1.5 and |L| = 8, z = 1.8 and 
|L| = 12, and z = 2.0 and |L| = 15.  

To simulate the concept drift, |z| and ld (label 
dependencies) are altered simultaneously or alone [4], [11]. 
The g represents the base generator in the following.  

Drift-RTG8 (g = RTG8) contains the change of |z|: 1.8, 3.0, 
2.5, and 4.5. 

Drift-RTG15 (g = RTG15) contains the change of |z| and ld: 
1.8 and 0%, 1.8 and 10%, 3.0 and 0%, and 3.0 and 20%. 

Drift-RBF8 (g = RBF8) contains the change of |z| and ld: 
1.5 and 0%, 1.5 and 10%, 3.5 and 0%, and 3.5 and 20%. 

Drift-RBF15 (g = RBF15) contains the change of |z|: 1.5, 
3.5, 2.0, and 4.5.  

For the evolving multi-label data streams with T samples, 
the three concept drifts take place at the position of T/4, 2T/4, 
and 3T/4. The value of T is set to 1000000. 

B. Evaluation Measures 
For multi-label classification problem, new measures are 

needed since the simple accuracy metric of single-label tends 
to be overly harsh. The adopted measures are common and 
used in [4], [5], [6], and [11]. Assume that a multi-label data 
stream D has |D| (a finite number) samples ( , )i ix Y , where 

1 | |( ,..., )i LY y y=  represents the actual label set of the sample xi, 

1 | |
ˆ ˆ ˆ( ,..., )i LY y y=  represents the predicted label set of the sample xi 

and j
iy  denotes the jth label of the sample xi. 

Exact Match: A sample is thought to be classified correctly 
only if its predicated label set is fully equal to the actual label 
set. I is an indicator function that its value equals to 1, if the 
condition is correct, otherwise 0. 

| |

1

1 ˆ( )
| |

D

i i
i

ExactMatch I Y Y
D =

= =∑                        (6) 

Subset Accuracy [4], [5], [6], [11]: It gives a score ([0, 1]) 
calculated from the actual and predicted label set for each 
sample. 

| |
| | ( ) ( )1

| |
1 ( ) ( )1

1
| |

L j jD i ij
L j j

i i ij

y y
SubsetAccuracy

D y y
=

=
=

∧
=

∨
∑∑
∑

                 (7) 

Hamming-accuracy [4], [5], [6]: The metric analyses the 
binary relevance of each label for all samples. 

| | | |

( ) ( )
1 1

1 ˆ1 ( )
| || |

D L
j j
i i

i j
Hamming accuracy I y y

L D = =

− = − =∑∑         (8) 

 F1-macro [4], [11]: It’s a macro-averaged F1 over all labels 
and F1 is the harmonic mean between Precision and Recall [9]. 

| |

1 1 (1) (| |) (1) (| |)
1

1 [( ,..., ), ( ,..., )]
| |

L
j j j j

D D
j

F macro F y y y y
L =

− = ∑        (9) 

For evaluation methodology, we employ the most popular 
prequential strategy [18] where each example is used for 
testing before it’s used for training.   

C. Experiment Design 
In order to test and verify the reasonability and availability 

of the proposed algorithm, we take two groups of experiments: 
one for verification of the analysis in Section III and the 
significance of the EaHTps method; the other for evaluation of 
the proposed algorithm. 

a) The first group: In Section III, EaHTps [4] is run over 
the synthetic datasets to support the analysis of some frequent 
label combinations not being selected. In this section, the 
experimental results are included when EaHTps is compared 
with MBR [8] and MWC [10]. The parameter p is set as 1. 

b) The second group: We take experiments to compare 
the proposed method with EaHTps on the synthetic and real-
world multi-label datasets. The size of buffer is set as 1000 for 
the synthetic datasets, but the size of buffer is set as 200 for the 
real-world datasets because the number of samples is small for 
them. 

For convenience, the proposed approach is called EaHTcl, 
because it selects more new frequent label combinations to 
update the learning model by class incremental learning 
strategy. p = 1 is set the same in these two algorithms. 

D. Experimental Results and Discussion 
The final experimental results on the synthetic datasets are 

averages of 100 runs, which are carried out over one million 
prequential evaluation.  

TABLE VI.  SUBSET ACCURACY ON REAL-WORLD DATASETS 

Methods 
Dataset 

MediaMill TMC2007 20NG Slashdot Enron 
MBR 0.147 0.151 0.046 0.054 0.049 
MWC 0.065 0.133 0.162 0.116 0.090 
EaHTps 0.284 0.511 0.219 0.087 0.095 

TABLE VII.   EXACT MATCH ON REAL-WORLD DATASETS 

Methods 
Dataset 

MediaMill TMC2007 20NG Slashdot Enron 
MBR 0.002 0.032 0.038 0.018 0.004 
MWC 0.006 0.049 0.057 0.072 0.068 
EaHTps 0.010 0.229 0.070 0.055 0.073 
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TABLE VIII.  MEASURES ON SYNTHETIC DATASETS 

Dataset 
Subset Accuracy Exact Match Hamming-accuracy F1-macro 

EaHTps EaHTcl EaHTps EaHTcl EaHTps EaHTcl EaHTps EaHTcl 

Drift-RTG8 0.558±0.034 0.602±0.040 0.175±0.033 0.221±0.054 0.169±0.022 0.189±0.023 0.561±0.043 0.610±0.044 

Drift-RTG15 0.361±0.033 0.395±0.044 0.069±0.019 0.092±0.029 0.170±0.017 0.188±0.019 0.368±0.050 0.422±0.052 

Drift-RBF8 0.473±0.036 0.519±0.034 0.129±0.023 0.169±0.040 0.218±0.015 0.228±0.024 0.486±0.043 0.535±0.040 

Drift-RBF15 0.272±0.039 0.296±0.037 0.028±0.009 0.036±0.014 0.238±0.018 0.248±0.024 0.336±0.056 0.383±0.043 

TABLE IX.   MEASURES ON REAL-WORLD DATASETS 

Dataset 
Subset Accuracy Exact Match Hamming-accuracy F1-macro 

EaHTps EaHTcl EaHTps EaHTcl EaHTps EaHTcl EaHTps EaHTcl 

MediaMill 0.284 0.301 0.010 0.013 0.051 0.058 0.035 0.043 

TMC2007 0.511 0.545 0.229 0.254 0.067 0.072 0.248 0.274 

20NG 0.219 0.244 0.070 0.109 0.099 0.104 0.217 0.269 

Slashdot 0.087 0.096 0.055 0.059 0.098 0.095 0.061 0.070 

Enron 0.095 0.103 0.073 0.079 0.090 0.091 0.007 0.021 

 

 

Table VI and VII display the comparative results over the 
real-world datasets when EaHTps is compared with other 
baseline methods.  

From Table VI and VII, EaHTps makes the overall best 
performance on the total real-world datasets except Slashdot. 
In addition, EaHTps has evident advantage over other baseline 
methods on the MediaMill and TMC2007 datasets. These all 
demonstrate the significance of EaHTps. 

Table VIII and IX show the experimental results of 
comparing the proposed algorithm with EaHTps. Specifically, 
Table VIII shows the results over the synthetic datasets, while 
Table IX shows the results over the real-world datasets  

From Table VIII and IX, it can be seen that EaHTcl 
performs well over EaHTps under almost all measures on 
synthetic and real-world datasets except the case of hamming-
accuracy on Slashdot. 

The reason why the proposed algorithm outperforms 
EaHTps lies in that: When a new frequent label combination is 
recognized, the learning model will be updated by the sample 
with this new frequent label combination, and then the updated 
learning model can efficiently make multi-label classification 
before concept drift takes place. However, EaHTps uses PS 
method to alter the new frequent label combination and keeps 
the set of frequent label combinations the same before concept 
drift takes place. 

VI. CONCLUSION 
In this paper we have analyzed why some frequent label 

combinations aren’t selected for training the multi-label 
classifier and proposed an algorithm which dynamically 
recognizes some new frequent label combinations and updates 
the trained classifier by class incremental learning strategy. 

The experimental results show that the proposed algorithm is 
promising, which indicates that the proposed algorithm is 
effective in classifying multi-label evolving data streams. 

 Future work involve 1) try a new method to detect concept 
drift from the aspect of label dependencies that doesn’t occur 
in single-label data streams scenarios 2) consider how to 
handle the class imbalance brought about by new class to 
efficiently deal with multi-label evolving data streams. 
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