
Intrusion Detection Using a
Cascade of Boosted Classifiers (CBC)

Mubasher Baig
Dept. of Computer Science

Lahore University of Management Sciences
Lahore, Pakistan

Email: mirza@lums.edu.pk

El-Sayed M. El-Alfy
College of Computer Sciences

King Fahd University of
Petroleum and Minerals,

Dhahran 31261, Saudi Arabia
Email: alfy@kfupm.edu.sa

Mian M. Awais
Dept. of Computer Science

Lahore University of Management Science
Lahore, Pakistan

Email: awais@lums.edu.pk

Abstract—A boosting-based cascade for automatic decomposi-
tion of multiclass learning problems into several binary classifica-
tion problems is presented. The proposed cascade structure uses a
boosted classifier at each level and use a filtering process to reduce
the problem size at each level. The method has been used for
detecting malicious traffic patterns using a benchmark intrusion
detection dataset. A comparison of the approach with four
boosting-based multiclass learning algorithms is also provided
on this dataset.

I. INTRODUCTION

Nowadays information and communication systems have
become essential parts of our daily lives. However, there has
been an associated increase of security threats which can
cause unpleasant consequences and harms such as disclosure
of confidential data, unavailability of systems and services, and
unauthorized access to restricted resources. Attacks can take
various forms including port scans, probes, viruses/worms,
trojans, bots, rootkits, spoofing, denial of services, and exploits
[1]. Intrusion detection systems are a frontier defense line
against such attacks and such systems can be divided into
two broad categories: signature based or anomaly based. While
the first category monitor the application and traffic behavior
and compares it against predefined signatures of misuses, the
second category analyzes various activities to classify them
as normal or intrusive activities [2]. One of the problems
of signature-based approaches is the potential of high rate
of false negatives due to their incapability to detect new
intrusions or any slight change in the signatures of known
intrusions. In contrast, anomaly-based approaches can have
high rates of false positives due to detecting slight deviations
from normal behavior as intrusions. Thus, to enhance the per-
formance, signature-based approaches require frequent update
of the database of known intrusions, whereas anomaly-based
approaches require learning and adaptation capability. Due
to their generalization and adaption characteristics, classifiers
built using learning/addapting algorithms have received notable
application to intrusion detection [3]. This work includes,
amongst others, artificial neural networks, principal component
analysis, support vector machines, and k-nearest neighbor
classifiers [4], [5], [6], [7], [8], [9], [10].

The use of multiple classifier systems for intrusion de-
tection seems more appropriate due to the distributed nature
of system components and intrusion methods. Combining
multiple classifiers can also solve some of the limitations of

a single classifier such as over-fitting the training data and
consequently improve the performance [11].

Various techniques have been proposed for constructing a
highly accurate classifier from a moderately accurate learning
algorithm [12], [13], [14], [15]. AdaBoost is one of the most
widely used classifier learning algorithm [16] that iteratively
selects multiple instances, ht, of a classifier by modifying a
weight distribution maintained on the training examples. A
linear combination of the selected classifiers is then formed to
generate the final prediction using

H(x) = sign

T∑

t=1

αt.ht(x) (1)

In its basic form, AdaBoost is a concept/binary learner
hance can not handle problems involving multiple classes.
Therefore, variants of AdaBoost have also been developed for
multiclass problems [16], [17], [18], [19].

Some of the multiclass approaches, such as AdaBoost-M1
[16] and Multi-Class AdaBoost [19], use a multiclass base
learner to handle the multiclass learning problem. AdaBoost-
M1 boosts the accuracy of a multiclass base classifier by using
the following modified rule to create the final ensemble:

H(x) = arg max
y

(
T∑

t=1

αt.[ht(x) = y]

)

(2)

This makes the maximum weight class the predicted class for
x. This modification performs well with strong base classifier
but it diverges when the accuracy of base classifier becomes
less than 50% [19]. The Multi-Class AdaBoost modifies the
computation of αt in AdaBoost-M1 (Equation 3) such that αt,
for a k-class problem, remains positive as long as the accuracy
of the base classifier is better than random guessing.

αt = 0.5

[

log(
εt

1 − εt
) + log(k − 1)

]

(3)

Another similar approach combines the probabilistic out-
puts of a base learner to create a multiclass ensemble. Methods
using such approach estimate a probability distribution over
classes for each instance x, and use it to assign a label to
the instance. M-Boost [15] belongs to this class of ensemble

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1386

creating algorithms that predict the class with highest esti-
mated probability as the label x. Unlike most other boosting
algorithms, M-Boost uses a global measure of error to reassign
weights to the training examples, it computes a vector valued
weight for each classifier rather than computing a single real-
valued weight, and uses a different criterion for selecting a
base classifier.

A completely different method of handling multiple classes
decomposes a multiclass problem into several, usually orthog-
onal, binary classification problems each of which is then
independently solved by using a binary classifier. The outputs
of the learned binary classifiers are then combined to form the
final multiclass classifier. Some of the well studied methods
that use such a problem decomposition includes the one-vs-
remaining or one-vs-one strategies, the use of error correcting
codes for problem decomposition proposed by [20] and the
unifying approach of Schapire [18]. In the One-vs-Remaining
method of decomposing a K-class learning problem into sev-
eral binary learning problems, we create one binary problem
for each of the K classes. For each class a binary classification
problem is created by assigning +1 label to examples of that
class and the label -1 is assigned to examples in all the
remaining classes. A binary classifier is learned for each of the
K binary learning problems. To predict a label for an instance
x, each of the K classifiers are used to compute the label of
x and the class having maximum confidence/weight is finally
predicted as the label of x

We observed that most of the multiclass learning algo-
rithms tend to ignore the important but sparsely represented
classes in case of a skewed dataset (i.e. a dataset that has
imbalanced representation of class instances). In such cases the
optimization steps in the multiclass learning algorithms tend to
converge to a solution that classify only the dominant classes
very accurately and still attaining a high overall accuracy. The
KDD-CUP 99 dataset [21] for intrusion detection in networks
is an example of such a dataset. In this dataset only three
dominant classes constitute more than 98% of the total data
while twenty important classes (classes representing various
intrusion attacks) constitute less than 2% of the total data.

This paper presents a generic cascaded classifier based
on a multiclass ensemble learning algorithm that overcomes
this difficulty by decomposing the problem into several binary
learning problems in adaptive fashion. The proposed cascade
structure behaves like a decision tree and uses the classifiers,
learned at each level, to filter the training examples reaching
next level. The proposed cascaded classifier uses a filtering
process similar to that of Viola et al [22] and partitions
the dataset at each stage possibly eliminating some of the
classes. This partitioning of the dataset at each stage results
into smaller training time at successive stages. The method
has been evaluated on the highly skewed KDD-cup intrusion
detection dataset [21] and compared to the three boosting-
based multiclass learning methods including AdaBoost-M1,
Multiclass AdaBoost and M-Boost. The proposed method is
also compared with a boosting based multiclass classifier
obtained by using one-vs-remaining decomposition strategies.

The remaining of the paper is organized as follows.
Section II introduces the multiclass M-Boost algorithm and
the proposed cascade for building multiclass classifiers. Sec-
tion III describes a detailed experimental setup and provides

comparison with three standard boosting based algorithms
including AdaBoost-M1, Multiclass AdaBoost, and M-Boost.
Comparison of the proposed method with a classifier obtained
using the one-vs-remaining strategy is also provided. The paper
is concluded with Section IV.

II. THE M-BOOST BASED CASCADE

This section begins with a brief introduction of M-Boost
[15] algorithm followed by the proposed cascade for creating
classifier for handling multiclass learning problems.

A. The M-Boost Algorithm

Like AdaBoost, the M-Boost algorithm, shown in Algo-
rithm 1, maintains a weight distribution Dt over the training
examples and modifies the distribution in each round so that
the misclassified examples have larger weight in the succeed-
ing round. It also maintains a probability density over classes
for each example xi and assumes that for each instance xi the
weak classifier ht outputs a distribution p(cj |xi) over the k
possible classes. For each instance xi, a weighted combination
of the output probabilities is used to compute distribution over
the classes using .

p(l|x) =

∑T
t=1 αl

t.h
l
t(x)

S.
∑T

t=1 αl
t

(4)

where hl
t is the probability assigned to class l by the classifier

ht, αl
t is the weight of ht for class l and S is the normalization

factor. The final ensemble is built using the combined additive
probability as given in:

HT (x) = arg max
l

(p(l|x)) (5)

where HT (x) is the class with highest probability for a given
instance x. The product αt.ht(x̄) in the last step of M-Boost
is a point by point multiplication of the two vectors and the
sum is a vector sum.

B. The Cascade structure

We base the construction of proposed classifier on our
observation that it might be possible to partition the training
dataset into two or more sets such that an accurate classifier
can be constructed to discriminate instances of each partition
from the instances in remaining partitions. Once we have such
a classifier available then it can be used to partition the training
data such that each partition contains instances belonging to a
subset of total classes. We can then recursively solve multiple
smaller (smaller number of classes) problems to build the
final classifier. For example, in case of the 23 class intrusion
detection dataset, a partitioning of the dataset into two sets one
containing the instances of the normal class and the other set
containing the instances belonging to the remaining classes
exist such that a very accurate classifier can be built using
only 100 iterations of M-Boost that can discriminate instances
of one set from the other. This classifier can then be used to
partition training data into two sets one containing instances
predicted by the classifier as normal and remaining instances
predicted to be not normal. Each partition so obtained contains
instances belonging to a smaller set of classes and the same
partitioning process can be recursively applied to each partition

1387

Algorithm 1 : M-Boost [15]
Require: Examples (x̄1, y1) . . . (x̄n, yn) where

x̄i is a training instance and yi are labels and
parameter T = total base learners in the ensemble

1: [Initialize Weight distributions]
set D1(i) = 1

n i = 1 . . . n set px̄i

l = 1
k l = 1 . . . k for each

x̄i

2: for t =1 to T do
3: select ht that minimizes error of Ht =

∑t
j=1 αj .hj

w.r.t. Dt.

4: Compute error εl
t of classifier ht for each classes l

5: set αt = (α1
t , . . . , α

k
t) where αl

t = 1
2 log[(k − 1) 1−εl

t

εl
t

]

6: [Recompute weights distribution]
set Entropy(xi) =

∑k
l=1 pxi

l log(pxi

l)

set Ct(xi) =
√

Entropy(xi)
p(yi|xi)

[Confidence]

set Dt+1(i) = exp(α
yi
t .Ct(xi))
W [Reassign Weights]

W being the normalization factor
7: end for

8: [Output the final hypothesis]
H(x̄) =

∑T
t=1 αt.ht(x̄)

HT (x) is a convex combination of the selected classifiers
and outputs a distribution over classes and class with
maximum probability is the predicted class.

until each partition contains instances belonging to a single
class.

Based on the above observations we have devised a very
simple divide-and-conquer based strategy for converting a K
class problem initially into l-class (l < k) learning problem
and then using the classifier learned for the l-class problem
for reducing the problem into l subproblems each having less
then K classes.

Algorithm 2 gives the details of the proposed method for
building the cascade. It starts by reducing the K-class problem
into a new l-class learning problem using the partitioning of
classes into l sets and then uses the M-Boost algorithm to solve
the resulting problem with high accuracy. The resulting classi-
fier is saved as a node in the resulting tree-structured cascade
and is used to partition the training dataset into l sets each
having less than K classes. The same process is repeated for
each partition independently, This divide-and-conquer process
is stopped if any one of the following conditions is true:
(i) There is only one class in a partition,
(ii) The number of training instances reaching a node are less
than a predefined threshold, or
(iii) Most of the examples reaching a node belong to the same
class.

The Build Cascade algorithm (Algorithm 2) needs to be
be provided with a mechanism of dividing a K-class learning
problem into l-class learning problem automatically. If l is less
than K then there might be exponentially many partitions of
K-classes into l partitions and selection of an optimal partition
by definition (i.e. a partition that yields the best error rates)

Algorithm 2 :Build Cascade
Require: Examples (x̄1, y1) . . . (x̄n, yn) where

x̄i is a training instance and yi ∈ 1, 2, . . . ,K are labels
and
l is the number of partitions to use

1: if K > 2 and number of training examples is greater than
a threshold then

2: Create a partition P of the K classes into l sets
P1, P2, . . . , Pl

3: Create a l-class learning problem by relabeling yi ∈ Pj

as j.

4: Learn a l-class classifier Ml using M-Boost.
5: Partition the training data D into l parts D1, D2, . . . , Dl

using the predictions of Ml

6: Recursively repeat the above steps for each partition
7: else
8: Label the leaf node with the discriminating class.
9: end if

is NP. Therefore, in our experiments, to keep the partitioning
problem tractable we always divided the K-classes into two
sets at each stage one containing only one class and the second
set containing the remaining classes. This made it similar to
one-vs-remaining strategy with an additional filtering process.
In each cascade stage, the class best discriminated from the
remaining classed has been chosen as belonging to set one
(+1) and all remaining classes have been placed in the second
(-1) set. The resulting cascade in this case becomes a binary
tree structure with the classifier best discriminating one of the
classes from remaining classes used for making decision and
filtering at each cascade stage. A general structure of such
a cascade is shown in Figure 1(a) whereas the structure of
cascade used in our experiments is shown in Figure 1(b).

Algorithm 3 :Compute Label of x̄

Require: Instance x̄ to be labeled
Cascaded classifier C

1: if C has Descendants then
2: Use the classifier at the root of C to compute the label

y of the input instance x̄
3: if y = j then
4: Recursively label the instance x̄ by moving toward

the jth descendant of C
5: end if
6: else
7: set Label of x̄ equal to the class label of the node.
8: end if

C. Using the Cascade for Classification

The hierarchical structure of the cascade offers a natural
classification algorithm using the tree traversal strategy. To
label an instance x̄, we use the classifier at the root of the
cascade to compute the label of x̄ and then move along a
descendent of the root corresponding to the predicted class
label. This process is repeated until we reach a leaf node where
the actual label of the instance x is decided. The process of
assigning a label to an instance x̄ is shown in Algorithm 3

1388

(a)

(b)

Fig. 1. Potential Cascade Structure

which uses a recursive process for assigning a label to an
instance x̄.

III. EXPERIMENTS AND RESULTS

This section provides a detailed description/statistics of
the dataset used in our experiments. The dataset description
is followed by our experimental settings and the obtained
results. The performance of the proposed multiclass cascaded
structure is also compared to the results obtained using M-
Boost, AdaBoost-M1, Multiclass AdaBoost, and two boosting
based classifier obtained using one-vs-remaining process of
multiclass to binary decomposition.

A. Dataset Description

The dataset used in our experimental work is adopted from
the KDD Cup 99 (KDD’99) dataset [21] prepared and managed
by MIT Lincoln Labs as part of the 1998 DARPA Intrusion
Detection Evaluation Program. KDD’99 was first used for
the third International Knowledge Discovery and Data Mining
Tools Competition in 1999. Since then, KDD’99 has become
a dominant intrusion detection dataset which has been widely
used by most researchers in the machine learning community
to evaluate and benchmark their work related to various types
of intrusion detection [23], [24], [25], [26], [27].

The dataset consists of processed TCP dump portions
of normal and attack connections to a local-area network
simulating a military network environment. There are 23 dif-
ferent types of attack instances in the dataset falling into four

TABLE II. CLASS FREQUENCY

Class 1 2 3 4 5
of Instances 2203 30 8 53 12
Class 6 7 8 9 10
of Instances 1247 21 9 7 107201
Class 11 12 13 14 15
of Instances 231 97278 3 4 264
Class 16 17 18 19 20
Instance 1040 10 1589 280790 2
Class 21 22 23
of Instances 979 1020 20

Fig. 2. Class Distribution

main categories, namely: denial of service (DoS) such as syn
flooding, unauthorized access from a remote machine (R2L)
such as password guessing, unauthorized access to local root
privileges (U2R) such as rootkit, and probing such as port scan
and nmap. The adopted dataset has 494021 connections; each
described using 41 attributes and a label identifying the type
of the connection (either normal or one of the attacks). Two
attributes are symbolic whereas the remaining 39 attributes
are binary/numeric. The attributes are divided into four groups:
basic attributes of individual connections (9 attributes), content
attributes within a connection suggested by domain knowledge
(13 attributes), time-based traffic attributes computed using a
two-second time window (9 attributes), and host-based traffic
attributes computed using a window of 100 connections to
the same host (10 attributes). A summary of the attributes is
provided in Table I.

Detailed statistics and a percentage split of examples be-
longing to various classes is shown in Table-I and in Figure
2. From these statistics it is obvious that only 3 of 23
classes are dominant in the intrusion detection dataset and
instances of these classes comprise more than 98% of the
total training examples. This dominance of few classes pose a
very interesting learning/optimization problem as most of the
learning algorithms, in an effort to attain high accuracy, tend
to ignore the sparse classes but still attain a very high overall
accuracy.

B. Experimental Settings

In our experiments, 10-fold cross-validation has been used
to estimate the performance of various multi-class learning
methods over the KDD-cup dataset. The dataset was randomly
split into 10 non-overlapping partitions and the training and
testing are repeated 10 times using a leave one out strategy by
testing the accuracy of the classifier over one of the partitions
while the remaining partitions are used as the training set. It

1389

TABLE I. SUMMARY OF VARIOUS ATTRIBUTES CATEGORY, NOTATION, NAME, TYPE, STATISTICS AND DESCRIPTION.

Statistics
Cat. Not. Name Type Min Max Description

basic
a1 duration num. 0 58329 Connection length in seconds
a2 pro type cat. – – Prototype type which can be tcp, udp, or icmp.
a3 srv cat. – – Service on the destination; there are 67 potential values such as http,

ftp, telnet, domain, etc.
a4 flag cat. – – Normal or error status of the connection; there are 11 potential values,

e.g. rej, sh, etc.
a5 src bytes num. 0 693M Num. of bytes from the source to the destination
a6 dst bytes num. 0 52M Num. of bytes from the destination to the source
a7 land binary – – Whether conn. from/to same host/port or not
a8 wrng frg num. 0 3 Number of wrong fragments
a9 urg num. 0 3 Number of urgent packets

content
a10 hot num. 0 30 Number of hot indicators
a11 n failed lgns num. 0 5 Number of failed login attempts
a12 logged in binary – – Whether successfully logged in or not
a13 n cmprmsd num. 0 884 Number of compromised conditions
a14 rt shell binary – – Whether root shell is obtained or not
a15 su attmptd num. 0 2 Number of “su root” commands attempted
a16 n rt num. 0 993 Number of accesses to the root
a17 n file crte num. 0 28 Number of create-file operations
a18 n shells num. 0 2 Number of shell prompts
a19 n access files num. 0 8 Number of operations on access control files
a20 n obnd cmds num. 0 0 Number of outbound commands in an ftp session
a21 is hot lgn binary – – Whether login belongs to hot list or not
a22 is guest lgn binary – – Whether guest login or not

t traffic (using a window of 2 seconds)
a23 cnt num. 0 511 Number of same-host connections as the current connection in the past

2 seconds
a24 srv cnt num. 0 511 Num. of same-host conn. to the same service as the current connection

in the past 2 seconds
a25 syn err num. 0 1 Percentage of same-host conn. with syn errors
a26 srv syn err num. 0 1 Percentage of same-service conn. with syn errors
a27 rej err num. 0 1 Percentage of same-host conn. with rej errors
a28 srv rej err num. 0 1 Percentage of same-service conn. with rej errors
a29 sm srv r num. 0 1 Percentage of same-host conn. to same service
a30 dff srv r num. 0 1 Percentage of same-host conn. to different services
a31 srv dff hst r num. 0 1 Percentage of same-service conn. to different hosts

h traffic (using a window of 100 connections)
a32 h cnt num. 0 255 Number of same-host connections as the current connection in the past

100 connections
a33 h srv cnt num. 0 255 Num. of same-host conn. to the same service as the current connection

in the past 100 connections
a34 h sm srv r num. 0 1 Percentage of same-host conn.to same service
a35 h dff srv r num. 0 1 Percentage of same-host conn. to different services
a36 h sm sr prt r num. 0 1 Percentage of same-service conn. to different hosts
a37 h srv dff hst r num. 0 1 Percentage of same-service conn. to different hosts
a38 h syn err num. 0 1 Percentage of same-host conn. with syn errors
a39 h srv syn err num. 0 1 Percentage of same-service conn. with syn errors
a40 h rej err num. 0 1 Percentage of same-host conn. with rej errors
a41 h srv rej err num. 0 1 Percentage of same-service conn. with rej errors

is important to note that all classes had some representation in
the training partition while some of the sparse classes had very
little representation in the test sets. Average values of various
performance measures including accuracy, precision, recall,
and F-measure are reported in this paper. Decision stumps
(single node decision trees) have been used as the base classi-
fiers in all the boosting based algorithms including AdaBoost-
M1, Multiclass AdaBoost and M-Boost. The reason for using
decision stump learning as a base classifier is its simplicity
and the ease with which the outputs of such classifiers can be
converted into estimates of class probabilities. Such probability
estimates are needed by the M-Boost algorithm to build the
final ensemble. The conditional probability estimate, p(cj |x),
of a class cj for a given instance x was obtained by computing
the ratio of the weight Wj of class j examples falling in a
given partition to the total weight, W , of all examples in that

partition as follows:

p(cj |x) =
Wj + β

W + k.β
(6)

The constant β in the above equation acts as a small smoothing
value and is used to avoid zero probabilities and the partition
boundary is determined by the decision stump.

While building the classifiers we always partitioned the
undecided classes into two sets. The first set (labeled as +1)
always had a single class whereas the second set consisted
of all the remaining classes. For example we used the normal
class at the root followed class labeled 19 and so on. Therefore
the resulting cascade is quite similar to the classifier obtained
using one-vs-remaining strategy except for the filtering step
and the way the final label is assigned. The resulting cascade
used in our experiments is similar to the cascade structure
shown in Figure 1(b). The filtering process eliminated one of
the class and the corresponding examples at each stage and

1390

therefore fewer examples reached the succeeding stages which
resulted in significantly smaller training time.

C. Results

The first set of results, shown in Table III, shows the overall
training and testing performance of various learning algorithms
obtained for the intrusion detection problem. The performance
is measured in terms of the four commonly used performance
measures including accuracy, precision, recall and F-score. The
class wise values of these measures were obtained and the
table presents a weighted average of these results where the
weight of a class is obtained as a ratio of the number of
examples of that class to the total examples in the dataset.
From these results, we can see that most of the multiclass
learning algorithms achieved very high values of all the four
performance measures. The classifier based on the presented
cascaded structure performed slightly better than the remaining
classifiers.

To get a further insight into the performance of various
learning algorithms, a second set of results is presented in
Table IV. These results report the average values of accuracy
for each class independently where the averages have been
computed over the 10 results obtained using 10 folds. This
set of results revels several interesting observations including
the fact that although the overall accuracies are very high
(98%) for the classifiers obtained using AdaBoost-M1 and
M-Boost but these classifiers completely ignore most of the
sparse classes and attained extremely poor performance on
these important classes. It is also clear from these results
that the multiclass AdaBoost, the classifier obtained using
one-vs-remaining decomposition and the proposed cascaded
method yielded highly accurate classifiers with the cascaded
classifier having slight edge over the multiclass AdaBoost
based classifier. The performance of the cascaded classifier is
quite comparable to the classifier built using one-vs-remaining
decomposition. The classifier built using the proposed cascade
structure accurately detected the intrusion detection attacks
having a very sparse representation in the dataset.

IV. CONCLUSIONS

A boosting-based cascaded classifier learning algorithm for
solving multiclass learning problems has been presented. An
application of the presented method for the intrusion detection
dataset shows the effectiveness of proposed method for a 23
class learning problem. Comparisons of the proposed method
with AdaBoost-M1, Multiclass AdaBoost, M-Boost and a
boosting based classifier obtained using one-vs-remaining
strategy are also provided. The performance comparison of
the proposed method establishes the success of the method in
building highly accurate multiclass cascaded classifiers. The
method build classifiers very similar to a decision tree and
is much more accurate in detecting attacks in the intrusion
detection dataset than the classifiers obtained using AdaBoost-
M1 and M-Boost. The performance of the method is slightly
better than the classifier obtained using multiclass AdaBoost
and is comparable to the performance of the classifier obtained
using one-vs-remaining strategy.

ACKNOWLEDGMENTS

The authors would like to acknowledge the support pro-
vided by the Lahore University of Management Science
(LUMS), Higher Education Commission of Pakistan (HEC)
and also by the King Abdulaziz City for Science and Tech-
nology (KACST) through the Science & Technology Unit at
King Fahd University of Petroleum & Minerals (KFUPM) for
funding this work through project No. 11-INF1658-04 as part
of the National Science, Technology and Innovation Plan.

REFERENCES

[1] A. Simmonds, P. Sandilands, and L. van Ekert, “An ontology for
network security attacks,” in Applied Computing. Springer, 2004, pp.
317–323.

[2] S. Axelsson, “Intrusion detection systems: A survey and taxonomy,”
Technical report, Tech. Rep., 2000.

[3] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin, “Intrusion detection by
machine learning: A review,” Expert Systems with Applications, vol. 36,
no. 10, pp. 11 994 – 12 000, 2009.

[4] S. Mukkamala, G. Janoski, and A. Sung, “Intrusion detection using neu-
ral networks and support vector machines,” in Neural Networks, 2002.
IJCNN’02. Proceedings of the 2002 International Joint Conference on,
vol. 2. IEEE, 2002, pp. 1702–1707.

[5] C. Zhang, J. Jiang, and M. Kamel, “Intrusion detection using hierar-
chical neural networks,” Pattern Recognition Letters, vol. 26, no. 6, pp.
779–791, 2005.

[6] J. Ryan, M.-J. Lin, and R. Miikkulainen, “Intrusion detection with
neural networks,” in Advances in neural information processing systems.
MORGAN KAUFMANN PUBLISHERS, 1998, pp. 943–949.

[7] D. S. Kim and J. S. Park, “Network-based intrusion detection with
support vector machines,” in Information Networking. Springer, 2003,
pp. 747–756.

[8] X. Xu and X. Wang, “An adaptive network intrusion detection method
based on pca and support vector machines,” in Advanced Data Mining
and Applications. Springer, 2005, pp. 696–703.

[9] Y. Liao and V. R. Vemuri, “Use of k-nearest neighbor classifier for
intrusion detection,” Computers & Security, vol. 21, no. 5, pp. 439–
448, 2002.

[10] W.-H. Chen, S.-H. Hsu, and H.-P. Shen, “Application of svm and ann
for intrusion detection,” Computers & Operations Research, vol. 32,
no. 10, pp. 2617–2634, 2005.

[11] J. Kittler, M. Hatef, R. P. Duin, and J. Matas, “On combining classi-
fiers,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 20, no. 3, pp. 226–239, 1998.

[12] R. E. Schapire, “The boosting approach to machine learning: An
overview,” LECTURE NOTES IN STATISTICS-NEW YORK-SPRINGER
VERLAG-, pp. 149–172, 2003.

[13] E. Bauer and R. Kohavi, “An empirical comparison of voting classifi-
cation algorithms: Bagging, boosting, and variants,” Machine learning,
vol. 36, no. 1-2, pp. 105–139, 1999.

[14] T. G. Dietterich, “Ensemble methods in machine learning,” in Multiple
classifier systems, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2000, vol. 1857, pp. 1–15.

[15] M. Baig and M. M. Awais, “Global reweighting and weight vector
based strategy for multiclass boosting,” in International Conference on
Neurual Information Processing (ICONIP 2012).

[16] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of Computer
and System Sciences, vol. 55, no. 1, pp. 119–139, 1997.

[17] R. E. Schapire, “The strength of weak learnability,” Machine learning,
vol. 5, no. 2, pp. 197–227, 1990.

[18] ——, “Using output codes to boost multiclass learning problems,” in
Proceedings of Fourth International Conference on Machine Learning,
vol. 97, 1997, pp. 313–321.

[19] J. Zhu, H. Zou, S. Rosset, and T. Hastie, “Multi-class adaboost,”
Statistics and Its Interface, pp. 349–360, 2009.

1391

TABLE III. TRAINING AND TEST PERFORMANCE COMPARISON OF VARIOUS METHODS

Phase Method Accuracy Precision Recall F1 Measure
Training

AdaBoost-M1 0.991 ± 0.0004 0.964 ± 0.0003 0.973 ± 0.005 0.96 ± 0.007
Multiclass AdaBoost 0.999 ± 0.0001 0.998 ± 0.0003 0.998 ± 0.003 0.997 ± 0.008
M-Boost 0.990 ± 0.0004 0.964 ± 0.0003 0.97 ± 0.005 0.96 ± 0.007
Cascaded M-Boost 1 ± 0.0001 0.999 ± 0.0001 0.999 ± 0.0013 0.999 ± 0.002
One-vs-Remaining 1 1 0.999 0.999

Testing
AdaBoost-M1 0.989 ± 0.001 0.957 ± 0.004 0.964 ± 0.004 0.961 ± 0.006
Multiclass AdaBoost 0.998 ± 0.006 0.997 ± 0.004 0.997 ± 0.005 0.996 ± 0.007
M-Boost 0.989 ± 0.001 0.957 ± 0.004 0.964 ± 0.004 0.961 ± 0.006
Cascaded M-Boost 0.999 ± 0.0001 0.998 ± 0.0003 0.999 ± 0.003 0.998 ± 0.003
One-vs-Remaining 0.999 0.998 0.998 0.998

TABLE IV. CLASS-WISE COMPARISON OF ACCURACY OVER TEST-DATA

Class AdaBoost-M1 M-Boost Multi-class Cascaded One-vs-Remaining
AdaBoost AdaBoost

1 0 0 0.989 0.996 0.99
2 0 0 0 0.207 0.204
3 0 0 0.228 0.379 0.165
4 0 0 0.98 0.843 0.98
5 0 0 0.273 0.81 0.45
6 0 0 0.925 0.968 0.968
7 0 0 0.85 0.3 1
8 0 0 0.813 0.742 0.23
9 0 0 0.167 0.216 0.166
10 0.995 0.995 0.99 0.999 0.99
11 0 0 0.806 0.914 0.78
12 0.99 0.988 1 0.999 0.998
13 0 0 0.442 0.681 0
14 0 0 0.435 0.881 0
15 0 0 0.98 0.961 0.980
16 0 0 0.947 0.983 0.962
17 0 0 0.111 0.541 0.111
18 0 0 0.968 0.978 0.986
19 0.99 0.999 1 0.999 0.999
20 0 0 0 0 0
21 0 0 0.99 0.975 0.990
22 0 0 0.258 0.926 0.953
23 0 0 0.737 0.895 0.736

[20] T. G. Dietterich and G. Bakiri, “Solving multiclass learning problems
via error-correcting output codes,” Journal of Artificial Intelligence
Research, vol. 2, no. 1, pp. 263–286, 1995.

[21] KDD Cup 1999 dataset for network-based intrusion detection systems.
Available on: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[22] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition CVPR, vol. 1.

[23] W. Feng, Q. Zhang, G. Hu, and J. X. Huang, “Mining network
data for intrusion detection through combining SVMs with ant colony
networks,” Future Generation Computer Systems, 2013.

[24] W. li and Z. Liu, “A method of SVM with normalization in intrusion
detection,” Procedia Environmental Sciences, vol. 11, Part A, pp. 256
– 262, 2011.

[25] H. Altwaijry and S. Algarny, “Bayesian based intrusion detection
system,” Journal of King Saud University - Computer and Information
Sciences, vol. 24, no. 1, pp. 1 – 6, 2012.

[26] F. Amiri, M. R. Yousefi, C. Lucas, A. Shakery, and N. Yazdani, “Mutual
information-based feature selection for intrusion detection systems,”
Journal of Network and Computer Applications, vol. 34, no. 4, pp.
1184 – 1199, 2011.

[27] V. Boln-Canedo, N. Snchez-Maroo, and A. Alonso-Betanzos, “Feature
selection and classification in multiple class datasets: An application to
KDD cup 99 dataset,” Expert Systems with Applications, vol. 38, no. 5,
pp. 5947 – 5957, 2011.

1392

