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Abstract—This paper analyses the behaviour of particle
swarm optimisation applied to training high-dimensional neural
networks. Despite being an established neural network training
algorithm, particle swarm optimisation falls short at training
high-dimensional neural networks. Reasons for poor performance
of PSO are investigated in this paper, and hidden unit saturation
is hypothesised to be a cause of the failure of PSO in training high-
dimensional neural networks. An analysis of various activation
functions and search space boundaries leads to the conclusion that
hidden unit saturation can be slowed down by combining activa-
tion function choice with appropriate search space boundaries.
Bounded search is shown to significantly outperform unbounded
search in high-dimensional neural network error search spaces.

I. INTRODUCTION

Neural networks (NNs) are powerful mathematical models
inspired by the mammalian brain, capable of finding patterns in
data. A NN with enough units in the hidden layer can represent
any non-linear function [1]. Among many applications of NNs
are pattern recognition, classification, and function approxima-
tion [2], [3], [4]. The pattern recognition ability gained NNs
a significant place in real-world applications such as speech
recognition and computer vision. What makes the last two
applications especially difficult is the high dimensionality of
the data.

A few approaches to NN training exist, of which particle
swarm optimisation (PSO) was applied with significant success
to a wide range of problems. However, most of the existing
research in PSO NN training considered only relatively low-
dimensional problems. Thus, despite the established potential
of PSO as a NN training algorithm, no relevant scalability
studies exist.

In this paper, the applicability of PSO to high-dimensional
NN training is investigated. It is discovered that PSO performs
better as a NN training algorithm when the search space
is bounded, and exhibits divergent behaviour in unbounded
search spaces. The significance of choosing an appropriate
activation function also becomes evident in the study.

The rest of this paper is organized as follows: Section II
discusses NNs and high-dimensional NN training problems.
Section III outlines the PSO algorithm and the variations of
PSO developed for high-dimensional problems. The empirical
study conducted is presented in Section IV. Section V sum-
marises the paper and lists the conclusions arrived at.

II. NEURAL NETWORKS

A neural network is a mathematical model inspired by the
learning mechanisms of the human brain. A NN is essentially a
collection of interconnected neurons (also referred to as units
further in this study) aligned in layers, where every neural
connection is assigned a weight. Every neuron receives inputs
from the previous layer, multiplied by the connection weights,
and outputs a signal by passing the net input signal through
the activation function. It was theoretically proved in [1] that
a NN with enough hidden units can represent any non-linear
mapping between the input space and the target space.

The NN itself is just a structure capable of representing a
non-linear function, requiring to be trained on a problem in
order to learn the mapping between inputs and target outputs.
NN training is an optimisation problem, where the objective
is to find the optimal set of weights and biases such as
that the NN error is minimised. Training can be supervised,
unsupervised or reinforced. This paper deals with supervised
NNs only. Such NNs work on a set of data patterns, where each
pattern is a vector of problem inputs and corresponding targets.
Given a set of data patterns with known targets, a NN is trained
to learn the mapping between the inputs and the targets. A
trained NN is then capable of accurately approximating outputs
for the data patterns it has never seen before.

Neural networks are extensively applied to various classi-
fication, pattern recognition, and forecasting real-world prob-
lems in engineering, medical, financial and other fields [5],
[6], [7]. What often makes real-life applications challenging is
the inherent high dimensionality of NNs. The total number of
weights in a NN increases non-linearly with a linear increase
in the number of neurons, and complex problems require large
numbers of hidden neurons to allow for necessary precision.
Thus, a real-life NN training problem will be high-dimensional
most of the time.

Particle swarm optimisation (PSO) was sucessfully used
for optimising NN weights on a wide range of problems [8],
[9], [10]. Details of the algorithm and its applicability to NN
training are discussed in the next section.

III. PARTICLE SWARM OPTIMISATION

The PSO algorithm is described in this section. Section
III-A outlines the basic algorithm, Section III-B describes how
PSO can be applied to train a NN, and Section III-C provides
details on the existing high-dimensional PSO approaches.
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A. Basic algorithm

Particle Swarm Optimisation (PSO), first introduced by
Kennedy and Eberhart in [11], is a nature-inspired population
based optimisation technique. PSO operates on a set of parti-
cles, referred to as a swarm, where every particle represents
a candidate solution to the optimisation problem. For an n-
dimensional optimisation problem, a particle is represented by
an n-dimensional vector, ~x, also referred to as the particle’s
position. Every particle has a fitness value, indicating the qual-
ity of the candidate solution, and a velocity vector, ~v, which
determines the step size and direction of the particle’s move-
ment. Social interaction is imitated by forming neighbourhoods
within a swarm. Each particle remembers its own best position
found so far, and can also query the neighbourhood for the
best position as discovered by the neighbouring particles. PSO
searches for an optimum by moving the particles through
the search space. At each time step, t, the position ~xi(t) of
particle i is modified by adding the particle velocity ~vi(t) to
the previous position vector:

~xi(t) = ~xi(t− 1) + ~vi(t) (1)

Particle velocity determines the step size and direction of the
particle. Velocity is updated using

~vi(t) = ω~vi(t− 1) + c1~r1(~xpbest,i(t− 1)− ~xi(t− 1))

+ c2~r2(~xnbest,i(t− 1)− ~xi(t− 1))
(2)

where ω is the inertia weight [12], controlling the influence
of previous velocity values on the new velocity; c1 and c2
are acceleration coefficients used to scale the influence of
the cognitive (second term of Equation (2)) and social (third
term of Equation (2)) components; ~r1 and ~r2 are vectors with
each component sampled from a uniform distribution U(0, 1);
~xpbest,i(t) is the personal best of particle i, or, in other words,
the best position encountered by this particle so far; similarly,
~xnbest,i(t) is the neighbourhood best of particle i, or the best
position found by any of the particles in the neighbourhood
of particle i. Thus, each particle is attracted to both the best
position encountered by itself so far, as well as the overall best
position found by the neighbourhood so far.

A particle’s neighbourhood is determined topologically
rather than spatially, meaning that the distance between par-
ticles is determined by particle’s indices and not the actual
position in the search space [11]. The GBest neighbourhood
topology [11] was used in this study. In the GBest topology,
the entire swarm constitutes the neighbourhood of a particle.

B. PSO for NN training

PSO can easily be applied to NN training. Each particle
is used to represent a candidate solution to the NN training
problem, in other words, a vector of all the weights and biases
of a NN. Fitness of a particle is calculated by substituting the
particle position (i.e., NN weights) into the NN, and calculating
the mean squared error (MSE) over the training set to obtain
the training error (ET ), or over the test set to obtain the
generalisation error (EG). The PSO algorithm is then used to
move particles through the weight space in order to minimise
the MSE.

C. PSO for high-dimensional problems

Many real-life optimisation problems deal with a large
number of variables, and the applicability of PSO to large-
scale optimisation has been investigated in the past. It was
observed that the original PSO indeed suffers from the so-
called “curse of dimensionality”, the phenomenon of problem
complexity increasing exponentially with a linear increase
in the number of free parameters [13], [14]. Some of the
notable PSO approaches to high-dimensional optimisation are
discussed below.

1) Cooperative PSO: The cooperative PSO (CPSO) was
first introduced by Van den Bergh and Engelbrecht in [13].
CPSO implements the divide and conquer principle by sub-
dividing the search space dimension-wise into K mutually-
exclusive subsets, and assigning each subset to a separate
subswarm. Each subswarm then optimises the problem over a
limited set of dimensions. In order to get the complete solution
vector, the best particles from all the subswarms, representing
partial solutions, have to be combined. A context vector is
used to evaluate the quality of partial solutions and to combine
the partial solutions into a complete problem solution. Partial
solution evaluation is accomplished by substituting values into
the context vector only for the dimensions that a subswarm
is responsible for, and keeping the rest of the context vector
fixed at the best values as obtained from other subswarms.
Each subswarm evaluates the context vector for each of its
particles, and returns as the best solution the particle that, when
substituted into the context vector, yielded the best fitness.
Applying this procedure to every subswarm will result in the
context vector containing the optimal solution found so far.

Pseudocode for CPSO is given below:

1) Initialise K sub-swarms. Assuming problem dimen-
sion is n and n is divisible by K, each sub-swarm will
be of dimension n

K
. When n is not divisible by K, the

closest round-off approximation is obtained such that
subswarms are not all of the same dimensionality.

2) For each sub-swarm:

a) For each particle:

i) Evaluate fitness using the context vec-
tor.

ii) Adjust velocity and position.
iii) Determine personal best.

b) Determine global best.

3) Repeat step 2 until a stopping criterion is met.

2) CPSO with random grouping: Li and Yao [15] expanded
on the original CPSO idea by introducing the concept of
random grouping. Random grouping CPSO follows the logic
of CPSO, the only difference being that at every iteration
the problem is randomly subdivided into subproblems, instead
of doing the subdivision once only in the beginning of the
algorithm run. Li and Yao [15] argue that the advantage of
this approach is the decoupling of correlated variables. When
no prior information about variable correlation is available,
poor subdivision of dimensions might slow down algorithm
convergence. However, when NN training is concerned, the
variables being optimised are NN weights. Weights in the same
layer connect to the same neurons and therefore exhibit a high
degree of correlation. Thus, in the specific case of NN training,
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randomly grouping weights between different NN layers would
not make the problem any easier, and might in fact slow the
algorithm down.

3) PSO with constrained boundaries: Helwig and Wanka
[16] suggested simplifying high-dimensional problems by in-
troducing search space boundaries, and then controlling the
behaviour of PSO by adjusting boundary constraint techniques.
Indeed, if the area in which the optimum is expected to be
located can be estimated, searching through the rest of the
search space is nothing but a waste of computational power.
NN weights are typically initialised in a small area around zero
[2], thus if boundaries are applied, they should be symmetrical.
The applicability of enforcing boundaries on PSO NN training
is investigated in this paper. As suggested by Helwig and
Wanka [16], a random boundary constraint technique is applied
to keep particles within predefined bounds. If a particle exceeds
the lower or upper limit of the j-th dimension, a random value
sampled from a uniform distribution U(lb, ub), where lb is the
lower bound value and ub is the upper bound value, is assigned
to the j-th component of the particle’s position vector. Particle
velocity is subsequently reset according to:

~vij(t) = ~xij(t)− ~xij(t− 1) (3)

IV. EMPIRICAL ANALYSIS

This section provides a description of the experimental
procedure followed and experimental results obtained for
this study. The goal of the experiments was to investigate
the performance and behaviour of CPSO applied to high-
dimensional NN training in bounded and unbounded search
spaces. This study hypothesises that PSO performs poorly on
large NNs due to hidden unit saturation. Saturation occurs
when hidden units predominantly output values close to the
asymptotic ends of the activation function in use. Saturation is
undesirable, because if multiple training patterns cause hidden
units to output the same values, differentiation between the
patterns will become impossible. Firstly, it is shown in the
experiments that hidden unit saturation is indeed present with
CPSO NN training. Secondly, various activation functions and
search space boundaries are tested as a means of controlling
the saturation. The rest of this section presents the high-
dimensional problem used to test the hypothesis, describes the
experimental setup and the experimental results obtained, and
discusses the conclusions arrived at.

A. The MNIST Benchmark

The aim of this paper was to investigate the NN training
performance of the PSO applied to large-scale NNs, there-
fore a benchmark out of the computer vision domain was
selected for the experiments. Results on the MNIST (Modified
National Institute of Standards and Technology) handwritten
digit recognition problem were first published by LeCun in
[17], and the original data set is available on-line at [18].
The MNIST problem has become a classic image recognition
benchmark, still widely used today [19], [20]. The MNIST
data set is a collection of grayscale images encoded in binary
form, where every image is 28 by 28 pixels, and encodes one
of the handwritten digits from 0 to 9. Every pixel encodes
an integer value in [0, 255]. The data set features both inputs
(images) and targets (corresponding labels from 0 to 9), thus

supervised learning techniques can be easily applied. There are
70000 images with corresponding labels in total, subdivided
into a training set of 60000 instances and a test set of 10000
instances.

B. Neural Network Setup

For all the experiments in this study, a three-layered NN
was used, comprising of an input layer, a hidden layer, and an
output layer. The dimensionality of a NN training problem is
determined by the total number of weights and biases. For all
the experiments conducted in this study, fully connected NNs
were used. Thus, the total number of NN weights, nw, taking
bias units into account, was

nw = (I + 1)J + (J + 1)K (4)

where I is the number of inputs, J is the number of hidden
units, and K is the number of outputs.

For the unmodified MNIST data set, the total number
of inputs would be 28 × 28 = 784. If 100 units are used
in the hidden layer, and 10 output units, corresponding to
the 10 possible outcomes, are used in the output layer, the
overall dimensionality of the NN, according to Equation (4),
becomes (784 + 1) × 100 + (100 + 1) × 10 = 79510. It
should be noted here that all results on large-scale PSO opti-
misation published to date report on problems of up to 2000
dimensions [15]. Clearly, the given NN training problem goes
way beyond the current published studies. In order to reduce
dimensionality and make the problem more approachable for
the initial experiments, the input patterns were reduced from
28 by 28 pixels to 14 by 14 pixels by taking an average
value of every 4 pixels in 2D space. The reduced number
of inputs thus became 14 × 14 = 196, resulting in a NN of
(196 + 1) × 100 + (100 + 1) × 10 = 20710 dimensions. The
resulting dimensionality is still roughly 10 times higher than
the dimensionality of the large-scale PSO problems previously
reported on. Thus, this paper tackled a problem of a higher
dimensionality than PSO has ever been applied to in the past.

The training performance of the PSO was separately eval-
uated using three different activation functions in the hidden
layer of the NN, namely, the sigmoid function, the hyperbolic
tangent function, and the Elliott function, illustrated in Fig.1.

The sigmoid function is defined as

fNN (net) = 1/(1 + e−net) (5)

where net is the sum of weighted incoming signals. The sig-
moid function is the most commonly used activation function.
The output of the sigmoid function is in the range (0, 1).

The hyperbolic tangent function, further referred to as
TanH, is defined as

fNN (net) = (enet − e−net)/(enet + e−net) (6)

The output of TanH is in the range (−1, 1).

The third activation function used in this paper is the Elliott
function [21], further referred to as Elliott and defined as

fNN (net) = net/(1 + |net|) (7)
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Fig. 1. Activation functions

The output range of Elliott is also (−1, 1), but it has a shal-
lower gradient than TanH and thus approaches the asymptotes
slower.

In all the experiments, the input patterns were rescaled
according to the output range of the activation function in use.

C. Particle Swarm Optimisation Setup

The experiments presented in this study were conducted
with the cooperative PSO described in Section III-C1, further
referred to as CPSO for brevity. A CPSO consisting of 5
subswarms was used, where every subswarm consisted of
10 particles, giving a total number of particles equal to 50.
Subdivision of weights into 5 subsets was done by applying
the procedure described in Section III-C1 to the weight vector
of the NN. In all experiments, the inertia weight ω was set
to 0.729844 while the values of the acceleration coefficients
c1 and c2 were set to 1.496180. This choice is based on
[22], where it was shown that such parameter settings give
convergent behaviour. Velocity was not constrained, and the
GBest neighbourhood topology was used for every subswarm.

CPSO with no boundary constraints as well as CPSO with
the random boundary constraint as described in Section III-C3
was used. Different initialisation ranges for particle positions
(in other words, NN weights) and particle velocities were cho-
sen according to the size of the interval to which the particles
were confined by the imposed boundaries. A summary of the
initialisation ranges is given in Table I. Unconstrained CPSO is
further referred to as simply CPSO, while CPSO constrained
to intervals [−2, 2], [−1, 1], and [−0.5, 0.5] is referred to as
CPSO2, CPSO1, and CPSO0.5, respectively.

Swarm diversity DS was also measured in every simula-
tion. The diversity measurement used is the average distance
around the swarm center [23], given by

DS =
1

SP

SP
∑

y=1

√

√

√

√

n
∑

l=1

(xyl − x̄l)2 (8)

where SP is the swarm size, n is the dimensionality of the
problem space, ~xy and ~̄x are particle position y and the
swarm center, respectively. The choice of diversity measure
is based on [24], where this measure was shown to be a valid
diversity measure. Applied to cooperative PSO, the diversity is

TABLE I. PARTICLE INITIALISATION INTERVALS

Boundary Interval Position Velocity

No boundary [−1, 1] [−0.5, 0.5]

[−2, 2] [−1, 1] [−0.5, 0.5]

[−1, 1] [−0.5, 0.5] [−0.25, 0.25]

[−0.5, 0.5] [−0.25, 0.25] [−0.125, 0.125]

calculated by substituting every particle of each subswarm into
the context vector, thus generating SP particles of dimension
n, and calculating the diversity of the resulting collection of
particles according to Equation (8).

All reported results are averages over 30 simulations. Each
algorithm ran for 500 iterations.

D. Empirical Results

Table II summarises the average ET , EG, and DS obtained
in the experiments, minimum error values for every algorithm
are displayed in bold, and Table III summarises the respective
overall algorithm ranks. Algorithms were ranked based on their
mean ET and EG values. Algorithm ranking involved the
two-tailed non-parametric Mann-Whitney U test [25], used to
determine whether the difference in performance between any
two algorithms was statistically significant. The choice of the
significance test is based on [26], where the authors showed
that the Mann-Whitney U test is safer than the parametric
tests such as the t-test, since the Mann-Whitney U test
assumes neither normal distributions of data, nor homogeneity
of variance. The null hypothesis H0 : µ1 = µ2, where µ1

and µ2 are the means of the two samples being compared,
was evaluated at a significance level of 95%. The alternative
hypothesis was defined as H1 : µ1 6= µ2.

It is evident from Tables II and III that smaller search
space boundaries yielded significantly smaller errors. Table
III also shows that the Elliott activation function performed
significantly worse than other activation functions in bounded
spaces, and that the Sigmoid significantly outperformed the
other activation functions in the unbounded space. Next, the
behaviour of PSO is analysed to explain the observed phenom-
ena.

First of all, the reader might have noticed that classification
error is not reported in this study. The reason for omitting this
performance measure is simple: CPSO struggled at training the
20710-dimensional NN to such an extent that the classification
error remained fixed at 100%, decreasing down to 95% in
some cases. The CPSO clearly struggled to tackle the given
optimisation problem, and the main goal of this study was to
clarify the reasons for such poor performance of the PSO.

Initial experiments were conducted in an unbounded search
space, since no rule exists specifying the possible limits for NN
weights. Theoretically, NN weights can take on any floating-
point values. Practically, NN weights are usually initialised in
a small interval around zero to alleviate activation function
saturation [2]. Saturation occurs when the hidden units of a
NN predominantly output values close to the asymptotic ends
of the activation function range. Derivatives of the sigmoid-
like activation functions are close to zero near the asymptotic
ends, which hinders traditional gradient descent NN training
methods, making training very slow. Although PSO makes no
use of activation function derivatives, saturation remains an
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TABLE II. AVERAGE MSE

Activation CPSO CPSO2 CPSO1 CPSO0.5

Sigmoid ET 0.157141± 0.202442 0.181511± 0.116224 0.117036± 0.034167 0.055927± 0.001802
EG 0.157744± 0.202563 0.18225± 0.115888 0.117101± 0.034353 0.055874± 0.001981
DS 1249.55± 1655.11 7.41944± 4.5701 5.67141± 2.33124 2.99356± 0.847664

TanH ET 0.842769± 1.15126 0.212523± 0.074053 0.104675± 0.024872 0.085831± 0.028571
EG 0.543946± 0.667151 0.213253± 0.072649 0.104977± 0.025771 0.08595± 0.028338
DS 139.408± 42.9574 5.87239± 1.14979 3.11595± 0.44452 1.9375± 1.50791

Elliott ET 0.893402± 0.716636 0.827706± 0.585609 0.39684± 0.105096 0.254966± 0.013528
EG 0.896516± 0.719555 0.830121± 0.585241 0.397196± 0.105313 0.255185± 0.013892
DS 644.303± 615.979 8.66452± 5.02397 4.11974± 2.50938 2.83175± 1.25224

TABLE III. OVERALL RANKS

Activation CPSO CPSO2 CPSO1 CPSO0.5

Sigmoid ET 5 6.5 3.5 1

EG 5 6.5 3.5 1

TanH ET 11 6.5 3.5 2

EG 10.5 6.5 3.5 2

Elliott ET 11 11 9 8

EG 10.5 10.5 10.5 8

issue, especially taking the NN size into account: a large fully
connected NN architecture implies many incoming connections
to every hidden unit, therefore a sum over a large number of
weighted inputs. If the weights cause the resulting net input
signal to always be a large positive or negative number, the
hidden unit will always output a value close to either end of
the activation function range. Reducing hidden units to this
binary output state damages the overall information capacity
of the NN, causing learning to be slow and inefficient.

Constraining the CPSO to a small interval around zero is
hypothesised to decrease the hidden unit saturation by produc-
ing a smaller net input signal. Every particle represents a vector
of NN weights and biases. Thus, limiting the particle’s search
space effectively limits the weight values to the respective
interval. Initialising NN weights to a small interval was shown
to be good practice [2], and decreasing weights over training
epochs tends to improve the performance of gradient descent
approaches to NN training [2]. Thus, limiting weights to a
predefined small interval is hypothesised to improve the NN
training performance of the PSO.

This study hypothesises that the hidden unit saturation is
one of the reasons behind poor performance of the PSO on
large-scale NN training problems. Figure 2 shows frequency
distributions obtained for the hidden unit outputs for the three
activations functions considered, in unbounded (CPSO) and
bounded (CPSO0.5) search spaces. Light grey corresponds to
frequencies after 10 iterations of the algorithm, and dark grey
corresponds to frequencies after 500 iterations. For display
purposes, frequencies were square root scaled. It is evident
from Figure 2 that hidden unit saturation was indeed present in
both the unbounded and bounded spaces, and progressed with
algorithm iterations. Comparing the frequency distributions
obtained for the CPSO and the CPSO0.5, it can, however, be
concluded that the PSO exhibited stronger saturation in the
unbounded search space than in the bounded search space.
Tables II and III show that the overall MSE was also signif-
icantly lower in the bounded search spaces, thus confirming
the hypothesis that limiting the search space improves the
NN training performance of the PSO, and that hidden unit
saturation indeed hinders the PSO NN training performance.
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Fig. 4. Swarm diversity profile for Elliott

However, decreased saturation is not the only reason why
bounding the search space improves the training performance
of the PSO. Table II shows that the diversity values of the
PSO in the unbounded search space are much higher than
the respective values in the bounded search spaces. Indeed,
investigating the diversity profile of the CPSO under different
search space boundaries as shown in Figures 3 and 4 leads to
the conclusion that the CPSO exhibited divergent behaviour
in the unbounded search space, regardless of the activation
function, and converged in the bounded search spaces. En-
forcing boundaries on the search space significantly simplifies
the optimisation problem, making it more feasible for the
population-based approach.

Figure 2 shows that the Elliott activation function saturated
less than the other two activation functions in the bounded
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Fig. 2. Hidden unit output values frequency distributions

search space. However, despite exhibiting less saturation, El-
liott performed significantly worse than both Sigmoid and
TanH in terms of the MSE, as seen in Table III. Such
behaviour is explained by the fact that Elliott approaches the
asymptotes much slower than Sigmoid and TanH, as shown in
Figure 1. Therefore, output signals produced by Elliott units
did not reach the actual target values (scaled to [−0.9, 0.9]),
resulting in higher MSE. Actual error values, however, are
relative measures of algorithm success, and the dynamics of
an algorithm are to be examined to gain insight into the
algorithm behaviour. Figure 5 shows the error profiles obtained
by the CPSO under various boundary constraints with the
three activation functions considered. It can be concluded from
Figure 5 that Elliott indeed closely resembled the behaviour
of Sigmoid, producing error curves of very similar shape. This
indicates the potential competitiveness of Elliott. Scaling input
pattern targets to a narrower range might improve the MSE
performance of Elliott, and allow this activation function to

make better use of its relative saturation resilience.

Although Table III shows that no statistically significant
difference was observed between the performance of TanH and
Sigmoid in search space bounded to [−2, 2] and [−1, 1], Figure
5 illustrates that these two activation functions yielded different
error profiles. Indeed, Figures 5(b), 5(c), and 5(d) show that
TanH consistently produced a steeper decreasing error profile
than Sigmoid. It is especially evident in Figure 5(c) that,
where Sigmoid was stagnating, TanH was not. Therefore, if the
experiments were run for a larger number of iterations, TanH
would have had a good chance to significantly outperform
Sigmoid on the given NN training problem. Table II also
shows that the use of TanH yielded smaller swarm diversity
than the other two activation functions, thus TanH promoted
swarm convergence better than either Sigmoid or Elliott. As
described in Section IV-B, TanH has a wider output range
than Sigmoid. This property of TanH increases the overall
information capacity of the NN, making TanH a potentially
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Fig. 5. Average EG under different boundary constraints

better choice than Sigmoid.

V. CONCLUSIONS

This study investigated the performance of the CPSO for
training large-scale NNs. The MNIST data set was used as
a benchmark, and it was discovered that the CPSO indeed
struggles to solve the NN training problem of the given di-
mensionality. This study hypothesised that activation function
saturation is one reason behind the poor performance of the
PSO. Three different activation functions were considered
in the experiments. It was also hypothesised that limiting
the search space to a small interval around zero alleviates
saturation, thus improving the performance of the PSO. Results
obtained in the unbounded search space were compared to the
results obtained in the search space limited to [−2, 2], [−1, 1],
and [−0.5, 0.5]. Experimental results showed that saturation
is indeed present, and that limiting the search space not only
alleviates the observed saturation, but also yields convergent
swarm behaviour. Out of the three activation functions consid-
ered, the Elliott function exhibited the least saturation, and the
TanH function exhibited the least signs of stagnation. TanH
also promoted convergent behaviour.

Bounding the search space slows down saturation, but does
not stop it. Future work will include further investigation of
the activation function saturation in the context of PSO NN
training. Regularisation of NN weights applied to PSO training
will be considered. Tuning additional PSO parameters such

as maximum velocity, neighbourhood topology, or constriction
factor in order to decrease the resulting saturation is also an
interesting topic. The effect of constraining the search space
for simpler PSO NN training problems will also be studied in
future, and the effect of dynamically adjusting boundary size
will be looked into. Another interesting thing to investigate is
the effect of scaling input patterns to different ranges on the
training performance of the PSO.
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