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Abstract—In invasive brain-machine interfaces (BMI), the
recorded high-quality neural signals produce a large data
volume. This calls for effective compression. In this paper,
we focus on extracellular recording of motor cortex. First the
characteristics of the signals are studied, one of which is that
peaks of DCT coefficients at high frequency may correspond to
spike firing patterns. Based on these characteristics, we propose
a high-fidelity compression framework for these signals. The
DCT coefficients of the signal are divided into two parts
according to amplitude, rather than frequency. The Low-
Amplitude-Component (LAC) is encoded by a phase called
Symbol Encoding, which helps to reduce overall distortion. The
High-Amplitude-Component (HAC), containing major infor-
mation and spikes, is encoded by another phase called Hybrid
Encoding. It combines the Huffman encoding and a novel
Zero-Length-Encoding. Experiments show that the algorithm
achieves a compression ratio of 18% without obvious distortion.
Moreover, spikes are reserved more than 92%, outperforming
existing work. Our algorithm enables low-cost storage devices
to store long-time neural signals.

I. INTRODUCTION

Biological brain is one of the most complex systems ever
to be studied. It has a huge sensory system, transmitting
mechanism and action executor that alter the state of mind or
body continuously. Recent development on neural recording
techniques has made it possible to collect neuron activities
from brain, leading to the development of brain-machine
interfaces (BMI) system [1], [2], [3].

BMI systems can be classified to invasive and non-
invasive. Non-invasive methods such as scalp electroen-
cephalogram (EEG) is easily accessible, but with low signal
precision. On the contrary, the invasive methods use surgi-
cally implanted electrodes, recording extracellular neurons’
signals with finest detail [4], [5], which is referred to ”action
potential”, or ”spikes” in individual neurons. When excited,
neurons create ion currents through their membranes, caus-
ing the cell to depolarize and trigger a spike.

This paper focuses on the motor cortex neuronal signals
recordings. As an important part of cerebral cortex, motor
cortex is in charge of planning, controlling and executing
voluntary movement of body. In the researches of motor
cortex function, an extracellular recording of a channel is
split into different frequency bands. Lower frequencies (cut
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off at 100Hz) correspond to local field potential (LFP),
while medium to high frequencies correspond to spikes.
The LFP mainly originates from pre-synaptic activity, com-
posed of more sustained currents reflecting the averaged
dendric activity. And the spikes mainly represent activities
of excitatory neurons. Both of them are significant to signal
decoding. For motor cortex, spikes usually last for less than
one millisecond. Therefore high resolution device multi-
electrode array (MEA) is penetrated into tissues to capture
signals from hundreds of interested neurons. The mammalian
neuronal signal of motor cortex is usually recorded by MEA
with 128 channels at 20-30 kHz to well preserve the detail
of spikes. Consequently, with 16-bit A/D resolution and a
maximum sampling rate of 30kHz, data stream of such raw
format in overall 128 channels is recorded at 7.68MB/s.
In other words, it produces 28.8GB raw data in an hour.
This not only brings significant cost for data storage, but
also challenges data transmission. Therefore, compression
is desirable for neuronal recordings.

Although BMI systems are well established, compres-
sion for cerebral extracellular recording is not deeply in-
vestigated. Some relevant work such as the compression
on Electromyography (EMG) and Electroencephalography
(EEG)[9], [12], [13] take signal characteristics into con-
sideration for effective compression. However, the invasive
extracellular recording is quite different.

Existing compression algorithms for multi-channel extra-
cellular recording is implemented from two threads. One is
to compress signal of each channel individually using intra-
channel properties; the other is to decrease the redundancy
among channels using inter-channel correlation. From the
first perspective, Weber et al. [14] compress somatosensory
cortex (S1) neuronal responses of rat by a wavelet based
coder, achieving the compression ratio low to 5%. However,
this compensates for the loss of 25% of the spikes, which
is not desirable for future analysis. For the same recorded
data of rat’s S1 response, Chen et al’s result achieved Signal
to Noise Ratio (SNR) at about 25db with compression ratio
larger than 25% [7] by adaptively qualification, in which
both compression ratio and signal quality is not guaranteed
perfectly. To improve their work in terms of the second point
of view, Chen et al. [8] take advantage of correlation between
channels, achieving 5% compression ratio with SNR at 25db
by a video compression method. However, all the work
above loss much detail signal, making the high quality raw
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signal acquired in vain.

This paper proposes a framework that compresses extra-
cellular recording of motor cortex with high fidelity. First,
three special characteristics of these signals are investigated:
1) the power centralization on low frequency; 2) peaks
of discrete cosine transform (DCT) coefficients at high
frequency may correspond to spike firing patterns; 3) the
Inter-channel correlation is unstable. According to 3), we
encode each channel of the signal independently. According
to 2), a novel Amplitude Filter is proposed to divide the
DCT coefficients into two parts by amplitude rather than
frequency. The value of the Low-Amplitude-Component
(LAC) is encoded by a phase called Symbol Encoding to
reduce overall distortion. The High-Amplitude-Component
(HAC), containing major information and spikes, is encoded
by another phase called Hybrid Encoding, which consists of
the Huffman encoding and a novel Zero-Length-Encoding.
The main features of our framework are as follows.

- A novel Amplitude Filter is designed specially to ex-
tracellular recording. It divides the DCT coefficients
into two parts according to amplitude rather than
frequency. This avoids the loss of spike information.

- A Symbol Encoding method is proposed to encode
the values of Low-Amplitude-Component, rather
than simply discarding them. It helps to reduce the
overall distortion of signal.

- A Hybrid Encoding method consisting of the Huff-
man encoding and a novel Zero-Length-Encoding is
devised to encode the High-Amplitude-Component
and the frequency indices of Low-Amplitude-
Component. The spike information is thus preserved
with concise structure.

A number of instances have been examined on our
proposed framework, achieving an average SNR at 36db
and compression ratio of 18%. The fidelity of spikes is also
kept higher than 92%, making reconstruction performance
guaranteed.

II. CHARACTERISTICS OF EXTRACELLULAR

RECORDINGS FROM MOTOR CORTEX

To compress effectively while maintaining the quality of
signal, the properties of recorded multi-channel extracellular
recording are analyzed. Our dataset is described in SectionV.
Three characteristics are summarized from intra-channel
property to inter-channel correlation. All the characters are
vital to the compression algorithm as well as experiment
measuring.

1. Power centralizes on low frequency

To investigate the characteristic of the recorded temporal
signal in spectral domain, discrete cosine transformation
(DCT) has been adopted. As a variation of Fourier Trans-
formation, DCT is preferable because it derives a set of real
number coefficients, called DCT coefficients.
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Fig. 1. Statistical Energy ratio of the first 12 dimension DCT coefficients.
The horizontal axis Tp0 denotes the number of components to be taken
into consideration. The vertical axis is the energy proportion P of the first
Tp0 components.
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Fig. 2. DCT coefficients amplitude distribution of Electrophysiological
Signal in High frequency

The transformed DCT coefficients vector of the i-th
channel is denoted by xi = [x1i , x

2
i , ..., x

N
i ] Let xji be the

j-th DCT component of xi. The energy proportion of the
low frequencies part is calculated on the whole dataset:

P =

∑

i ‖x1i , x2i , ..., xTp0i ‖2
∑

i ‖xi‖2
(1)

where the denominator is the total amount of energy over
all channels and the numerator is the energy summation
of the first Tp0 DCT coefficients, i.e., energy of the low
frequency part with the cutoff frequency at Tp0. The average
value of P on the whole dataset with Tp0 is shown in fig.1.
It is clearly illustrated that few number of DCT components
occupy the dominant energy. In other words, considerable
power is centralized on low frequency domain.

2. Remarkable peaks locate at high frequency

Similar with other natural signal, the power of extra-
cellular recording focus much on low frequency. However,
such signal makes a difference at the medium and high
frequency. As fig.2 shows a truncated spectrum at medium
frequency. There is a peak at 7325Hz, which corresponds
to a frequent neuronal firing pattern. Actually, experiment
shows that some channels share the peak frequency positions
while some are not. This can be comprehended from the
sampling mechanism of Multielectrode array, by which the
extracellular recording of a channel is composed by signal
generated from 3 to 5 neurons with different spike firing
patterns.

3. Unstable Inter-channel Correlation
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The third character of motor cortex signal is the
unstable correlation between channels. The correlation
between channels is calculated for every sample. The
average fluctuation extent (defined as the average divided
standard deviation over time) among all samples is
calculated to be 0.68. That is to say, the correlation
coefficient varies seriously over time, so the correlation
between channels is unstable in our obtained motor cortex
neuronal responses, leading to difficulties in reducing
redundancy among channels.

III. THE PROPOSED COMPRESSION METHOD:
AN OVERVIEW

In this paper, we propose a high-fidelity compression
framework for extracellular recording, taking into account
the above mentioned characteristics. First of all, because
the inter-channel correlation is unstable, we process each
channel independently. The framework is shown in fig.3.
It contains two consecutive modules: ”Preprocessing” and
”Dual-Phase Encoding”.1

For each channel, the original long signal is firstly
segmented into small blocks of size Sb, then each block is
processed by the following two modules:

a) Preprocessing: This module transforms signal
into frequency domain by DCT. Since some peaks at high
frequency may correspond to specific spike firing patterns,
it is unreasonable to apply traditional low-pass filter for
compression. So rather than divide the components by
frequency and discard one part, we propose to divide them
by amplitude and compress the two parts separately. Passed
through an amplitude filter, the DCT coefficients above a
threshold is stored in High-Amplitude-Component (HAC),
which contains of salient LFP and action potential. The rest
coefficients below the threshold are put to Low-Amplitude-
Component (LAC).

b) Dual-Phase Compression: In the first phase, LAC
is compressed by Symbol Encoding. It is a lossy encoding
scheme, which intends to represent each coefficient by one
symbol. In the second phase, DCT coefficients contained
by LAC are set to zeros in HAC. This achieved vector,
which contains HAC, is then quantified and compressed
by a hybrid encoding method blending the Huffman
Encoding with a Zero-Length-Encoding. The Huffman
Encoding deals with the high amplitude entries (nonzeros
after quantization), while the Zero-Length-Encoding deals
with the zeros. Compression of LAC and HAC separately
would effectively preserves the spectrum positions of
both LAC and HAC without storing additional information.
In the end, the codes of the two phases are formatted to store.

1The reconstruction can be obtained by directly reversing the encoding
steps.

IV. DUAL PHASE ENCODING

The Dual-Phase Encoding module is composed of t-
wo compression phases for different parts of extracellular
recordings.

A. Symbol Encoding for Low-Amplitude Component

Symbol Encoding is a lossy encoding scheme that en-
codes the value of each coefficient of LAC separately.
The sign of coefficient is preserved and its magnitude is
represented by the average magnitude taken over all blocks
(of the original long signal) at the corresponding frequency.
Thus, beforehand, a Quantization Table (QT) is established.
Each row of it corresponds to a channel, storing the average
magnitudes at all frequencies. Then, finally each coefficient
of LAC, denoted by li, is actually encoded by one-bit symbol
symbol(li): 1 if it is positive, -1 otherwise. In precise,

symbol(li) =

{ −1, −TLH < li ≤ 0

1, 0 < li < TLH
(2)

where TLH is the threshold between LAC and HAC.

It is not necessary to record the positions of LAC
for decompression. As the Low amplitude components are
extracted for Symbol Encoding, their values are assigned to
zeros in the DCT coefficients vector. Later processing would
guarantee nonzero of other compressed components. As a
consequence, LAC can be recovered by selecting out the
zero entries.

B. Quantization for High-Amplitude Component

Since HAC includes LFP and salient spikes, this vital
part is designed for better preservation. This component is
first quantized to a small range for better compression, then
a hybrid encoding method is taken for further compression.
The first step referred to as quantization is presented in this
section.

Let QT ∈ RNc×Sb denotes the quantization table, where
Nc is the number of channels and Sb is the size of block.
The cth entry of quantized signal HQ

c is computed by

HQ
c = round(Hc./QT (c, :)), (3)

where ./ is an entry-wise division, round(X) is the operation
that rounds the elements of X to the nearest integers.
Note that the elements of Hc are greater or equal than the
threshold TLH , and the elements of QT (c, :) are less than
TLH . Now the range of HQ

c becomes greater or equal than
1, which facilities compression.

For high amplitude component to be quantized, its s-
cale is determined by the individual signal as well as the
threshold TLH . However, such signal recorded from different
individuals could obtain divergent results [15]. Whats more,
different neural units may have different spectral distribution.
Therefore quantization table varies on different channels for
different samples. Therefore, the average amplitude of LAC
are assigned to QT for each channel.
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Fig. 3. Flow diagram of the overall compression algorithm.

This designing strategy for QT is proposed from several
angles. First, diversity of individual recordings has been
taken into consideration by yielding unique QT for each
sample. Second, unshared quantizer for each channel takes
account of the discrepant spectrum distribution among chan-
nels. Third, with the use of round function, the reverted
value differs by no more than half of QT on corresponding
position. Moreover, this makes all the quantized data less
than TLH . As a consequence, the quantized values are no
less than one, sufficing the non-zero condition mentioned at
the end of section IV-A.

C. Hybrid Lossless Encoding for Quantized Data

As an optimal symbol-by-symbol coding method, the
Huffman Encoding yields the optimal length- variable code,
which can be efficiently used in our quantized data. How-
ever, after partitioning by the amplitude filter, a lot of DCT
coefficients at high frequency turn to be zeros. Fig.4 shows
the coefficients distribution after quantization. What is more,
the zeros at high frequency part often appear consecutively,
forming series of zeros. Therefore, at high frequency part,
rather than encoding each zero independently, recording the
number of consecutive zeros can compress more effectively.
This strategy is referred to as Zero-Length-Encoding. De-
note the boundary between the low frequency part and the
high frequency part by B. Consequently, all the nonzero
coefficients as well as the zeros before B are encoded
by the Huffman Encoding, while the zeros after B are
encoded by the Zero-Length-Encoding. To exploit the two
encoding methods effectively, the boundary B should be
well-designed, which depends on the distribution of zeros.

In the following, we first give a brief introduction of the
Huffman Encoding, and then introduce the Zero-Length-
Encoding; finally we investigate how to set the boundary
B.

1) Huffman Coding: Entropy Encoding is a lossless
compression technique that typically creates a unique prefix-
free code to each symbol of a set. As the most common
method of Entropy Encoding, the Huffman Encoding [10] is
used in our lossless encoding method, aiming at establishing
an optimal tree that minimizes the weighted sum of heights
(i.e. the total length of code). To transform original values
into binary sequence, the Huffman Encoding derives length-
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Fig. 4. Quantified Coefficient Frequency distribution, horizontal axis
denotes the coefficients value ranging from -31 to 31. The vertical axis
is the occurrence frequency of each value in x.

variable code based on the estimated occurrence frequency
of each symbol.

All the entries before B as well as the non-zero
components after B are coded by the Huffman Encoding.

2) Zero-Length-Encoding: The Zero-Length-Encoding is
used to encode the series of consecutive zeros at high
frequency part. The number of zeros kz of a series is
represented by the octal number system, and the Huffman
encoding of zero is used to separate adjacent these octal
numbers. For example, if kz = (8A + B) × 8 + C,
where A, B, C denote the 3rd, 2nd, 1st order of octal
number respectively, the form of code is shown below, where
HCT(0) is the Huffman code of zero.

_  _  _ (0) _  _  _ (0) _  _  _
A B C

HCT HCT��� ��� ���

Let g(k) be the number of orders to represent zero count,
we have

g(kz) = �log8(kz + 1)�. (4)

3) Boundary between Hybrid Lossless Encoding: To
make the best use of the above mentioned two encoding
methods, the determination of boundary between them ap-
pears especially important.

Intuitively, as the number of zeros in the quantized signal
increases, the code given by Zero-Length-Encoding would

3882



be shorter than the code given by Huffman Encoding. To
validate this idea, the code length given by the two methods
is calculated.

Let HCT be the Huffman Code Table derived before,
HCT(x) means the Huffman Encoding of x , l0 denotes the
length of HCT(0), kz be the average number of contiguous
zeros before a nonzero coefficient. The code length of
quantized coefficients by Huffman encoding(l1) and Zero-
Length-Encoding(l2) is:

{

l1 =
∑I
i=1[HCT (xi)] + l0 · kzI

l2 =
∑I
i=1[HCT (xi) + (3 + l0)g(kz)− l0]

, xi ∈ HQ
c , xi �= 0

(5)

where I is the size of the set including all the nonzero
coefficients in HQ

c . In l1, l0 ·kzI denotes the length of all the
zeros. In l2, (3+ l0) is the number of bits required for each
additional order. Use g(kz) to be the number of orders for kz
as defined in eq.(4), then (3+ l0)g(kz)− l0 is the number of
bits denoting the average number of zero coefficient before
a nonzero one.

Taking the difference between them, we have

l1 − l2 = [l0 · kz − (3 + l0)g(kz) + l0] I = f(kz) · I (6)

For constant I , we only consider function f(kz). Put
eq.(4) into (6), we have

f(kz) =

{ −3, kz = 0
l0 · kz − (3 + l0)�log8(kz + 1)�+ l0, else

(7)

It can be easily derived that f(kz) can only be negative
at the very beginning of kz for l0 no less than 1. With the
increasing of kz , f(kz) has a tendency of raise, making
f(kz) has only one intersection point with zero. At this
intersection, we have f(kz) = kz ∗ l0 − 3, i.e.,

kz = 3/l0 (8)

Consequently, the boundary should be set at the point
where the average number of continuous zeros is equal to
3/l0.

The overall compression Algorithm is shown in
algorithm(1). For clearer demonstration, this algorithm
considers compression applied on one channel, compression
between different channels are independent according to
the third character exploited in section II. After dividing
the signal into blocks, we firstly calculate the Quantization
Table (QT ) for a sample(line 3-8), where F(i) is the DCT
coefficients of X(i) and low(i) is the indices of Low
Amplitude Components Lc. Then each block sample is
compressed with the Dual-Phase Encoding(Line 9-18).
S is assigned as the signs of Lc in Symbol Encoding
(line 11). Let Hc be the high amplitude component, it is

first quantized(line 13) then encoded by Hybrid Lossless
Encoding. The output of our algorithm includes the
compression code Y and the length of Symbol Encoding,
Z, serving as the separator between Symbol Encoding and
Hybrid Encoding for decompression.

Algorithm 1: Overall Compression Algorithm

Input: X , the signal; Sb, the block size; TLH , the
threshold between HAC and LAC; B, the
boundary within Hybrid Encoding

Output: Y , formatted compression result; Z, lengths
of Symbol Encoding codes for all blocks

1 Divide X into blocks of size Sb,
X(1),X(2), ...,X(N);

2 for i = 1, ..., N do
3 F(i) ← DCT (X(i));
4 low(i) ← find indices (F(i) < TLH);
5 Lc(i) ← F (low(i));%LAC
6 end
7 QT ← average over |Lc(i)|, i = 1, ..., N ;
8 Y ← [ ];
9 for i = 1, ..., N do

10 Hc(i) ← F(i); Hc(i)(low(i))← 0;
11 S ← sgn(Lc(i)); Y ← [Y S]; %Symbol

Encoding
12 Z(i) ← length(S);
13 HQ

c ← round(Hc(i)./QT );
14 H ← Huffman(HQ

c (1 : B)); Y ← [Y H ];
15 forall the x ∈HQ

c ((B + 1) : end) do
16 if (x �= 0), Y ← [Y Huffman(x)];
17 else Y ← [Y ZeroLength(x)];
18 end
19 end

V. EXPERIMENTAL RESULTS

A. Dataset

The dataset of our experiments comes from two male
rhesus monkeys (Macaca mulatta) by the BMI system
at Zhejiang University Qiushi Academy [6]. In this sys-
tem, each monkey was trained to perform a four-direction
centered-out task by turning a joystick according to some
prompt. After mastering this task, the monkey was implanted
with a multi-electrode array in the primary motor cortex
(M1) of its cerebral hemisphere contralateral to track the
neural signal as the hand moves. Each experiment takes
approximately 60 minutes.

The sample records 106 neurons’ signal simultaneously
from 96-electrode array, with 16-bit accuracy at a sampling
rate of 30 kHz. It produces a data stream with 5.76MB/s.
To verify our compression algorithm, we randomly selected
12 records; each has a length about 300s.
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B. Criteria Used

We use three criteria to evaluate our compression
method: Signal to Noise Ratio, Spike ratio and Compression
ratio.

1) Signal to Noise Ratio: In communication theory,
Signal to Noise Ratio (SNR) is used to judge the fidelity
of compressed data by comparing original signal with the
reconstruction error. Let So and Sr be the original signal and
recovered signal in a channel respectively, SNR is defined
by the power of So divided by the power of background
noise:

SNR(So, Sr) = 10 · log10
‖So‖22

‖So − Sr‖22
(9)

2) Spike ratio: High frequency components play a minor
role in SNR. To examine the preservation of spikes, the
Spike Ratio is taken into consideration. It measures the ratio
of spikes preserved after reconstruction. In our validation,
the well-known amplitude threshold technique [16] is used
for spike detection, where the threshold (Thr) is set as

Thr = α · σn, σn = median

( |x|
0.6745

)

(10)

where α is a constant factor, σn is an estimate of the
standard deviation of the background noise. A point is
regarded as the beginning of a spike with amplitude higher
than Thr. Notice that the spike ratio not merely counts the
spikes, but counts the spikes correctly matched.

3) Compression ratio: In addition to measuring the sig-
nal fidelity by SNR and the spike preservation, compression
ratio (CR) is also taken into consideration, from a data
reduction perspective. The compression ratio is defined as
the size ratio of compressed file to the original one.

C. Parameter setting

In this section, we investigate the choice of three param-
eters in our model: TLH , the threshold of Amplitude Filter;
ω, the scale of Quantization Table and Sb, the size of a block
in preprocessing.

1) The threshold between LAC and HAC: TLH , the
threshold between LAC and HAC determines the boundary
for Symbol Encoding and Quantization. As TLH increases,
more DCT coefficients are processed by Symbol Encoding,
bringing more loss while decreasing compression ratio.
Therefore, the determination of TLH can be viewed as a
tradeoff between distortion and compression ratio.

2) Quantization Table Scale: Quantization Table (QT) is
used by Symbol Encoding in our proposed method, which
is designed to be the average magnitude of Low Amplitude
Component. Therefore, QT increases if TLH gets higher; and
in this case the distortion increases. However, it is interesting
to know whether the compression result will be improved

by scaling QT, i.e. fine-tuning QT by multiplying different
factors ω from 0.5 to 2.5 with equal difference of 0.5.
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Fig. 6. Comparison of compression performance at different ω. Each curve
represents compression performance under a QT scale.

Results under different parameters settings are shown in
fig. 5. Each evaluation is the average result on the whole
dataset by a systematic variation of TLH and Quantization
Table multiplier ω. Accordingly, both SNR and Spike Ratio
go down with the increase of TLH , and ω=1 is always opti-
mal in the view of SNR and Spike ratio, and its compression
ratio ranks second.

To determine the selection of ω, signal fidelity is com-
pared under fixed compression ratio as shown in fig. 6. For
the same compression ratio (at horizontal axis), we see that ω
= 1 consistently outperforms the others. Such result validates
our setting of Quantization Table.

The choice of TLH depends on our requirement on
compression ratio and compression fidelity. For a desired
SNR higher than 30db and Spike ratio no less than 90%,
TLH = 24 is selected, resulting in an average compression
ratio of 17.75% (SNR 36.24dB and Spike ratio 92%).

3) Block size: The size of a block in preprocessing
reveals the precision in time domain. All the above experi-
ments are taken on a fixed block size of Sb = 1600, but it
is still a question how Sb changes compression result. The
evaluation is shown in fig. 7, with Sb tested between 1500
to 28500, fixing TLH = 24 and ω=1.

This figure illustrates that with the increasing of Sb,
the signal fidelity firstly increases and then decreases. This
phenomenon can be interpreted in the following way. First,
larger Sb brings more refined DCT coefficients, therefore,
decreasing the error in decompression. However, more co-
efficients are involved into the low amplitude component,
which means more loss according to the previous analysis.
Therefore, the increase and decrease of fidelity reflect the
tradeoff between the two factors. According to the given
experimental result, an optimal size of block is determined
at Sb = 7500, achieving an average compression ratio of
17.7%, SNR of 36.6dB and Spike ratio of 91.9%.

D. Effect of Symbol Encoding

Symbol Encoding focuses on those signals with lower
amplitude. We need to exploit whether it brings contribution
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to signal preservation. Given the parameters selected in the
last section, the improvement brought by symbol encoding
is shown in Table I.

TABLE I. SNR, SPIKE RATIO AND COMPRESSION RATIO WITH

AND WITHOUT SYMBOL ENCODING (LOW-AMPLITUDE)

Symbol Encoding SNR(db) SR CR

without 31.4 83.7% 13.1%
with 36.6 91.9% 17.7%

It is clear that taken the Low-Amplitude part into con-
sideration has to save more information, i.e., leads to higher
compression ratio, but the signal fidelity has been greatly
improved. This is achieved by the inherent distribution of
coefficients in the high frequency part. Therefore, symbol
encoding is adopted as an effective way to preserve high
frequency components.

E. Comparison with other approaches

Section I has mentioned some relevant work on neural
signal compression. However, due to the lack of public
data sets and other compression standards on extracellular
recording from motor cortex, the general data compression
methods and the state-of-the-art audio compression algo-
rithms are considered to be compared with our compression
algorithm. By investigating the compression result of both
lossless and lossy audio compression algorithm, we find that
our compression enables a balance between compression
ratio and fidelity.

1) Lossless compression: Lossless compression methods
produce exact reconstruction of the original file and storage

will be reduced by a more compact coding format. For audio
compression, Codecs like FLAC use linear prediction to
estimate the spectrum of the signal, achieving a compression
ratio of 50%-60% for general waveforms [11]. However,
unlike audio signal, neural signal is more complicate and
difficult to predict. Likewise, data file compression format
such as Zip, 7-Zip and RAR also cannot achieve a relative
low compression ratio. Table II shows the compression ratio
of different lossless compression techniques. The best com-
pression method for the given neural data is APE (Monkey’s
Audio), achieving lowest compression ratio 56.88%.

2) Lossy Compression: Different from lossless compres-
sion, lossy audio compression takes advantage of human
acoustic perception that is only sensitive to specific frequen-
cy band and amplitude, and only quantifies and encodes
the perceptible parts. As a state-of-the-art audio encoding
algorithm, Advanced Audio Coding (AAC) is used on neural
signal and compared with our coding method. AAC is a
part of MPEG-2 standard and provides better signal quality
than MP3 with 30% reduction of file size. Fig. 8 shows the
comparison between the two methods.

For audio compression, we use high bitrate ranging
from 300kbps to 600kbps, intending to achieve good recon-
struction performance. However, the result is not ideal for
extracellular recording. Fig.8 illustrates that our method is
higher than AAC in both SNR (exceeds by 46.4%) and Spike
ratio (exceeds by 80.4%), under the same compression ratio.
It implies that the characteristics of neural signal are quite
different from those of audio signal, so that conventional
methods fail to perform well on the neural signal.
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TABLE II. PERFORMANCE OF LOSSLESS COMPRESSION FOR COMPARISON

Lossless Compression Format Ours

Configuration
Audio Codec Archive File Format SNR=36db

Lossless WMA FLAC APE Zip RAR Spike Ratio=92%
Compression Ratio 70.89% 54.27% 53.08% 70.04% 60.91% 17.74%
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Fig. 8. Compression result comparing between AAC encoding and our
compression method.

F. Computational cost

Previous sections have demonstrated the ability of our
method on balancing compression ratio and reconstruction
error. At last, the compression efficiency is taken into con-
sideration. The following results come from the experiments
implemented using MATLAB. The initialization process to
get Quantization table, Huffman Code Table and boundary
in Lossless encoding needs 2.86Mb/s, the compression con-
sumes 0.13Mb/s and the decompression speed is 0.14Mb/s.

VI. CONCLUSION

In this paper, a lossy compression algorithm for motor
cortex extracellular recordings is given. We first exploit the
intra and inter channel relationship in motor cortex signal.
Then a dual-phase encoding is proposed based on spectrum
analysis. The prototype is successfully tested on the sampled
Rhesus’s motor cortex signals, achieving a compression
ratio of 17.7% with SNR values 36.6dB and preserving
92% spikes. The result is remarkable compared with other
biomedical signal compression methods, which achieves a
SNR of 15-26dB and compression ratio of 1%-20% without
consideration of the significant spike signal [7], [8], [13].

Our proposed method is validated on motor cortex ex-
tracellular recordings, but it may also be applied to other
extracellular recordings with further exploitation.
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