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Abstract—One of the leading diseases in women is breast 
cancer. The detection in an earlier stage is done by indicating 
the presence of architectural distortion (AD). An AD detection 
system with support vector machine is developed in this 
research. The 15 features are extracted from the fuzzy 
co-occurrence matrix and fractal dimension. The principal 
component analysis is also implemented to help in feature 
redundancy reduction. We found out that the best system for the 
training data set yields 91.67 % correct AD classification with 
0.93 sensitivity of detecting AD and 0.91 specificity of detecting 
true negative. The best result of the blind test mammograms is 
at 100.00 % correct AD classification with approximately 16 
false positive areas per image.  

Keywords—Architectural Distortion; Spiculated Mass; Fuzzy 
Co-occurrence; Fractal Dimension; Breast Cancer; Support 
Vector Machine 

I. INTRODUCTION 
Breast cancer causes a high mortality rate for women and 

keeps expanding in number. There is no recent discovery of 
the cause of the disease. To help decrease that rate, earlier 
detection stage is preferable because the treatment in this 
stage is more effective. One of important indications is 
architectural distortion [1]. Architectural distortion that does 
not result from benign disease, e.g., scar from a surgery, is a 
disruption of normal arrangement of the breast tissue 
resulting in a random pattern without an associated mass [1].  

There are many research works in breast cancer detection, 
e.g., [2–4], that do not indicate what kind of breast 
abnormalities are. Some other works are in the area of mass 
detection, e.g., [5–8]. The previous mentioned works provide 
good performance systems, however, it is more useful to 
identify the type of detected mass. Because the mass type, 
e.g., architecture distortion, is one of the factors in Breast 
Imaging-Reporting and Data System (BI-RADS), a quality 
assurance tool in mammography [1]. Although, there are 
several research works on architecture distortion (AD) 
detection [9–12], they often select region of interest (ROI) 

before hand. There are some other AD detection research 
works that do not utilize ROI [13, 14], however, the 
performance is around 70 – 80 %.  

In this paper, we develop an AD detection system using 
support vector machine without any preprocessing phase or 
ROI selection. In particular, the system can detect AD from 
other abnormalities, i.e, calcification, circumscribed masses, 
and spiculated masses.  

II. BACKGROUND THEORIES 

A. Fuzzy Co-occurrence Matrix 
A gray level co-occurrence matrix (GLCM) [15] is a 

second-order statistic of image. It is constructed by 
calculating the joint probability of occurrence of two gray 
values separated by a distance d. It is widely used for texture 
representation. However, in nature, texture might not be 
precisely repeating and it might have some ambiguity in 
itself. Hence fuzzy co-occurrence matrix [16, 17] may be 
another way to incorporate that ambiguity. The fuzzy 
co-occurrence matrix ( d

uvf⎡ ⎤= ⎣ ⎦F , where u and v are the 

concerned gray values) gives the frequency of occurrence of 
the fuzzy gray value u�  followed by a fuzzy gray value v�  and 
is defined as [16, 17] 

 
 ( ) ( )( ), ,min ,d

uv uI m n vI k
m n k

f ρ
ρ

μ μ= ∑∑∑∑ � �  (1) 

 
where u and v are all values in the set {0,1,…, Lev − 1 }( when 
Lev  is the number of gray level in the image) with the 
constraint that u v d− ≥ . I(m,n) and I(ρ,k) are the gray 
values at the pixel (m,n) and (ρ,k), respectively. We set the 
value of d to 1 for simplicity. uIμ �  and vIμ �  are symmetric 
triangular membership functions of crisp number I on the real 
line and is defined by [16, 17] 
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where u is the crisp counterpart of u� and α is a positive real 
number. At I = u, the membership value equals to 1 and the 
membership function is decreasing to 0 when ( )u I α− =  and 

( )I u α− = . 
We calculated 14 features, i.e., angular second moment, 

contrast, correlation, variance, inverse difference moment, 
sum average, sum variance, sum entropy, entropy, difference 
variance, difference entropy, two information measures of 
correlation, and maximal correlation coefficient as in [15] but 
with the fuzzy co-occurrence matrix F instead. 

B. Fractal Dimension 
Fractal dimension is an interesting textural feature. It has 

been used widely in many pattern recognition applications. 
Let a self-similar set (A) is a bounded set if A is the union of a 
number (Nr) of non-overlapping scaled copies of itself where 
r is the scaling factor [18]. The fractal dimension D of A is 

 

 
( )
( )

log
1log

rN
D

r
= . (3) 

 
Equation (3) is calculated as in [19, 20], i.e., partitioning an 

M×M image into grid of size s×s where 12
M s≥ ≥ . Hence, 

1 M
r s

⎢ ⎥= ⎣ ⎦  [17]. The number of boxes at (i,j) grid [20] is 

 ( ) ( ) ( )
2

1
, 1

s

r r
m

n i j w m m
=

= + ∑ g  (4) 

where ( ) ( ) ( ) ( )2 21 1 2 2, , , , , ,r r r r s sm g x y g x y g x y⎡ ⎤= ⎣ ⎦g …  (5) 

and ( ) ( ) ( )2 21 1 2 2, , ,r r r s sg x y g x y g x y≤ ≤ ≤… .w(m) is a 

weight and gr(x,y) is the gray level of the pixel (x,y) in the (i,j) 
grid. Please be noted that gr(m) in equation (4) is gr(xm,ym). 
The choice of w(m) [20] is 
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where 0≤L<U≤1. Since the total number of boxes (Nr) is the 
summation of the number of boxes (nr(i,j)) in all grids. Then 
the estimation of Nr is [19, 20] 
 

 ( )
,

,r r
i j

N n i j=∑ . (7) 

 
In the experiment, we vary the value of U from 0.55 to 0.95 

with step size of 0.05. The value of L is varied from 0.05 to 
0.45 with the same step size. 

C. Principal Component Analysis 
Although, we utilize 14 features from fuzzy 

co-occurrence matrix and 1 fractal dimension as features to 
the system, we also try to utilize the principal component 
analysis (PCA) [21] to reduce the redundancy of these 
features. Suppose n p×∈ ℜX  contains n samples with p 
dimensions. The covariance matrix Σ is 

 
 t∑ = ΛV V , (8) 

 

where V is an orthogonal matrix with eigenvectors as its 
column vectors. Λ is a diagonal matrix with the 
corresponding eigenvalues sorted in ascending order 
(λ1≤λ2≤…≤λp) as its diagonal elements. The transformation 
matrix p a×∈ ℜP  is used to select a eigenvectors (principal 
components (PCs)). The cumulative percent variance (CPV) 
[22, 23] is used to measure the percent variance captured by 
the first a PCs. The CPV is calculated as 

 1CPV( ) 100,   for 
(Λ)

a

k
k a p

trace
a

λ
== × ≤
∑

. (9) 

 
Then the uncorrelated data set Y is 
 
 Y = XP. (10) 

D. Support Vector Machine 
We utilize support vector machine [24] as a classifier tool. 
The radial basis kernel function used in this work is 
 

 ( )
2

2, exp
2

i
iK

σ

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

x x
x x . (11) 

 
We also utilize a polynomial learning kernel function. This 
function is defined by 
 

  ( ) ( ), 1
pT

i iK = +x x x x . (12) 

 
In the experiment, we vary the value of σ from 0.5 to 3.5 with 
the step size of 0.5. The value of p is varied from 2 to 6 with 
step size of 1.  

III. EXPERIMENTAL RESULTS 
 We performed the experiment on a standard data set from 
Mammographic Image Analysis Society (MIAS) [25]. There 
are 322 mammograms with the size of 1024×1024 containing 
7 classes, i.e., architectural distortion (AD), asymmetry 
(ASYM), calcification (CALC), circumscribed masses 
(CIRC), other ill-defined masses (MISC), spiculated mass 
(SPIC), and normal (NORM). In our cases, we did not use 
mammograms from ASYM and MISC classes because of 
several varieties of shapes in these 2 classes. Moreover, the 
number of samples in MISC class is limited. Also, in the real 
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world diagnosis, it is known that ASYM class is associated 
with several abnormalities, e.g., AD, CALC, and etc. We 
selected 71 mammograms, i.e., 42 NORM, 6 CALC, 6 CIRC, 
10 AD, and 7 SPIC mammograms to be our training data set. 
For each mammogram in the training data set, we manually 
selected an image with the size of 64×64 and collected them 
in a signature library. Hence we had 42 NORM, 21 CALC, 21 
CIRC, 42 AD, and 42 SPIC sub-images in the signature 
library. Examples of sub-images in the signature library are 
shown in figure 1. The remaining 222 mammograms, i.e., 163 
NORM, 21 CALC, 17 CIRC, 9 AD, and 12 SPIC 
mammograms wee used as the blind test set. 
 

   
                   (a)                             (b) 

  
                             (c)                              (d) 

 
(e) 

Fig. 1. Sub-image in the signature library from (a) AD, (b) SPIC, (c) CIRC, 
(d) CALC, and (e) NORM classes 

 

 

TABLE I.  THE BEST VALIDATION RESULT OF SVM1 

Polynomial Kernel (non PCA) 
p U0.55  

L0.45 
U0.60 
L0.40 

U0.65  
L0.35 

U0.70  
L0.30 

U0.75  
L0.25 

U0.80  
L0.20 

U0.85  
L0.15 

U0.90  
L0.10 

U0.95  
L0.05 

2 82.74 82.74 82.74 82.14 82.74 82.74 83.33 82.74 83.33 
3 83.93 84.52 85.71 86.31 85.12 86.31 83.33 83.93 80.95 
4 80.95 80.95 82.74 82.14 83.93 83.93 85.71 83.93 83.33 
5 77.38 79.17 80.36 80.95 80.36 80.95 80.95 80.36 80.36 
6 79.76 76.19 73.81 75.60 77.38 80.36 82.74 80.36 82.14 

Polynomial Kernel (PCA) 
p U0.55 

L0.45 
U0.60 
L0.40 

U0.65 
L0.35 

U0.70 
L0.30 

U0.75 
L0.25 

U0.80 
L0.20 

U0.85 
L0.15 

U0.90 
L0.10 

U0.95 
L0.05 

2 78.57 77.98 82.74 82.74 83.33 83.33 82.14 86.90 85.12 
3 82.14 80.36 81.55 82.14 82.14 81.55 80.95 82.74 82.14 
4 79.76 32.14 84.52 84.52 82.74 83.93 82.14 80.36 79.17 
5 77.98 80.95 82.14 82.74 82.74 83.33 79.76 80.95 79.17 
6 76.19 76.19 82.14 87.57 77.98 81.55 79.17 76.79 78.57 

RBF Kernel (non-PCA) 
σ U0.55 

L0.45 
U0.60 
L0.40 

U0.65 
L0.35 

U0.70 
L0.30 

U0.75 
L0.25 

U0.80 
L0.20 

U0.85 
L0.15 

U0.90 
L0.10 

U0.95 
L0.05 

0.5 83.33 85.71 85.71 85.71 85.71 86.90 86.90 86.90 85.12 
1 83.93 85.71 86.31 86.31 89.29 89.29 88.10 86.31 85.12 

1.5 83.33 82.74 83.33 83.33 83.33 83.33 83.33 82.74 82.74 
2 83.93 82.74 83.33 83.33 83.33 83.33 83.33 82.74 82.74 

2.5 81.55 81.55 80.36 80.95 80.95 80.36 80.36 80.36 80.95 
3 79.17 78.57 79.17 78.57 78.57 78.57 78.57 79.17 79.17 

3.5 78.57 78.57 78.57 78.57 78.57 78.57 78.57 78.57 78.57 
RBF Kernel (PCA) 

σ U0.55 
L0.45 

U0.60 
L0.40 

U0.65 
L0.35 

U0.70 
L0.30 

U0.75 
L0.25 

U0.80 
L0.20 

U0.85 
L0.15 

U0.90 
L0.10 

U0.95 
L0.05 

0.5 71.43 74.40 74.40 75.60 75.00 74.40 76.19 75.00 76.79 
1 85.71 85.71 86.31 86.90 86.31 88.10 88.10 88.10 86.31 

1.5 84.52 85.71 86.90 86.31 85.12 87.50 86.31 86.90 85.12 
2 83.93 84.52 84.52 86.90 83.93 85.12 84.52 85.71 82.74 

2.5 83.93 82.74 82.14 82.14 82.74 83.33 82.74 83.93 83.33 
3 84.52 82.14 82.14 82.74 82.74 82.74 83.33 83.33 82.74 

3.5 80.95 81.55 81.55 80.36 81.55 80.95 81.55 80.36 81.55 
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 The support vector machine (SVM) is known as a binary 
classifier tool. Since, we would like to detect AD out of the 
other 4 classes, we trained 2 SVMs to handle multi-class 
problem. We divided the train data set in the signature library 
into 2 groups. The first group called ARSP was the 
combination between AD and SPIC. The other group called 
OTHER was the combination of the rest 3 classes. We trained 
the first SVM (SVM1) on the first and second group. We also 
trained the second SVM (SVM2) with the AD and SPIC 
training data set. Figure 2 shows the overall system. 
 In the training process, we utilized leave-one-out cross 
validation scheme to help the generalization. From the 
training result of the first SVM shown in table 1, we can see 
that the feature set from U=0.75, L=0.25 and without PCA  
trained with SVM with RBF kernel (σ = 1) yields the best 
validation result , i.e., the correct classification is 89.29% 
with 0.89 sensitivity of detecting ARSP and 0.89 specificity 
of detecting true negative. The confusion matrix in this case is 
shown in table 2. The best validation result of the SVM2 is 
shown in table 3. We can see that the best result is at 95.24% 
from 4 models. We manually selected the SVM with RBF 
kernel (σ = 3) for the feature set from U=0.85, L=0.15 and 
with PCA out of 4 best models. The confusion matrix of this 
model is shown in table 4. From the confusion matrix, we can 
see that this model yields 95.24% correct classification with 

0.93 sensitivity of detecting AD, 0.98 specificity of detecting 
SPIC. 

TABLE II.  CONFUSION MATRIX OF THE SELECTED MODEL FOR SVM1 

 
 

Desired Output 

ARSP OTHER 

Program 
class 

ARSP 75 9 

OTHER 9 75 

 

 
Fig. 2. The SVM model for  multi-class problem. 

 

TABLE III.  THE BEST VALIDATION RESULT OF SVM2 

Polynomial Kernel (non-PCA) 
p U0.55  

L0.45 
U0.60 
L0.40 

U0.65  
L0.35 

U0.70  
L0.30 

U0.75  
L0.25 

U0.80  
L0.20 

U0.85  
L0.15 

U0.90  
L0.10 

U0.95  
L0.05 

2 89.29 90.48 83.33 84.52 86.90 86.90 88.10 86.90 85.71 
3 85.71 88.10 85.71 86.90 85.71 84.52 84.52 89.29 83.33 
4 80.95 80.95 82.14 80.95 82.14 83.33 84.52 84.52 83.33 
5 82.14 83.33 83.33 82.14 85.71 83.33 88.10 84.52 82.14 
6 76.19 79.76 77.38 75.00 73.81 87.57 76.19 76.19 75.00 

Polynomial Kernel (PCA) 
p U0.55 

L0.45 
U0.60 
L0.40 

U0.65 
L0.35 

U0.70 
L0.30 

U0.75 
L0.25 

U0.80 
L0.20 

U0.85 
L0.15 

U0.90 
L0.10 

U0.95 
L0.05 

2 91.67 91.67 86.90 85.71 85.71 86.90 88.10 88.10 88.10 
3 86.90 90.48 86.90 88.10 86.90 86.90 84.52 90.48 89.29 
4 84.52 85.71 84.52 83.33 84.52 85.71 84.52 83.33 84.52 
5 76.19 76.19 75.00 77.38 77.38 77.38 78.57 79.76 79.76 
6 72.62 72.62 71.43 72.62 72.62 70.24 71.43 73.81 76.19 

RBF Kernel (non-PCA) 
σ U0.55 

L0.45 
U0.60 
L0.40 

U0.65 
L0.35 

U0.70 
L0.30 

U0.75 
L0.25 

U0.80 
L0.20 

U0.85 
L0.15 

U0.90 
L0.10 

U0.95 
L0.05 

0.5 90.48 90.48 90.48 89.29 88.10 90.48 92.86 91.67 90.48 
1 88.10 92.86 85.71 88.10 86.90 89.29 89.29 89.29 89.29 

1.5 80.95 80.95 79.76 78.57 78.57 77.38 77.38 72.62 73.81 
2 73.81 79.76 73.81 76.19 77.38 76.19 77.38 75.00 72.62 

2.5 71.43 76.19 72.62 73.81 77.38 78.57 76.19 73.81 72.62 
3 67.86 72.62 67.86 70.24 70.24 72.62 72.62 71.43 72.62 

3.5 67.86 71.43 67.86 70.24 70.24 66.67 69.05 69.05 67.86 
RBF Kernel (PCA) 

σ U0.55 
L0.45 

U0.60 
L0.40 

U0.65 
L0.35 

U0.70 
L0.30 

U0.75 
L0.25 

U0.80 
L0.20 

U0.85 
L0.15 

U0.90 
L0.10 

U0.95 
L0.05 

0.5 70.24 66.67 69.05 71.43 69.05 69.05 67.86 66.67 69.05 
1 80.95 80.95 80.95 80.95 80.95 88.95 80.95 80.95 80.95 

1.5 86.90 88.10 88.10 85.71 86.90 84.52 86.90 85.71 85.71 
2 94.05 92.86 91.67 91.67 91.67 92.86 91.67 90.48 90.48 

2.5 94.05 94.05 95.24 94.05 95.24 94.05 95.24 94.05 90.48 
3 92.86 91.67 91.67 91.67 94.05 94.05 95.24 94.05 90.48 

3.5 88.10 90.48 90.48 88.10 89.29 89.29 90.48 90.48 89.29 

ARSP 
group  
v.s. 

OTHE
R group 

SVM1 

ARSP 

OTHER 

SVM2 

AD 

SPIC 
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TABLE IV.  CONFUSION MATRIX OF THE SELECTED MODEL FOR SVM2  

 
 

Desired output 

AD SPIC 

Program 
output 

AD 39 1 

SPIC 3 41 

 
Once we have SVM1 and SVM2 ready, the system was 

tested with all of the training data set in the signature library. 
The confusion of the result of training data set is shown in 
table 5. We can see that the correct classification rate is 
91.67% with 0.93 sensitivity of detecting AD and 0.91 
specificity of detecting true negative. 

TABLE V.  CONFUSION MATIX OF THE TRAINING DATA SET IN THE 
SIGNATURE LIBRARY 

 
 

Desired output 
AD SPIC OTHER 

Program 
output 

AD 39 4 6 

SPIC 1 37 0 

OTHER 2 1 78 

 

   
                Original                        
Fig. 3. An example of the successful result from the AD detection system. 
The expert’s opinion (AD area) is shown in circle. The result from the AD 
detection system is in yellow spots and some spots in the AD area can pass 
through all threshold values. 

 We tested the system with the blind test data set. Since, 
the size of the mammograms were 1024×1024, we scanned 
64×64 pixels window with the step size of 16 pixels from top 
to bottom and left to right in order to generate the 14 features 
from fuzzy co-occurrence matrix and 1 feature from fractal 
dimension. These 15 features from U=0.75, L=0.25 and 
without PCA were used in SVM1. If any area was classified 
as ARSP, these 15 features from U=0.85, L=0.15 and with 
PCA would be used in SVM2. The result from both SVM’s 
was put at the center of that window. An example of 
successful AD detection is shown in figure 3. In this figure, 
some of the AD detected areas can pass through all threshold 
values. An example of unsuccessful AD detection is shown in 
figure 4. If the threshold value is set to 0.95, the system 
cannot detect the AD area. 

   
           Original                   T = 0.8 

 
T = 0.95 

Fig. 4. An example of the unsuccessful result from the AD detection 
system. The expert’s opinion (AD area) is shown in circle. The result from 
the AD detection system is in yellow spots and all spots in the AD area 
cannot pass through if threshold = 0.95. 
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Fig. 5. ROC curve of architectural distortion detection. 

To show the ability of the system, we created the receiver 
operating characteristics (ROC) curve. We counted false 
positive as one false positive if all pixels are connected as 
8-connected component. The ROC curve of the AD detection 
is shown in figure 5. From the AD detection ROC curve, we 
can see that the best result is at the threshold = 0.45 with 
100% correct AD classification with approximately 16 false 
positive areas per image. The reason of many false positive 
areas per image might be because window size of 64×64 is 
smaller than that of many architectural distortion areas. The 
system might look at something that is similar to the ones in 
signature library and classify those areas as AD instead of 
their corresponding true classes. In addition, we also scan a 
window with a step of 16, this may make the system miss 
some points that are important for the classification task. 
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Fig. 6. ROC curve of spiculated mass detection. 

   
Fig. 7. An example of the unsuccessful result from the SPIC detection 
system. The expert’s opinion (SPIC area) is shown in circle. The result from 
the SPIC detection system is in red. 

   
Fig. 8. An example of the unsuccessful result from the SPIC detection 
system. The expert’s opinion (SPIC area) is shown in circle. The result from 
the AD detection system is in yellow. There is no SPIC detection 

Since, there are two types of result from SVM2, i.e., one is 
for AD and the other is for SPIC. We also plot the ROC curve 
of SPIC detection as shown in figure 6. We can see that the 
best detection result is at 58.33% with approximately 8 false 
positive areas per image. The reason that SPIC detection is 
not quite good is because sometimes there are calcification 
areas included in spiculated mass as shown in figure 7. The 
system will classify them as OTHER class in SVM1 and, 
hence, they are discarded from SVM2. Sometimes there is no 
spike boundary around the SPIC areas at all as shown in 
figure 8. Again, they will be classified by SVM1 as OTHER 
and are discarded from SVM2. In figure 8, there is no SPIC 
detection result at all because there is no area similar to SPIC 
areas in the signature library. Again, scanning a window with 
a step of 16 may make the system miss some points that are 
important for the classification task. 

IV. CONCLUSION 
In this paper, we develop an architectural distortion (AD) 

detection system with support vector machine (SVM). We 
utilize 14 feature set from the fuzzy co-occurrence matrix and 
another feature from a fractal dimension. We also implement 
the principal component analysis to reduce a chance of 
feature redundancy. We found that the best system for the 
training data set yields 91.67 % correct AD classification with 
0.93 sensitivity of detecting AD and 0.91 specificity of 
detecting true negative.  The best result of the blind test 
mammograms is at 100.00 % correct AD classification with 
approximately 16 false positive areas per image.  

We also report the best blind test mammograms result of 
the spiculated mass (SPIC) detection. The best result is at 
58.33 % with approximately 8 false positive areas per image. 
This shows that SPIC detection is a more difficult task than 
AD detection. The reason of difficult SPIC detection is that 
some SPIC areas are embedded inside calcification area or 
there is no clear spike boundary.  
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