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Abstract—Automated analysis of retinal vessels is essential
for the diagnosis of a wide range of eye diseases and plays an
important role in automatic retinal disease screening systems.
In this paper, we present an approach to automatic vessel
segmentation in retinal images that utilises possibilistic fuzzy
c-means (PFCM) clustering to overcome the problems of the
conventional fuzzy c-means objective function. In order to obtain
optimised clustering results using PFCM, a cuckoo search method
is used. The cuckoo search algorithm, which is based on the
brood parasitic behaviour of some cuckoo species in combination
with the Levy flight behaviour of some birds and fruit flies, is
applied to drive the optimisation of the fuzzy clustering. The
performance of our algorithm is analysed on two benchmark
databases, the DRIVE and STARE datasets, and encouraging
segmentation performance is observed.

I. INTRODUCTION

Automated segmentation of retinal vessels is typically the
first step in the development of any computer-aided diagnosis
system for ophthalmic disorders [1] which help ophthalmol-
ogists to screen larger populations for vessel abnormalities
caused by multiple diseases such as obesity [2], hyperten-
sion [3], glaucoma [4] or diabetic retinopathy [5]. Vessel
segmentation is further necessary for evaluation of retinopathy
of prematurity [6], vessel diameter measurement [7], fovea
region detection [8], arteriolar narrowing [9] and computer
assisted laser surgery [10].

Automated retinal vessels segmentation is also at the core
in development of retina-based authentication systems. Using
retinal images taken from individuals, retina-based authenti-
cation is employed in environments such as nuclear research
centers and facilities, and weapon factories, where extremely
high security measures are needed [11]. Furthermore, auto-
mated registration of two retinal images for diagnosis or other
purposes rely mainly on extracted vessel configurations [12].

The automated segmentation of vessels in retinal images
can be seen as a classification problem where each pixel
is classified as vessel-like or background. Several challenges
make automated retinal vessel segmentation difficult [13]:

• Various structures appear in retinal images, including
the optic disc, fovea, exudates and pigment epithelium
changes which can disrupt vessel segmentation.

• The vessel intensity contrast is weak and varies.
• Vessels have variant bifurcations.
• Vessels have a wide range of widths.
• Small vessels are especially affected by image noise.
• Narrow vessels with various local surroundings may ap-

pear as elongated and disjoint spots and are hence difficult
to identify.

In this paper, we propose a novel algorithm for automated
segmentation of retinal vessels based on possibilistic fuzzy
c-means (PFCM) clustering optimised by a cuckoo search
technique. Experimental evaluation on the DRIVE [14] and
STARE [25] datasets shows encouraging performance.

II. RELATED WORK

Automatic segmentation methods for retinal blood ves-
sels can be categorised into supervised and unsupervised
approaches. Supervised methods depend on classification into
vessel and background pixels using a classifier previously
trained on (manually) labelled samples. They hence require
accurate ground truth data which is difficult to obtain, also as
one can observe differences between manual segmentations of
different ophthalmologists. On the other hand, training allows
these methods to provide better performance compared to
unsupervised methods, especially for images not containing
pathologies.

Many methods for retinal vessel segmentation have been
reported, so here we mention only a select few. Staal et
al. [14] used a kNN classifier with a 27-dimensionl feature
vector based on ridge information. Their method depends on
extracting ridges in the image, forming line elements from
these ridges, assigning each pixel to the nearest line to partition
the image into patches and computing feature vectors for each
pixel based on its line and patch attributes.

Fraz et al. [16] used a 9-dimensional feature vector con-
sisting of the inverted gray-level of the green colour channel,
the sum of gradient orientation maps at three scales, the
sum of tophat transform responses in eight directions using
linear structure element, the two maximum responses of two
orthogonal line detectors rotated in twelve angles and the four
maximum responses of a Gabor filter rotated at ten angles
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and four scales. They used an ensemble classifier from two-
hundred bagged and boosted decision trees.

Marin et al. [15] employed 7-dimensional feature vectors
comprising five features encoding gray-level variations be-
tween the pixel and its surroundings and two features based
on Hu moment invariants, and trained a neural network for
classification.

Unsupervised methods can be grouped into those based on
mathematical morphology, vessel tracking, matched filters and
bio-inspired algorithms. Mathematical morphology algorithms
utilise the fact that retinal vessels have morphology of con-
nected piecewise linear segments. Here, the top-hat transfor-
mation is widely used for blood vessel segmentation, since it
estimates the background of the image using a morphological
opening operation and the retinal vessels are thus enhanced
when subtracting this estimated background from the original
image. The advantages of mathematical morphology are the
speed and noise resistance but its drawback is that it does not
exploit the known shape of the retinal vessel crosssection.

Fraz et al. [18] extracted the centerlines of retinal vessels
using a first-order derivative of Gaussian filter rotated at four
orientations to detect retinal vessels in all directions. Then,
the shape and orientation maps of retinal vessels are obtained
by applying a morphological top-hat transform with a linear
structuring element at eight directions to emphasise vessels
at all possible orientations, followed by a morphological bit
plane slicing of the gray-level image. The final vessel tree is
reconstructed using the detected centrelines and maps of shape
and orientation.

Miri and Mahloojifar [17] use the fast discrete curvelet
transform for contrast enhancement and a multi-structure mor-
phological transformation for detection of retinal vessels edges.
False positive detections are pruned by morphological opening
and reconstruction and by length filtering.

Illumination variation in background and presence of
pathologies can lead to false positives resulting from matched
filters. Zhang et al. [20] therefore extended matched filters by
using two kernels, one based on a Gaussian and another based
on the first derivative of a Gaussian to filter out false positive
detections as non-vessel edges which have high responses to
both kernels, while vessels have high responses only for the
basic Gaussian-profiled matched filter.

Delibasis et al. [19] initialised the seed pixels for vessel
tracking using a multiscale vesselness filter and pick a random
non-zero pixel as a seed. They used a parametric model that
exploits the geometric properties of retinal vessel composed
of a “strip” and defined a measure of match (MoM) which
quantifies the similarity between the model and the given
image. Vessel tracking is performed by identifying the best
matching strip of the vessel using the seed point, strip orien-
tation, strip width and the MoM. The method actively seeks
vessel bifurcation without user intervention.

III. PROPOSED ALGORITHM

A. Fuzzy c-means

The fuzzy c-means (FCM) algorithm partitions a collection
of n data points into c fuzzy clusters with c < n, and simul-
taneously seeks the best possible locations of these clusters.

The method uses distance concepts in n-dimensional Euclidean
space to determine the closeness of data points by assigning
them to various clusters or categories.

The partitioned clusters are typically defined by a member-
ship matrix of order (c× n) with elements Uik. Uik specifies
the degree of membership of the k-th data point in the i-th
cluster and takes on values in the interval [0;1]. The sum of
all memberships of any data point to all cluster centers is 1;
i.e. ∑c

i=1 μik = 1.

The objective function for FCM is

minJ(M,v1,v2, ...vc) =
c

∑
i=1

n

∑
k=1

(μik)q(dik)2, (1)

where q is a weighting exponent parameter that controls the
extent of membership sharing between fuzzy clusters.

The following are the two necessary conditions for J to
reach a minimum:

vi =
∑n

k=1(μik)q · xk

∑n
k=1(μik)q , (2)

and

μik = [
c

∑
j=1

(
dik

d jk
)

2
q−1 ]−1, (3)

where xk is the k-th data point (an m-dimensional vector) with
k = 1,2, ...,n, vi is the center of the i-th fuzzy cluster with
i = 1,2, ...,c, and dik = ‖xk − vi‖ = [∑m

j=1(xk j − vi j)2]
1
2 .

B. Possibilistic c-means

FCM assigns memberships to objects which are inversely
related to the relative distance of the point prototypes that are
cluster centers in the FCM model. If a data point has equal
distances to two or more clusters, then the membership to these
clusters will be the same apart from the distance between the
cluster centers. In this case, a better membership value should
be very low or zero. To overcome this problem, [22] proposes
a new clustering model, possibilistic c-means (PCM), which
relaxes the column sum constraint equal to one, so that the
sum of each column satisfies the looser constraint. In other
words, each element of the i-th column can take on any value
between 0 and 1. They suggested that in this case the value
should be interpreted as the typicality relative to the cluster,
rather than its membership to the cluster.

The objective function here is

minJ(T,V ;X ,γ) =
c

∑
i=1

n

∑
k=1

(dik)2
A +

c

∑
i=1

γi

n

∑
k=1

(1− tik)q, (4)

with

tik =
1

1 +(D2
iKA
γi

)
1

m−1 , (5)

where γ > 0 , q is weighting exponent parameter that controls
the extent of membership sharing between possibilistic clus-
ters. The larger the value of q, the more typical the membership
assignments of the clusters.
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The following are the two necessary conditions for J to
reach a minimum:

vi = ∑n
k=1(tik)

q · xk

∑n
k=1(tik)q , (6)

and
tik =

1

1 +(D2
iKA
γi

)
1

m−1 . (7)

C. Possibilistic fuzzy c-means

[21] proposes a new model to clustering that satisfies both
the constraints of fuzzy c-means and possibilistic c-means.
The resulting possibilistic fuzzy c-means (PFCM) clustering
is characterised as

minJ(U,T,V ;X ,γ)=
c

∑
i=1

n

∑
k=1

(aμm
ik +btn

ik)(dik)2
A +

c

∑
i=1

γi

n

∑
k=1

(1−tik)η ,

(8)
where η > 1.

The following are the two necessary conditions for J to
reach a minimum:

vi =
∑n

k=1(tik)
q · xk

∑n
k=1(tik)q , (9)

and
μik = [

c

∑
j=1

(
dik

d jk
)

2
q−1 ]−1. (10)

D. Cuckoo search optimisation

Cuckoo search (CS) is a heuristic search algorithm, pro-
posed in [23], and is inspired by the reproduction strategy of
cuckoos. Cuckoos lay their eggs in the nests of other host
birds, which may be of different species. The host bird may
discover that an egg is not its own and either destroy the egg or
abandon the nest to another. To apply this as an optimisation
tool, Yang and Deb used three rules:

• Each cuckoo lays one egg, which represents a set of
solution co-ordinates, at a time and drops it in a random
nest.

• A fraction of the nests containing the best eggs, or
solutions, will carry over to the next generation.

• The number of nests is fixed and there is a probability
that a host can discover an alien egg. If this happens, the
host can discard the egg or the nest.

In CS optimisation, when generating a new solution Xi, it
makes use of a Levy flight model

X (t+1)
i = X (t)

i + ϑ ⊕Levy(β ), (11)

where ϑ is the step size related to the problem scale and is 1
in most cases, and ⊕ means entry-wise multiplication. Various
studies have shown that the flight behavior of many animals
and insects has typical characteristics of Levy flights [24]
which essentially model a random walk with random steps
drawn from a Levy distribution for large steps

Levy ∼ u = t−λ ,(1 < λ ≤ 3), (12)

which has an infinite variance with an infinite mean. Here, the
consecutive jumps/steps of a cuckoo essentially form a random

Initialise a population of n host nests at random
while stopping criteria not met do

Obtain a cuckoo Xi at random by Levy flights
Choose a nest Xj randomly
if F(Xi) better than F(Xj) then

Replace j by the new solution
end
Abandon a fraction of the worse nests and create
new ones using Levy flights

end

Algorithm 1: Cuckoo search (CS) algorithm

walk process which obeys a power-law step-length distribution
with a heavy tail.

The CS is outlined in Algorithm 1.

E. CS-PFCM clustering

In our proposed approach, cuckoo search is used to find
the optimal partitioning of the data given the possibilistic
fuzzy c-means objective function. CS is initialised with random
cluster centers. The cluster centers are then updated using the
CS principles aiming to minimise the PFCM function. The
stopping criterion is either the cluster centers having converged
or having reaching a maximum number of iterations.

F. Pre- and post-processing

Before segmentation, the image is pre-processed to obtain
a brightness corrected image to facilitate subsequent segmen-
tation. For this, we simply calculate the global mean of the
brightness gMean over the whole image and pass over the
image in a window of large size to ensure that the mean
brightness inside the window wMean is proportional to the
global mean gMean. The new brightness value for the center
pixel of the window is calculated as

Pixel Brightness =
Pixel Brightness

wMean
∗gMean. (13)

In a post-processing stage, we aim to remove small indi-
vidual connected components, close small gaps and remove
connected components with small thinness ratios. To remove
small connected components and fill small gaps we make use
of a rank order filter with size 3×3 and rank 5.

IV. EXPERIMENTAL RESULTS

A. Datasets

In our experiments, we have used two widely employed
benchmark datasets, the DRIVE [14] and the STARE [25]
databases, in order to assess the performance of our proposed
algorithm.

The DRIVE database consists of a total of 40 colour fundus
photographs of which 7 are abnormal pathology cases showing
exudates, hemorrhages and pigment epithelium changes. Each
image is JPEG compressed, which is common practice in
screening programs, and has a resolution of 584×565 pixels
with 8 bits per colour channel. The set of 40 images is divided
into a training set of 20 images and test set comprising the
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remaining 20. For the training set, for each image one manual
segmentation, obtained from an ophthalmological expert, is
provide, while for the test set, for each image two manual
segmentations by two different observers are given, where the
first observer segmentation is accepted as the ground-truth for
performance evaluation.

The STARE database consists of a total of 20 eye fundus
colour images where 10 contain pathologies. Each image has a
resolution of 700×605 pixels with eight bits per color channel
and is stored in PPM format.

B. Performance measures

For evaluation purposes, we employ the usual performance
measures of sensitivity (Se), specificity (Sp) and accuracy
(Acc), defined as

Se = T P/(TP+ FN), (14)

Sp = TN/(T N + FP), (15)

and
Acc = (T P+ TN)/(T P+ FN + TN + FP), (16)

where the true positives (T P) are correctly identified vessel
pixels, false negatives (FN) are vessel pixels incorrectly classi-
fied as non-vessel, true negatives (T N) are correctly identified
background pixels, and false positives (FP) are background
pixels incorrectly classified as vessel pixels. The measures are
computed individually for each image and then averaged over
the whole test image set.

C. Results and discussion

Table I shows the performance of our proposed algorithm
on the DRIVE dataset. Cuckoo search is optimised with 100
iterations and the population size was set to 20. The results
confirm the robustness of our algorithm against changes in the
input image and stable accuracy regardless of whether the input
image is normal or abnormal since it gives roughly the same
result even for images that contain exudates, hemorrhages and

TABLE I: Segmentation performance on the DRIVE database.

image sensitivity specificity accuracy
1 0.739 0.977 0.945
2 0.630 0.993 0.937
3 0.630 0.978 0.927
4 0.477 0.996 0.926
5 0.611 0.990 0.938
6 0.618 0.984 0.932
7 0.528 0.994 0.931
8 0.673 0.944 0.909
9 0.577 0.989 0.940

10 0.617 0.988 0.943
11 0.511 0.995 0.931
12 0.691 0.978 0.941
13 0.539 0.993 0.927
14 0.702 0.974 0.942
15 0.694 0.977 0.947
16 0.557 0.993 0.935
17 0.653 0.982 0.941
18 0.688 0.984 0.949
19 0.756 0.989 0.960
20 0.740 0.977 0.951

average 0.628 0.984 0.938

TABLE II: Segmentation performance on the STARE database.

image sensitivity specificity accuracy
1 0.618 0.962 0.924
2 0.617 0.971 0.938
3 0.755 0.958 0.941
4 0.491 0.990 0.938
5 0.437 0.979 0.911
6 0.676 0.979 0.952
7 0.644 0.996 0.957
8 0.617 0.997 0.957
9 0.631 0.996 0.956
10 0.645 0.970 0.934
11 0.585 0.996 0.956
12 0.676 0.996 0.961
13 0.628 0.993 0.948
14 0.606 0.994 0.945
15 0.645 0.990 0.948
16 0.509 0.993 0.924
17 0.545 0.997 0.941
18 0.418 0.999 0.958
19 0.392 0.996 0.96
20 0.512 0.989 0.945

average 0.586 0.987 0.94478

pigment epithelium changes. Even better results can be noted
for the STARE images whose results are given in Table II.

Figure 1 on the left shows a sample image from the DRIVE
dataset where we can notice brightness changes across the
image. On the right of the figure is the corrected image after the
pre-processing phase. It is apparent, that after pre-processing
the image brightness is much more homogeneous over the
image while maintaining the contrast between vessels and the
background.

Figure 2 displays an example of the resulting segmented
image using the CS-PFCM algorithm and the applied post-
processing operations. As can be seen, the blood vessels appear
clearly segmented in the final image.

V. CONCLUSIONS

In this paper, we have proposed a novel algorithm for
segmenting blood vessels in retina images. Our approach
makes use of the objective function for possibilistic fuzzy c-
means clustering which is optimised using a cuckoo search
technique which searches the clustering space successfully to
minimise the PFCM objective function. Experimental evalu-
ation proves our approach to be accurate and robust against

Fig. 1: Sample image from the DRIVE database (left) and the
pre-processed image (right)
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Fig. 2: Example image after segmentation and post-processing.
Red pixels are removed by the rank order filter, yellow pixels
are removed using a thinness measure and cyan pixels are
pixels filled after closing.

noise and pathologies such as exudates, hemorrhages and
pigment epithelium changes, and to provide good segmentation
performance.
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