
 
 

 

  

Abstract—H∞  optimal control technique is seen as a 
promising robust control technique that can effectively deal 
with the problems of model uncertainties. However, for H∞  
optimal control design to be successful one must be able to 
choose adequate performance and uncertainty weights. Until 
now, there is no a systematic way of choosing these weighting 
functions; they are generally selected based on trial and error. 
This approach not only is ineffective but also time consuming. In 
this paper, a systematic way of selecting the weighting functions 
in H∞ optimal control is proposed. The selection of adequate 
weighting function is formulated as an optimization problem 
and solved using Population Based Incremental Learning 
(PBIL) Algorithm. 

I. INTRODUCTION 
OWER system stabilizers (PSSs) are local controllers that 
are widely used in the power industry for supplementary 
control of generator excitation control systems [1]. They 

are used to damp low frequency electromechanical 
oscillations in the frequencies range of 0.2– 2.5 Hz . The 
oscillations of this nature arise due to changes in system 
loads, transmission network, and varying operating 
conditions [2].  

The conventional methods for PSS design involve 
eigenvalue techniques, root locus, pole placement and linear 
optimal control [3]-[4]. Although these techniques are useful, 
they do not directly address the issues of model uncertainties. 
As a result, controller designed using the above techniques  
are not robust. The robustness requirement in this context 
means that the PSSs   should be able to provide sufficient 
damping even when subjected to a wide range of operating 
conditions.  

In the last two decades, researchers have developed 
advanced control such robust control (H∞ optimal control) in 
order to address the limitations associated with the 
conventional design methods [7]-[10]. Although H∞ optimal 
control can address directly the issue related to model 
uncertainties, there is no systematic way to select the 
performance and uncertainty weighting functions upon which 
a successful design relies. In general, the weighting functions 
are selected based on trial and error. This approach is not only 
ineffective but also time consuming [11]-[17]. 

In this paper, a systematic way of selecting the weighting 
functions in H∞ optimal control is proposed.  The selection of 
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adequate weighting function is formulated as an optimization 
problem based on H∞ loop-shaping approach and solved 
using Population Based Incremental Learning (PBIL). PBIL 
is a relatively new Evolutionary Algorithm that is simpler and 
more compact and effective than Genetic Algorithms (GAs) 
[19]-[21]. Simulation results shown that PBIL-based 
controller gives a slightly better performance than GA-based 
controller. The conventional controller gives the worst 
performance. 
 

II. OVERVIEW OF H∞ OPTIMAL CONTROL  

A. Mixed Sensitivity Approach 
H∞ optimal control is a powerful tool for control design, 

since it explicitly takes robustness into account. It is a 
frequency domain synthesis technique that seeks to minimize 
the worst case disturbance and does offer a possibility to 
incorporate directly into the design practical requirements 
such as bandwidth limitation, robustness and disturbance 
attenuation [1]-[8]. 

 The H∞ design method accounts for the model 
uncertainties at the design stage using uncertainty 
representation methods such as numerator-denominator 
uncertainty representation or the standard 
additive/multiplicative uncertainty. The common H∞ design 
formulation involves the standard mixed sensitivity 
weighting strategy where frequency dependent functions are 
used to shape various sensitivity functions [9]-[10]. Until 
now, the weighting functions are generally selected based on 
trial and error. This approach is not only ineffective but also 
time consuming [11]-[17]. The main difficulty is how to 
systematically select the weighing functions to achieve the 
desired performance and robustness requirements. This issue 
will be discussed in section 5. 

The standard H∞ optimal control employs the mixed 
sensitivity approach where the peak value minimization of 
the frequency response functions such as the sensitivity S and 
complementary sensitivity T functions is achieved [6]. Both S 
and T are associated with the plant disturbance attenuation at 
low frequencies and noise attenuation at high frequencies 
respectively [6] – [7].  

The standard H∞ approach thus offers the controller that is 
able to account for model uncertainties and performance 
specifications. The model uncertainty representation in the 
standard H∞ approach is either additive or multiplicative with 
associated control sensitivity R=KS and complementary 
sensitivity functions T=1-S, respectively.  Note that the 
design requirements for S and T are contradictory [5]-[10]. 
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That is., making S smaller will result in T being large and 
vice-versa.  

In general, a trade-off is needed between S and T such that 
S is minimized at low frequencies, while T is minimized at 
high frequencies where uncertainties and noise are of concern 
[9]-[10]. This is achieved by using the weighting functions 
Wp,  Wa  and Wm to penalize the various sensitivity functions. 
It is suggested in the literature that a high gain low-pass filter 
(weighting function) Wp be used to penalize S, whereas a  
high-pass filter Wm is used to penalize T [6]-[17]. For the 
weighting function Wa (associated with the additive 
uncertainty representation) a compromise should be found 
such that the control input is minimized without a 
deterioration of the performance [10]. It is generally selected 
as a high pass filter [6]-[10]. 

The standard H∞ controller is thus found by solving 
equation (1). 
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Where, 
∞

.  denotes the maximum magnitude of the vector 
over all frequencies. 
One drawback that is associated with standard H∞ is that of 
pole-zero cancellation. This limitation prevents the H∞ 
controller from increasing the damping of lightly damped 
poles which may compromise the system’s robustness and 
performance. This issue has been addressed in [7]-[10]. 
A simpler method than the mixed sensitivity approach H∞ 
optimal control is to use the loop-shaping approach [6], [11], 
[17] as described below. 

B. Loop-shaping Approach 
The loop-shaping approach is based on H∞ robust 

stabilization combined with classical loop shaping as 
proposed in [6]. It is essentially a two-stage design process in 
which the selection of the weighting function is simplified. 
The first step in loop-shaping approach is to augment the 
open-loop plant by pre- and post-compensators to give a 
desired shape to the singular values of the open-loop 
frequency response. In the second step, the augmented 
open-loop plant is robustly stabilized with respect to the 
general class of coprime factor uncertainty using H∞ 
optimization. An important advantage is that no 
problem-dependent uncertainty modeling or weighting 
function selection is required in the second step. In addition, 
unlike the mixed sensitivity approach, the loop-shaping 
approach does not require γ–iteration for its solution. Explicit 
formulae for the corresponding controllers are available. 

One of the limitations with additive and/or multiplicative 
uncertainty representations (or similar representations) is that 
the plant and the perturbed plants are restricted to have either 
the same number of unstable poles or the same number of 
unstable zeros. To overcome this, the numerator-denominator 
uncertainty representation (also known as Normalized 
co-prime Factorization) representation) advocated in [6], 

[10], [14], [17] can be used. This uncertainty representation is 
much more general than additive and/or multiplicative 
uncertainty representations.  

Let the nominal be represented as: 
 

NDG 1−=                   (2) 
 

where, N is the numerator and D is the denominator 
 

The perturbed plant can be written as: 
 

{ [ ] }ε<ΔΔΔ+Δ+=
∞

−
DNp NNDDG     0

1
0 :][][   (3) 

 
where, ΔD and ΔN  are stable unknown transfer functions 

representing the uncertainties in the denominator and the 
numerator of the nominal plant, respectively. Also, ε>0 is the 
stability margin.  

To maximize the stability margin is the problem of robust 
stabilization of normalized coprime factor plant descriptions.  
For the perturbed system given in (3), the system is robust, if 
and only if the nominal feedback system (assuming negative 
feedback) is stable and  
 

ε
γ 1)([ 11 ≤+⎥

⎦

⎤
⎢
⎣

⎡
=

∞

−− DGKI
I
K

K          (4) 

where, γK is the infinite norm for the closed-loop augmented 
plant, and (1+GK)-1 is the sensitivity function. 
The lowest achievable value of γK and the corresponding 
maximum stability margin ε are given as: 
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where, H. denotes Hankel norm and ρ denotes the spectral 
radius (maximum eigenvalue). 

The maximum eigenvalue can be computed from the 
product XZ whereas X and Z are unique positive definite 
solutions that can be computed from the following algebraic 
Riccati equations (6) and (7): 
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where, A,B,C and D are the state matrices of the shaped plant 
Gs and R= I+DDT and S=I+DTD. 
 

For the loop shaping approach in this paper, let Gs be the 
augmented open-loop plant such that W1and W2 are the 
pre-compensator and post-compensator, respectively. Then 
Gs is given as: 
 

12GWWGs =                 (8) 
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The function of these compensators is to shape the open loop 
to meet performance and robustness requirements [6]. 
This process ensures that the open loop gain is high at low 
frequencies and roll-off at high frequencies. 
Fig. 1 shows the shaped plant and the overall robust controller 
K(s) = W1(s)K∞ W2(s), which consists of the H∞ controller 
(K∞) and the compensators as shown in the dashed border. K∞ 
is synthesized by solving the robust stabilization problem as 
described above. 
 
 

 
Figure 1. Blocks for the Shaped planted and Controller 

III. POWER SYSTEM MODEL 
The power system considered is single machine infinite 

bus (SMIB).  The generator is connected to the infinite bus 
through a double transmission line. The non-linear 
differential equations of the system are linearized around the 
nominal operating condition to form a set of linear equations 
[1]. The generator is modeled using a 6th order machine 
model, whereas the AVR was represented by a simple exciter 
of first order differential equation [2], [4]. 

The system is represented by a set of linear equations as 
follows [3]: 
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where: 
A is the system state matrix 
B is the system input matrix 
C is the system output matrix 
D is the feed forward matrix 
x is the vector of the system states 
u is the vector of the system inputs 
w is the disturbance 
y is the vector of the system outputs 
 
To design the controller several operating conditions are 
considered. Selected operating conditions are shown in Table 
1. The parameters Pe and Xe  in Table 1 are included in matrix 
A. Matrix B includes the control parameters such as AVR  and 
PSS gains and time constants and are not shown in Table 1. 

The matrix C contains the output signal, in this case the rotor 
speed. Matrix D is set to zero. 

 
TABLE I 

SELECTED OPERATING CONDITIONS WITH OPEN-LOOP EIGENVALUES 
Case Active Power  

Pe (p.u.) 
 

Line Reactance 
Xe (p.u) 

Eigenvalues 
(ζ%) 

1 0.300 0.5000 -0.52 ± 4.69i (11.02) 

2 0.800 0.4000 -0.03 ± 3.02i (0.99) 

3 1.000 1.0000 -0.07 ± 4.23i (1.65) 

4 1.250 0.6000 -0.02 ± 4.07i (0.49) 

 

IV. OVERVIEW OF PBIL 
PBIL is a technique that combines aspects of Genetic 

Algorithms and simple competitive learning derived from 
Artificial Neural Networks. PBIL has the following features 
[18]-[20]: 
 
• It has no crossover and fitness proportional operators. 
• It works with probability vector (number in range 0-1). 

This probability vector controls the random bitstrings 
generated by PBIL and is used to create other 
individuals through learning. 

• In PBIL, there is no need to store all solutions in the 
population. Only two solutions are stored: the current 
best solution and the solution being evaluated.  

 
The three main operators of PBIL used in this paper are: 
probability vector (PV), Learning rate (LR) and mutation. 
Unlike the mechanisms inherent to GAs, where operations 
defined on the population, in BPIL, the operations take place 
directly on the probability vector. During the search the 
values in the probability vector are updated to represent those 
in high evaluation vectors. The probability vector also guides 
the search, which produces the next sample point from which 
learning take place. The learning rate determines the speed at 
which the probability vector is shifted to resemble the best 
solution vector. In other words, a higher learning rate would 
ensure a faster convergence to an optimal solution; however, 
the whole function space will not be search. This could result 
in premature convergence. The role of the mutation is to 
maintain the diversity in the trial solutions.  
The individuals are evaluated according to the objective 
function. The “best” individual is used to update the 
probability vector so as to produce solutions similar to the 
current best individuals. Initially, the values of the probability 
vector are set to 0.5 to ensure that the probability of 
generating 0 or 1 is equal. As the search progresses, the values 
in the probability vector are moved away from 0.5, towards 
either 0.0 or 1.0.  
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It has been shown that PBIL outperforms standard GAs 
approaches on a variety of optimization problems including 
commonly used benchmark problems [19].  

 The probability update rule is similar to the weight update 
rule in a competitive learning of ANN as given in (10). The 
following probability update rule based on the competitive 
learning is used: 
 

))(()0.1()()( iVLRLRiPViPV ×+−×=
  

(10) 

 
where,  
PV(i): the probability of generating 1 in bit position i.  
V(i): the i-th position in the solution vector towards which the 
probability vector is moved. 
 
The learning rate has a greater effect on PBIL as compared to 
the standard competitive learning. This is because the 
probability vector is used to generate future sample solutions. 
Like in competitive learning, the learning rate affects the 
speed at which the probability vector is shifted to resemble 
the best solution vector. It also affects the portion of the 
search space that will be explored [20].  

V. SELECTIONS OF W1 AND W2 USING PBIL 
As stated previously, until now, the weighting functions 

are generally selected based on trial and error. This approach 
is not only is ineffective but also time consuming. The main 
difficulty is how to systematically select the weighing 
functions to achieve the desired performance and robustness 
requirements. The selection of adequate weighting function is 
formulated as an optimization problem and solved using 
Population Based Incremental Learning (PBIL).  

For simplicity, W2 is set to 1. So the only weighting 
function to be selected is W1. This weighting function should 
ensure that the sensitivity function (S) is minimized at low 
frequencies and the complimentary sensitivity function (T) is 
minimized at high frequencies. It is assumed that the 
weighting function is of first order as given below: 

 

Ts
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+= /1

1                   (11) 

 
where α  is a control parameter, c is a constant gain and T a 

time constant. 
In general trial and error approach is used to find the 

suitable weight. However, there is no guarantee that the 
values obtained using trial and error method are the best 
values. Therefore, PBIL is used in this paper to get the best 
values. In total three parametersα, c and T are to be found 
using PBIL. 
 

To use PBIL, an objective function should be selected. 
Since the weighting functions will affect the performance of 
the controller in providing the damping necessary for 
stabilizing the system’s oscillations, the objective function 
was defined as the maximum of the minimum damping ratio 
of the closed-loop poles of the system over all the operating 

conditions considered in table 1. This objective function was 
the basis upon which selection of suitable weighting function 
was based, namely,  
Obj = max(min(damp))      (12) 
 
where, damp means damping ratio which is given by 
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=  where the number of eigenvalues i=1,2, 

…n and the number of operating conditions is j =1,2,…, m. 
The real and imaginary parts of the i-th eigenvalue in the j-th 
operating condition is σi,j and  ωi,j, respectively. 

VI. SIMULATION RESULTS 

A. Values of Parameters α, c and T  
Using trial and error approach, the following values 5.14, 

49.87 and 9.88 were found for the three parameters α, c and T, 
respectively. Ideally several values should be tried to obtain 
the best values, which is time consuming.  This has not been 
pursued here. 
 
The parameters of the PBIL are given as: 

 
Population:50 
Generation:100 
Learning rate: 0.1 
Forgetting factor: 0.001 
 
Previous works show that a learning rate of 0.1 is most 

suitable [18]-[21]. 
For comparison purposes, Genetic Algorithms (GAs) is 

also used for the selection of the weighting functions. For 
more information on GAs, see [22]-[23] 

 
The parameters used for GAs are as follows: 

 
Population:100 
Generation:100 
Crossover: Arithmetic  
Selection: Normalized geometric distribution 
Mutation: non-uniform 

It should be mentioned that ranking selection is an alternative 
method whose purpose is to prevent too-quick convergence. 
The individuals in the population are ranked according to 
fitness, and the expected value of each individual depends on 
its rank rather than absolute fitness. Ranking avoids giving 
the largest share of offspring to a small group of highly fit 
individuals, and thus reduces the selection pressure when 
fitness variance is high. 

Since the size of population has a significant effect on the 
performance of GAs, a larger population was used. In terms 
of function evaluations to reach their respective solutions, 
GAs has 10000 function evaluations over one independent 
run, whereas, PBIL has 5000 function evaluations. 

Table 2, shows the values obtained when PBIL and GAs 
are used.  
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TABLE II 
PARAMETERS OF THE WEIGHTING FUNCTION W1  

Algorithm c 
 

α T 

PBIL 19.00 0.37 82.79 

GAs 17.92 0.39 83.76 

 
The stopping criterion adopted during the tests is the 

maximum generation, which is 100 generations for each 
optimization technique.  

 

B. Eigenvalue Analysis 
Table 3 shows the eigenvalues for the closed-loop system 

with the conventional PSS, the PBIL-PSS and the GA-PSS. It 
can be seen that the PBIL gives the best damping in all the 
operating conditions considered.  
 

TABLE III 
CLOSED-LOOP EIGENVALUES 

Case PBIL 
 

GAs CPSS 

1 -1.59 ± 4.90i 
(0.31) 

-1.50 ± 4.91i 
(0.29) 

-1.17 ± 4.91i 
(0.23) 

2 -3.38 ± 6.35i 
(0.47) 

-3.16 ± 6.39i 
(0.44) 

-1.16 ± 3.56i 
(0.31) 

3 -2.30 ± 5.78i 
(0.37) 

-2.16 ± 5.79i 
(0.35) 

-1.67 ± 5.80i 
(0.28) 

4 -2.35 ± 3.99i 
(0.50) 

-2.15 ± 4.04i 
(0.47) 

-1.48 ± 4.15i 
(0.49) 

 

C. Time domain Simulation   
Figs. 2-5 show the rotor speed responses after a step 

disturbance is applied to Vref. It can be seen that the 
performances of the PBIL is slightly better than that of GAs. 
The conventional controller exhibits the worst performance in 
terms of overshoots and settling time. 
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Figure 2: Rotor speed responses (Operating Condition 1) 
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Figure 3: Rotor speed responses (Operating Condition 2) 
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Figure 4: Rotor speed responses (Operating Condition 3) 
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Figure 5: Rotor speed responses (Operating Condition 4) 

 

VII. CONCLUSION 
This paper investigated the issue of selecting suitable 

weight selection in H∞ Loop shaping controller design. The 
selection of adequate weighting function is formulated as an 
optimization problem and solved using PBIL and GAs. The 
Eigenvalue results show that PBIL gives slightly a better 
performance in terms of damping ratio compared to GAs and 
the conventional controller. Time domain simulations also 
confirm these results. 
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