
  

  Abstract—Neuroscientists usually determine similarity 
between EEG electrode signals, by a measure of pairwise linear 
dependence among them. However, recent research indicates 
the drawbacks of analyzing the pairwise dependence of signals 
instead of analyzing the simultaneous joint interdependence 
among them. To overcome this problem we propose a novel 
similarity measure known as probabilistic relative correlation. 
Our approach is unique because our similarity measure allows 
the electrodes to have probabilistic similarity measures and 
recognizes emotion dependent structures even from mismatched 
sequences of correlation. We further validate our proposed 
similarity measure by testing it on the well-known emotion 
recognition problem. Our experiments have noteworthy 
implications towards realizing the neural signatures of discrete 
emotions and will allow for the better understanding of 
neurological pathways associated with different emotional 
states. To identify the most active neurological pathways in 
brain during an emotion, we adapt the minimal spanning tree 
algorithm.  

Keywords— Emotion recognition; Brain Maps; Support 
Vector Machine; Similarity Measures; Brain-computer interface; 
Electroencephalography 

I. INTRODUCTION 
 The ease with which the brain completes seemingly 
complex tasks like pattern recognition and reasoning with 
words has fascinated scientists. Researchers have consistently 
argued that a thorough understanding of how the brain 
organizes computation, is a necessary prerequisite of building 
systems which can rival brain-like computation [18], [19]. 
This covers many aspects including synthesis and recognition 
of emotions. There has been widespread research aiming at 
emotion recognition from different modalities such as 
gestures, facial expressions and voice [1], [2]. Although these 
modalities can be used to recognize emotions, they can be 
controlled voluntarily. EEG signals, however, are beyond the 
control of an individual. There has been a lot of work in 
deciphering emotion from EEG signals [3], [4] as well as to 
determine the dependency of brain region activities on 
emotional states of a person [5]. However, deciphering neural 
signatures for different emotions has remained a difficult 
task, primarily because of a chain of interactions in the brain 
rather than just isolated activities of different brain regions, 
 

  

during emotion arousal [6]. Similarity measures of various 
types have been proposed to understand the relation in 
between EEG electrode signals [7], [8] but they were lacking 
in the fundamental requirement that brain signals exhibit not 
only pairwise but simultaneous interdependence [9]. 

According to Davison’s motivational model, left brain is 
associated with positive emotions and right brain is 
associated with negative emotions [10]. However there is not 
much agreement about this according to all researchers [11], 
[12].Our approach to decipher neural signatures of brain 
activity during emotion arousal is different. Here, we propose 
a new technique of decoding the neural signaling structure 
and effectively summarize the complex structure obtained to 
create a more comprehensible sub-structure. To examine the 
interdependency between brain signals obtained from various 
regions, we propose a new measure of similarity called as 
probabilistic relative correlation. This measure is dependent 
on linear correlation among brain signals and is more robust 
than other dependency measures primarily because of three 
factors.  

First it considers not only the pairwise interdependence 
between brain signals but the relationship of a signal with all 
other signals as a whole. Secondly, it is tolerant to the 
intra-emotion changes in correlation patterns because it uses 
the concept of relativity rather than absolute values. Lastly 
the similarity measure allows the electrodes to have 
probabilistic relationships, such that some relationships are 
stronger than the others. We have compared our results with 
well-known similarity measures like linear correlation, 
correntropy [8], coherence [7] and Itakuara distance [17]. Our 
method of similarity measurement has outperformed all the 
other four similarity measures in the domain of emotion 
recognition. Finally we compute a summarized structure to 
propose the signaling pathway which is most likely to be 
associated with a specific emotion. 

II. PRINCIPLES AND METHODOLOGY 
 In our experiments, we attempt to decode the chain of 
signaling pathways that is active in the brain during the 
arousal of a specific emotion. To find out if the different brain 
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regions are interdependent (exchanging signals), we analyze 
the linear correlation among the different EEG signals 
specific to the considered brain regions. Next to overcome the 
problems associated with pairwise dependency measures, we 
propose probabilistic relative correlation. The probabilistic 
relative correlation is a measure of the probability that an 
EEG signal from an electrode position is relatively more 
linearly correlated to another. Our next task is to classify 
emotion from the obtained probabilistic relative co-relation 
matrices. The probabilistic relative correlation matrices may 
be viewed as adjacency matrices which indicate brain region 
connectivity and may be used to create brain region 
connectivity graph. Finally to conclude about the most active 
neurological pathways associated with an emotion, we need 
to eliminate undesirable connectivities in the brain map. To 
do so, we employ the minimal spanning tree algorithm such 
that it creates a spanning tree which connects the strongest 
pathways in the brain region connectivity graph. The details 
of implementation are given in the following sub-sections. 
The overall scheme is indicated in Fig. 1. 

A. Analyzing linear interdependencies 
 In order to identify the mutual interrelationship between 
brain signals of different regions, we adopt the well-known 
linear dependency measure known as Pearson’s correlation 
coefficient. The correlation between any two pairs of 
electrode signals called cross-correlation. Thus for the set of 
14 electrode channels we have a 14×14 matrix in which each 
correlation coefficient with respect to all other electrode 
signals is stored The Pearson’s correlation coefficient is 
evaluated as follows [13]: 
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Here,  is the Pearson’s correlation coefficient, which 
indicates linear dependence between signals x and y. x  is the 
average value of signal x, y  is the average value of the signal 
y, n is the number of samples of the signal that we have, ix  is 

the ith value of the signal x and iy is the ith value of signal y. It 
may be noted here that the correlation matrix obtained will be 
symmetric because the linear correlation between any two 
signals is bi-directionally same. For instance the sample 
correlation between four electrode signals for the emotion 
fear is given in Table I. 

B.  Creating Relative Correlation Adjacency Matrix 
(RCAM) 

From our experiments it was observed that the order in 
which the electrodes were linearly dependent was more 
relevant to the emotional state than the correlation values 
themselves. It was further observed that the ordering of linear 
dependencies was not strict but vague. Hence we coined the 
expression of relative correlation by which, for a given 
reference electrodes we would identify the 7 most linearly 
dependent electrode connections (among the considered 14 
electrodes) as strong connections.  

C. Creating Probabilistic Relative Correlation Adjacency 
Matrix (PRCAM)  
 It was observed that though the dependency graphs of the 
same emotions are similar but not the same. Thus it was 
concluded that some dependencies which mostly hold are 
relatively stronger than the others dependencies which do not 
hold in most cases. Thus we constructed PRCAM which 
would contain the probabilities of a connection to hold for 
each specific emotion. In order to construct the PRCAM we 
show the subject five different video clips eliciting the same 
emotion. For each of the five clips we construct an adjacency 
matrix .The PRCAM for an emotion is constructed by taking 
the element-wise average of the five obtained relative 
correlation adjacency matrices. A sample calculation of a 
probabilistic dependency graph according to three RCAMs is 
shown below. From n RCAM we create a single PRCAMs by 

constructing a matrix C such that 
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n is the number of RCAMs considered,  
is the element of the kth adjacency matrix which 

Fig. 1: General Scheme adopted. MST: Minimal Spanning Tree, SVM: Support Vector Machine. 
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belongs to row i and column j. 

D. Classification of an unknown emotion by using 
Probabilistic Relative Correlation Matrices 
 Each subject is shown five videos which would induce the 
subject with specific emotion, say fear. For each of the video 
clip, we can construct a RCAM. By consulting the five 
RCAMs we now construct a PRCAM. An unknown person is 
shown five videos inducing an emotion. The PRCAM is 
similarly computed for the unknown person. A sample 3D 
surface plot of PRCAM for emotion fear is shown in Fig. 2. In 
order to classify the emotion indicated by the PRCAM 
obtained from EEG Signals we first train a Support Vector 
Machine (SVM) classifier with the PRCAM of all the 
emotions (Fear, Happy, Sad, Relax). Since SVM is a linear 
classifier we reshape the m×n PRCAM into a 1×m.vector and 
use it for training. This reshaping is done by placing all rows 
sequentially in the new row vector of (1×mn) dimension. The 
SVM classifier is then asked to classify the reshaped 
probabilistic adjacency graph of the test emotion. Since SVM 
is a binary classifier, first the emotions are classified as fear 
and non-fear category, the non-fear category is then 
subsequently divided into two sub-groups and so on till all the 
emotions have been classified.  

E. Summarizing Signaling Pathways from PRCAMs 
 To plot the connections between any two electrodes, say i 
and j, we connect them with a color which represents the 

maximum strength of connection among the connections i to j 
and j to i. The connection strength is obtained from the 
PRCAM. We draw these connections in Fig. 3 with colored 
edges such that blue represents weak connections while green 
represents strong connections. Next we draw a filtered 
connectivity map of those connections whose probabilistic 
values are greater than 0.5(threshold value). To create a 
summarized signaling pathway we choose those edges from 
the connectivity graph, which have been selected by an 
adapted version of minimal spanning tree algorithm (Fig. 4). 

 
Fig. 2: 3D surface of sample PRCAM 

 

           
Fig. 3: Signal Connectivity (based on relative correlation for Fear a) before Thresholding b)after Thresholding (1 to 14 denote 

the electrode positions) 
 

(a)               (b) 

 
Fig. 4: Spanning tree for emotion fear 

 
  
(Node 1 to 14 denote electrode positions. To construct the spanning tree we use Prim’s algorithm, which is a greedy algorithm 
as it selects the locally available edge with least weight and adds it to the spanning tree. This process is repeated till the all the 
vertices of the graph have been joined. Time complexity is O (E*log(N)), where N and E are the number of nodes and edges 
respectively.) 
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F. Illustrative examples 
 Example 1: Suppose, we analyze the cross-correlation 

among the EEG signals generated by each any four electrode 
positions, say 1, 2, 3 and 4 and record them as in Table I .The 
relatively correlation adjacency matrix (Table II) is simply 
formed by creating another table in which the highest two 
cross-correlations in each row (of Table I) is marked as 1 and 
rest are marked as 0. The RCAM named r’ thus created stores 
the relatively stronger connections among the all possible 
electrode connections. Similarly for, a table containing 
cross-correlations among 14 electrode positions, we may 
choose to represent the 7 strongest cross-correlations as 1 and 
rest as 0. 

TABLE I : CORRELATION MATRIX R 
 
 
 
 
 
 
 
 
 

 
TABLE II: RELATIVE CORRELATION ADJACENCY MATRIX R’ 

 
 
 
 
 
 
 
 It may be noted here that the RCAM will not always be 
symmetric like the linear correlation matrix because in 
example 1 we observe that the cross-correlation of electrode 1 
is maximum with electrode 3 and 2.For electrode 4, 
electrodes 1, 2 hold the highest cross-correlation among other 
electrodes. From this RCAM we can now construct a 
dependency graph (Fig. 5). The link from node i to node j 
indicates that i is relatively more correlated to node j as 
element  of RCAM is 1. Here i indicates column number 
and j indicates row number.   

Fig. 5: Dependency graph obtained from table II 

 
 
Example 2: Let The RCAMs obtained for 3 video clips for 
the emotion fear be matrices A1, A2, A3 (Table III) 
 
 
 
 
 
 

TABLE III A: MATRIX A1    TABLE III B : MATRIX A2    TABLE III C:MATRIX A3 

 
 After adding the matrices element wise and dividing each 
element with 3(number of matrices) we obtain the 
probabilistic adjacency matrix. C (Table IV). Each element in 
the matrix C is represented by ci,j were i indicates row 
number, j indicates column number. 

     TABLE IV: MATRIX C (PRCAM) 
 

 
 
 
 
 
 

 From the PRCAM obtained we construct a probabilistic 
dependency graph by assigning the weight cij to the directed 
node which goes from node i to j. Thus for the PRCAM given 
in table IV we obtain a graph as indicated in Fig. 6. The graph 
is divided into 4 parts (each part representing the connections 
of a single electrode with others) for the sake of clarity in 
representation. 

Fig. 6: Strong connections of a) electrode 1 b) electrode 2 c) 
electrode 3 d) electrode 4 

 
        (a)                   (b) 

         
         (c)                     (d) 
 
 It is observed from the maps that all the brain regions 
intercommunicate when a subject feels an emotion. However 
we need to summarize the sequence of these connections so 
that we can arrive at a conclusion about the most probable 
pathways that that are activated in brain during arousal of a 
specific emotion. To do so, we find out the minimum 
spanning tree of the probabilistic dependency graph obtained 
from PRCAM of each emotion. A spanning tree is a tree 
which connects all the vertices. A minimal spanning tree is 
the spanning tree which has minimum weight among all other 
spanning trees. But in our case, we need to find a spanning 
tree in which the edges with maximum weights are 
connected. To do this we take the PRCAM and simply reverse 
the weights by subtracting them from 1 and adding a small 

 1 2 3 4 

1 0 0.99986 0.99971 0.9987 

2 0.99986 0 0.9887 0.9624 

3 0.99971 0.9887 0 0.9512 

4 0.9987 0.9624 0.9512 0 

 1 2 3 4 

1 0 1 1 0 

2 1 0 1 0 
3 1 1 0 0 

4 1 1 0 0 

 1 2 3 4 

1 0 1 1 0 
2 0 0 1 1 
3 1 1 0 0 

4 0 1 1 0 

 1 2 3 4 

1 0 1 1 0 

2 0 0 1 1 

3 1 1 0 0 

4 1 1 0 1 

 1 2 3 4 

1 0 1 1 0 

2 1 0 1 0 

3 1 1 0 0 

4 1 1 0 0 

 1 2 3 4 

1 0 1 1 0 
2 0.33 0 1 0.66 
3 1 1 0 0 

4 0.66 1 0.33 0 
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constant a so that weights which are 1 do not become zero. 
After this we find the minimal spanning tree. Finally we 
reverse the weights of the edges again and hence get a 
spanning tree in which edges with highest probabilities are 
connected. The direction of edges is chosen arbitrarily, later 
the direction of edges is adjusted by considering occipital 
lobe as the source of signals, since the stimulus is visual. For 
e.g. spanning tree obtained for the emotion fear is indicated in 
Fig. 4. Similarly, we construct spanning tree for all other 
concerned emotions. Since the subjects are shown visual 
stimuli, the emotion is considered to originate at occipital 
lobe. From the connectivity tree obtained we infer the 
probable pathways which occur during the arousal of an 
emotion. It may be noted that in Fig. 4 the arrows are drawn 
for brevity and do not represent which node is source and 
which one is sink. The results obtained by considering 
occipital lobe as the source is indicated in Fig. 10 (a) for 
emotion Fear. 

III.  EXPERIMENTS 

A. Stimulus Preparation 
The stimulus set is prepared by collecting 10 videos of the 

following emotions (i) Happiness (ii) Sadness (iii) Fear (iv) 
Relaxation. Between each video there is a blank frame of 30 
seconds. 5 of the videos of each emotion is shown to a subject 

to prepare the training probabilistic dependency graph. To 
make sure that this dependency graph obtained represents the 
emotion and not the stimuli, EEG responses corresponding to 
the 5 remaining videos are used to make the test probabilistic 
dependency graph for each specific emotion. Some sample 
video stimuli are shown below (Fig. 7).  

B. Data Acquisition and Filtering 
 The subjects are shown the prepared visual stimuli in a 
noise-free environment. Special seating arrangement is made 
for the subject with cushion and armrests. The subject 
receives audio visual stimuli from a laptop equipped with 
high quality graphics and headphones .The experiment is 
conducted on 10 subjects: 5 male and 5 female in the age 
group 24±5. The data is acquired using 14 channel wireless 
Emotive headset [14]. Alpha band is found to have 
significance in emotional feelings of a person [15], 
[16].Hence we design a band-pass Chebyshev filter of order 
10 to filter the alpha band. We now use the filtered raw 
signals for further analysis. For construction of relative 
correlation adjacency matrix we consider the relative 
correlation of all the 14 channels (AF3, F7, F3, FC5, T7, P7, 
O1, O2, P8, T8, FC6, F4, F8 and AF4) with each other. We 
thus have a 14×14 matrix containing relative correlation 
values.   

Fig. 7: Stimuli for emotion a) relax b) fear c) sad d) happy 

 
 (a)  

 
(b) 

 
(c) 

 
  

 
 

(d) 
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C. Experimental Results 
 For each emotion considered we construct a PRCAM, with 
the connection strength ranging between zero and one. Each 
of the numbers along the X and Y axes from 1 to 14 represent 
the 14 electrodes AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, 
FC6, F4, F8 and AF4 in sequence. PRCAM, we consult 5 
RCAM. The connections which hold in all the 5 matrices are 
assigned a value of 1(represented by deep red), and the 
connections which do not occur in any of the graphs is 
assigned a value of 0(represented by deep blue) and so on. 
The 2D surface thus formed by representing the connection 
strength between electrode signals is represented as a contour. 
The sample 2D Surface maps obtained for emotions fear, 
sadness, happiness and relaxation are given in Fig. 8. It may 
be noted here that the connection strength of a node with itself 
(say 14 and 14) is always zero as auto co-relation is not 
considered. This gives rise to a diagonal sequence of blue 
squares across the map. 

Fig. 8: 2D Surface plots of adjacency matrices of a) Fear, b) 
Happy, c) Relax and d) Sad 

 
 (a) 

 
 (b) 

 
 (c) 

 
 (d) 

 
 From the above surface plots of the adjacency matrix we 
find that most of the electrodes are linearly correlated. Almost 
each electrode is bi-directionally connected to every other 
electrode with varying strength. A sample 2D surface plot of 
PRCAM obtained for unknown emotion is indicated in Fig. 9. 

Fig. 9: 2D Surface Plot of adjacency matrix of an unknown  
Matrix 

 
D. Performance Analysis 
 Each of the 10 subjects, are shown 10 videos inducing an 
emotion say fear. Thus we have a total of 100 instances for a 
given emotion. These instances are divided into subgroups of 
5 instances, each to form a probabilistic adjacency graph. 
Thus we create 20 probabilistic graphs of the same emotion. 5 
among the 20 graphs are used for training and the remaining 
15 graphs are used for testing. The classification accuracies 
obtained for each emotion are listed in Table V.  

TABLE V: CLASSSIFICACTION ACCURACY OF THE PROPOSED 
TECHNIQUE FOR DIFFERENT EMOTIONS 

 

Emotion Classification 
Accuracy 

Fear 93.33% 
Happy 86.67% 

Sad 86.67% 
Relax 60% 

Average 
Accuracy 81.66% 
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Fig. 10: Signalling pathways and their summarizations(using spanning tree and thresholding) for emotions  a)fear b)happy 
c)relax c)sad

 

      
(a) 

              
(b) 

 
(c) 

 
(d)
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spanning tree) 
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 To test the validity of probabilistic relative correlation, we 
tested how it performed in classifying emotions in 
comparison to other dependency measures. The results of our 
analysis as tabulated in Table VI. In our experiments with non 
–relative dependency measures (Correlation, Coherence, 
Crossentropy), we did not construct adjacency graphs, rather 
we fed the SVM directly with the absolute dependency metric 
values. It was hence concluded that the relative dependency 
rather than absolute dependency was more relevant to find out 
emotional states.(Table VI) 
 
TABLE VI: COMPARISON OF DIFFERENT SIMILARITY MEASURES 

AND PROPOSED SIMILARITY MEASURES 

Emotion Classification 
Accuracy 

Correlation 72.21% 
Coherence 73.58% 

Crosscorrentropy 75.33% 
Itakuara Distance 79.75% 

Probabilistic 
Relative 

Correlation 
81.66% 

IV. CONCLUSION 
 In this paper we have proposed a novel approach to 
emotion recognition as well as we have outlined how the 
well-established linear correlation can be adapted to give rise 
to probabilistic relative correlation which can serve as a 
simple and robust measure for establishing neural signatures.  
There is still scope to establish in a similar fashion, the 
probabilistic relative coherence and probabilistic relative 
crosscorrentropy, which are expected to further better the 
results of emotion recognition. However correlation being the 
simplest and most trusted measures of linear dependence has 
been used in this study. In our studies we have considered 
only EEG signals. fNIR or fMRI are expected to give better 
results as they have better spatial resolution. 
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