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Abstract— Kernel Principal Component Analysis (KPCA) is
widely used feature extraction as it have been proven that
KPCA is powerful in many areas in pattern recognition. Con-
sidering that the conventional KPCA should decompose a kernel
matrix of all training data, this would be an unrealistic assump-
tion for data streams in real-world applications. Therefore, in
this paper, we propose an online feature extraction called Chunk
Incremental Kernel Principal Component Analysis (CIKPCA)
that can handle data streams in an incremental mode. In
the proposed method, the training data are assumed to be
given in a chunk of multiple data at one time. In CIKPCA,
an eigen-feature space is updated by solving the eigenvalue
decomposition once whenever a chunk of data is given. However,
if a chunk size is large, a kernel matrix to be decomposed is
also large, resulting in high computational time. Considering
that not all the data are useful for the eigen-feature space
learning, the data in a chunk are first selected based on the
importance. Several benchmark data sets in the UCI Machine
Learning Repository are used to evaluate the performance of
the proposed method. The experimental results show that our
proposed method can accelerate the learning of the eigen-
feature space compared to Takeuchi et al.’s IKPCA without
reducing the recognition accuracy.

I. INTRODUCTION

Along with the rapid development of the technologies in
real-world applications, data are often continuously gener-
ated in our life. This kind of data are called “data streams”.
Therefore, the importance of incremental learning is in-
creasing due to the demand of online learning in real-time
recognition is increased. An Incremental learning is not
only important in classifier but also for feature extraction
part. Principal Component Analysis (PCA) [1] has been one
of the well-known feature extraction method in machine
learning. Therefore, there have been proposed many extended
works on PCA [2], [3], [4], [5], [6], [7]. One of them is
Kernel Principal Component Analysis (KPCA) [8] which
performs a nonlinear form of PCA. The main idea of KPCA
is to map an input data into a higher dimensional feature
space by using some specially designed mapping function
φ. Then, principal components are computed in a very high
or infinity dimensional feature space to approximate the data
distribution by a low dimensional subspace called “eigen-
feature space”. However, the traditional batch KPCA has its
own limitation where the computation time is increased with
the increasing number of training data. This is because the
size of a kernel matrix to be decomposed is increased for
the larger size of the training data. Hence, the larger the
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training data are, the higher the computation time are. In this
case, an incremental learning algorithm, which can update
an eigenspace model without keeping all the training data,
is solicited.

Recently, Chin and Suter [5] proposed an incremental
KPCA that can update an eigen-feature space incrementally
by using a singular value decomposition. However, their
proposed IKPCA requires large computation and memory
costs for the high-dimensional data. On the other hand,
Takeuchi et al. then proposed another incremental KPCA
(IKPCA) [9] where they can approximate an eigen-feature
space using linearly independent data for every incoming
data. However, their proposed method still remain an open
problem. Considering that the training data could appear
in a chunk, IKPCA should be repeatedly applied to the
individual data in a chunk. Therefore, the update of the
eigen-feature space should be conducted for every incoming
data. In order to overcome this problem, when a chunk of
multiple data is given, these data should be learned at the
same time. However, when a large chunk of data is given, the
computational time of the independent data selection could
dominate over those of the eigenvalue decomposition. Hence,
the large computation and memory costs still remained an
issue for the large chunk data [10].

To tackle this problem, we propose an extended approach
to Takeuchi et al.’s IKPCA. Here, we assume that not all
of the data are useful for the eigen-feature space learning.
Therefore, when a chunk of multiple data is given, the data
are first subdivided into small chunks and the useful data
are selected from the small chunks. It is expected that the
computation and memory costs could be reduced when the
training data in a chunk are reduced. Then, the linearly
independent data are selected from the reduced data. The
eigenvectors are represented by the linear sum of the linearly
independent data which are selected from the reduced data
in a chunk. This is because the eigenvectors are not obtained
directly in a high-dimensional feature space.

The rest of this paper is organized as follows: In Section
II, we briefly explain KPCA and Takeuchi et al.’s IKPCA.
Then, we proposed another incremental KPCA by extending
Takeuchi et al.’s IKPCA called Chunk IKPCA (CIKPCA) in
Section III. In Section IV, the performance of the proposed
CIKPCA is evaluated by using several benchmark data sets
from the UCI machine learning repository [11], and we give
conclusions in Section V.
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II. KERNEL PRINCIPAL COMPONENT ANALYSIS (KPCA)
Assume that N training data X = {(xi, di)}Ni=1 are given

initially where xi and di are the ith input vector and its
class label, respectively. These data are mapped into a feature
space using a mapping function φ(·). Here, φ(x) is the l-
dimensional data. A covariance matrix Q of data in the
feature space is given by

Q =
1

N

N∑
i=1

(φ(xi)− c)(φ(xi)− c)T (1)

where c is a mean vector of the mapped data and it is defined
as

c =
1

N

N∑
i=1

φ(xi). (2)

In KPCA, we have to find eigenvalues Λ and the associated
eigenvectors Z. These are obtained by solving the following
eigenvalue problem:

QZ = ZΛ. (3)

Since the dimensionality l could be infinity, the eigenvalue
problem is not solved directly. Therefore, the so called kernel
trick is applied to Eq. (3) by using the following kernel
function:

k(x,x′) = φ(x)Tφ(x′). (4)

Eigenvector matrix Z is represented as follows:

Z = [φ(x1), · · · , φ(xm)]

 α1,1 · · · α1,m

...
. . .

...
αm,1 · · · αm,m

 = ΦmAm

(5)
where m is a set of linearly independent data that span a
feature space. The kernel matrix can be represented by

Hij =

 k(x1,x1) · · · k(x1,xj)
...

. . .
...

k(xi,x1) · · · k(xi,xj)

 . (6)

Finally, a kernel eigenvalue problem [12] is given by
1

N
L−1HT

Nm(IN−1N )HNm(L−1)T (LTαi) = λi(L
Tαi).

(7)
Here, λi is an eigenvalue (λi ≥ 0) and LTαi is the
associated ith eigenvector spanning a feature space. IN is
an N ×N unit matrix and 1N is an N ×N matrix with all
elements are 1/N . L is a lower triangular matrix and it is
obtained by the Cholesky factorization, Hmm = LLT .

From the m eigenvectors, only the first d largest eigen-
values are selected to form a low dimensional eigen-feature
space. The criterion to determine the augmentation of the
eigen-feature space is by measuring the accumulation ratio
below:

C(d) =

∑d
i=1 λi∑m
i=1 λi

. (8)

The accumulation ratio C(d) indicates how much the in-
formation remains in the feature space after the d principal
components are selected.

In Takeuchi et al.’s incremental KPCA, the learning is
carried out for every incoming data. In this case, a kernel
eigenvalue problem needs to be solved one by one. Hence,
the computation time are considered to be high. Therefore,
more efficient algorithm is needed for data streams under
realistic environments.

III. PROPOSED CHUNK IKPCA

The novelty of this paper lies in the reduction of com-
putation and memory costs by introducing a mechanism of
data selection in a chunk. Before an eigen-feature space
augmentation, a chunk of data should be first subdivided
into smaller chunks and the useful data are selected from the
smaller chunks. In the following, the five main operations of
the proposed method are described in details. In the final
part of this section, the algorithm of the proposed method is
summarized.

A. Data Selection

Before an incremental learning is carried out, batch KPCA
is applied to the initial data X = {xi}Ni=1. Then an eigen-
feature space is constructed based on the initial data. The
incremental learning is conducted to update the eigen-feature
space when a chunk of new data Y = {yi}Li=1 is given.
The data in a chunk should be first selected based on the
accumulation ratio before updating the eigen-feature space.
Here, the accumulation ratio is used to judge whether a
new eigenaxis should be added. It is the ratio of amount
of information between eigenaxes and the original feature
space. However, large computation and memory costs are
needed to obtain an accumulation ratio if a chunk size
is large. Takaomi et al. [10] investigated the influence of
chunk size to the learning time. They found that more
time is required for the large chunk data unless the large
chunk data are divided into small chunks. Therefore, to
overcome the problem of large computational time, when a
new chunk of data is given, the data are first subdivided into
smaller chunks. For the notational simplicity, let us denote
a divided chunk as y = {yi}l̃i=1. Then, the useful data
are selected from y based on the accumulation ratio. Here,
the accumulation ratio is updated with the data in a smaller
chunk as follows:

C ′(d) =

∑d
i=1 λ

′
i∑m

i=1 λ
′
i

, (9)

where

d∑
i=1

λ′i =
N

N + l̃

d∑
i=1

λi +
Nl̃

(N + l̃)2

d∑
i=1

{
αT

i (c̃− c̃y)
}2

+
1

N + l̃

d∑
i=1

l̃∑
j=1

{
αT

i (Km(yj)− c̃)
}2

(10)
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m∑
i=1

λ′i =
N

N + l̃

m∑
i=1

λi +
Nl̃

(N + l̃)2
cT c

− l̃

(N + l̃)2

l̃∑
i=1

l̃∑
j=1

k(yi,yj)

− 2N

(N + l̃)2

l̃∑
i=1

βT
i c̃

+
1

N + l̃

l̃∑
j=1

k(yj ,yj). (11)

Here, c̃, c̃y , Km(yj) and βi are defined by

ΦT
mc =

1

N

[
N∑
i=1

k(x̂1,xi), · · · ,
N∑
i=1

k(x̂m,xi)

]T
≡ c̃ (12)

ΦT
mcy =

1

l̃

 l̃∑
i=1

k(x̂1,yi), · · · ,
l̃∑

i=1

k(x̂m,yi)

T

≡ c̃y (13)

ΦT
mφ(yj) =

[
k(x̂1,yj), · · · , k(x̂m,yj)

]T
≡ Km(yj) (14)

βi ≡H
−1
mmKm(yi). (15)

When the updated accumulation ratio in Eq. (9) is lower
than a threshold θ, the useful data should be included in the
set of linearly independent data Φm. In order to construct
a minimum dimensional eigen-feature space, the useful data
are selected based on the highest variance σ2(φ(yi)) from
y. Then, φ(yi) with the highest σ2(φ(yi)) is redefined as
the (m+ 1)th independent data φ(x̂m+1) and added to Φm

as shown below.

Φm+1 =
[

Φm φ(x̂m+1)
]
. (16)

Here, σ2(φ(yi)) is calculated as follows:

σ2(φ(yi)) ≈
1

‖hi‖2(N + l̃)

l̃∑
j=1

{
k(yi,yj)

− N

N + l̃
βT
i c̃−

1

N + l̃

l̃∑
k=1

k(yi,yk)

−
d∑

k=1

(
KT

m(yi)αk

)
αT

k

×

{
Km(yj)−

N c̃+ l̃c̃y

N + l̃

}}2

(17)

and c̃, c̃y , and Km(yi) are updated by

c̃ = ΦT
m+1c =

[
ΦT

mc

β (x̂m+1)
T

ΦT
mc

]
(18)

c̃y = ΦT
m+1cy =

[
ΦT

mcy
1
l̃

∑l̃
i=1 k(x̂m+1,yi)

]
(19)

Km+1(yi) =

[
K(yi)

k(x̂m+1,yi)

]
. (20)

Besides, the coefficient matrix Ad is updated by

Ad+1 =

 Ad − 1

||hi||

∑d
j=1

(
KT

m(yi)αj

)
αj

0 1

||hi||

 . (21)

This procedure is repeated until the accumulation ratio be-
comes higher than a threshold θ. For the notational simplicity,
the selected data are denoted as Ỹ = {yi}L̃i=1. The data
are arranged into smaller chunks if the size of useful data
Ỹ are large. This is to ensure the constant update speed
and memory usages. Then, the necessity of the eigen-feature
augmentation is checked after the process of data selection.

B. Feature Space Augmentation

In the initial learning phase, the number of eigen-axes are
determined by finding minimum d such that the accumula-
tion ratio in Eq. (9) exceeds a threshold. The eigenvectors
Z = {z1, . . . , zd} ∈ <l×d are represented as the linear
combination of m independent data Φm

zi = [φ(x̂1), · · · , φ(x̂m)]

 α1i

...
αmi

 = Φmαi. (22)

Using the selected data Ỹ , the accumulation ratio in Eq.
(8) is updated based on Eqs. (9)-(15). If the selected data
includes almost all energy in the current eigen-feature space,
the dimensionality does not need to be expanded. However,
if the eigen-feature space includes certain energy in the
complementary eigen-feature space, the dimensional aug-
mentation is needed, or essential information would be lost.
Therefore, if the accumulation ratio is lower than θ, it means
that selected data may contain some linearly independent
data. Then, linearly independent data should be searched and
added to the set of linearly independent data Φm.

C. Selection of Eigen-axis

Assume that the updated accumulation ratio in Eq. (9) is
lower than a θ, it means that linearly independent should
be obtained from Ỹ . The data with the highest variance
σ2(φ(yi)) is found from the selected data. The variance of
data projected to the eigenvector is calculated by using Eq.
(17) and c̃, c̃y , and Km(yi) are updated by Eqs. (18)-(20).
Here, φ(yi) is defined as the m + 1th linearly independent
data and added to a set of Φm as shown in Eq. (16). Besides,
the coefficient matrix is updated by using Eq. (21). Here, we
rewrite m + 1 as m′ and d + 1 as d′ for the sake of the
notational simplicity. By adding σ2(φ(yi)) to the numerator
of Eq. (9), the accumulation ratio C(d) is updated. If the
updated accumulation ratio C ′(d) is still smaller than a
threshold θ, another data should be selected. Assume that

3137



we select (m′ + 1)-th data. A candidate axis is obtained as
follows:

ẑ′i =
h′i
||h′i||

(23)

where

h′i =
[

Φm′ φ(yi)
]

×

[
Ad′ −

∑d′

j=1

(
KT

m′(yi)αj

)
αj

0 1

]
.(24)

In Eq. (23), ||h′i|| can be obtained by calculating its squared
norm as follows:

||h′
i||2 = k(yi,yi)− 2

d′∑
j=1

(
KT

m′(yi)αj

)2
+

d′∑
j=1

d′∑
k=1

(
KT

m′(yi)αk

)(
KT

m′(yi)αk

)
×αT

j H(m′)(m′)αk. (25)

The variance σ2(φ(yi)) can be calculated as follows:

σ′
2
(φ(yi)) =

1

||h′i||2(N + L̃)
+

L̃∑
j=1

{
k(yi,yj)

− N

N + L̃
βT
i c̃−

1

N + L̃

L̃∑
k=1

k(yi,yk)

−
d′∑

k=1

(
KT

m′(yi)αk

)
αT

kKm′(yj)

+
N

N + L̃

d′∑
k=1

(
KT

m′(yi)αk

)
αT

k c̃

+
L̃

N + L̃

d′∑
k=1

(
KT

m′(yi)αk

)
×αT

k c̃y
}2

(26)

where c̃ and c̃y can be calculated recursively as follows:

c̃ =

[
c̃(

H−1mmKm(ŷ)
)T
c̃

]
(27)

c̃y =

[
c̃y

1
L̃

∑L̃
i=1 k(x̂m′ ,yi)

]
(28)

Km′(yi) =

[
Km(y(i))
k(x̂m′ , y(i))

]
. (29)

Here, φ(yi) with the highest σ′2(φ(x̂m′+1)) is selected as
φ(x̂m′+1) and added to Φm′+1 as follows:

Φm′+1 =
[

Φm′ φ(x̂m′+1)
]

(30)

where φ(x̂m′+1) is a new linearly independent data. By
adding σ′2(φ(x̂m′+1)) to the numerator of C(d′), the new

accumulation ratio C(d′ + 1) is obtained. The coefficient
matrix is updated as follows:

Ad′+1 =

 Ad′ − 1

||hi||

∑d′

j=1

(
KT

m′(yi)αj

)
αj

0 1

||hi||

 .
(31)

This procedure is repeated until the accumulation ratio be-
comes higher than a threshold θ.

D. Update of Feature Space

The update of feature space depends on two cases. The first
case is when the new eigenvectors are added and the second
case is when the eigenvector is not added into the feature
space. When l new eigenvectors are added, the eigenvector
matrix is updated by

Z ′d+l =
[
Zd Ẑl

]
R (32)

and Ẑl can be represented as follows:

Ẑl =
[
zd+1 · · · zd+l

]
(33)

where R ∈ R(d+l)×(d+l) is a rotation matrix.
In order to obtain the rotation matrix R, we solve the

following intermediate kernel eigenvalue problem.

1

N + L̃

N [ Λ 0d×l
0d×l 0l×l

]
+

L̃∑
i=1

f if
T
i

+
NL̃

N + L̃
ppT

)
R = RΛ′d+l (34)

where both f and p are given by

f i =

 αT
1
...

αT
d+l

(Km+l(yi)− c̃(m+l)
y

)
(35)

p =

 αT
1
...

αT
d+l

(c̃(m+l) − c̃(m+l)
y

)
. (36)

On the other hand, when no l new eigenvector is added,
the updated eigenvectors are given as follows:

Z ′d = ZdR (37)

and the intermediate eigenvalue is given by

1

N + L̃

NΛd +

L̃∑
i=1

f if
T
i +

NL̃

N + L̃
ppT

R = RΛ′d.

(38)
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Algorithm 1 Proposed Method
Require: Initial training data X = {xi}Ni=1.
1: Obtain a threshold of accumulation ratio θ based on the cross validation.
2: Perform KPCA for X and obtain an initial eigen-feature space Ω =
{Φm,Ad,Λd, N}.

3: Obtain the linearly independent data such that the accumulation ratio
C(d) is higher than a θ.

4: loop
5: Input: A new chunk of training data Y = {yi}

L
i=1.

6: Subdivide Y into smaller chunks y = {yi}l̃i=1 .
7: Perform the data selection based on the accumulation ratio and obtain

the selected data Ỹ = {yi}L̃i=1.
8: Update the C(d) by Eq. (9).
9: if C(d) ≥ θ then

10: Obtain R by Eq. (38).
11: Update the coefficient matrix:A′

d = AdR.
12: else
13: while C(d) < θ do
14: for i=1: L̃ do
15: Calculate variance σ2(φ(yi)) by Eq. (17).
16: end for
17: Obtain linearly independent data with the m + 1 largest

variances, σ2(φ(yi)).
18: Update the coefficient matrix Ad+1 by Eq. (21).
19: Calculate the accumulation ratio C(d + 1) by adding

σ2(φ(yi)) to the numerator of Eq. (9).
20: end while
21: Obtain R by solving Eq. (34).
22: Update the coefficient Matrix:A′

d+l = Ad+lR.
23: end if
24: Update ‖c‖2 and c̃′ by Eqs.(39)-(40).
25: end loop

E. Mean Update∥∥c2∥∥ are updated by

‖c′‖2 =
1

(N + L̃)2

(
N2 ‖c‖2 + 2N

L∑
i=1

βT
i c̃

+

L̃∑
i=1

L̃∑
j=1

k(yi,yj)

 (39)

c̃′ =
1

N + L̃
(N c̃+ L̃c̃y). (40)

When the new selected data are given, ‖c′‖2 and c̃′ are
replaced with ‖c‖2 and c̃, respectively.

The brief learning procedures are shown in Algorithm 1.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

In order to evaluate the effectiveness of our proposed
method, we conduct several experiments based on the five
data sets which are selected from the UCI Machine Learning
Repository [11]. The evaluated data sets are listed in Table
I.

For Poker Hand data, 2000 data are randomly selected
from the original 1025010 data as train data and another
1000 data are selected as the test data. On the other hand, for
Optical-digit data, 1500 data are selected from 3823 data as
the train data and all 1797 test data are used to measure the
performance. The initial data consists of 100 training data
and remaining data are used for the incremental learning.

In our experiments, the results are averaged over 30 trials
because incremental learning depends on the sequence of the
training data. The kernel function used in the experiments
is Gaussian kernel k(x,y) = exp(−γ || x − y ||2). The
parameter γ and θ are selected based on the 5-fold cross
validation in the initial learning.

The computer used here has the following specifications:
1) Intel(R) Core(TM)2 Duo (3.16 GHz) CPU.
2) 2GB Random acess memory (RAM).
3) Windows 7 (32 bit) OS.

All the programs are develop with Matlab (R2007b).

B. Performance Evaluation of the CIKPCA

The objective of this experiment is to measure the perfor-
mance of the proposed method. In this experiment, the recog-
nition accuracy, the computational time, and the eigenspace
dimension of the traditional KPCA, IKPCA and CIKPCA
are evaluated based on the five UCI Machine Learning
Repository data sets.

Table II shows the comparison of the recognition accuracy
[%] with the standard deviation, the computational time (sec.)
with the standard deviation and the dimension of eigenspace
with the standard deviation for the traditional KPCA, IKPCA
and CIKPCA. The chunk size is set at L = 100.

Table II (a) shows the average and the standard deviation
of the recognition accuracy that evaluated over 30 trials. The
recognition accuracy of the proposed method is compared
with the conventional KPCA and Takeuchi et al.’s IKPCA.
From the results, we observed that the recognition accuracy
based on the five data sets are almost similar for all the
models. The recognition accuracy are almost similar with
the other two models although the training data in CIKPCA
are reduced. Therefore, it suggests that essential information
is not lost actually.

Table II (b) shows the computation time for KPCA,
IKPCA and CIKPCA. It is observed that the computational
time of CIKPCA is obviously faster than KPCA and IKPCA
for all the data sets. In KPCA, the kernel matrix of all
training data is computed, leading to the large memory and
computation time. The learning of IKPCA is not affected
by the chunk sizes. Even though the data are received in
a chunk, IKPCA would learn the data one by one and the
eigenvalue decomposition is solved for every incoming data.
On the other hand, the computational time of the kernel
matrix decomposition of the selected data is reduced by
reducing the amount of data in a chunk. Furthermore, the
eigenvalue decomposition is only solved once when a chunk

TABLE I
EVALUATED DATA SETS.

Data Sets # Attrib. # Classes # Train # Test
Ozone 72 2 1000 848

Thyroid 21 3 3772 3428
Poker Hand 10 10 2000 1000
Optical-digit 64 10 1500 1797

Adult 14 2 22611 22611
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TABLE II
PERFORMANCE COMPARISON OF (A) RECOGNITION ACCURACY [%], (B) COMPUTATIONAL TIME (SEC.) AND (C) EIGENSPACE DIMENSION.

(a)
Data Sets KPCA IKPCA CIKPCA

Ozone 95.0±0.01 95.1±0.01 95.1±0.01
Thyroid 91.3±0.02 91.2±0.02 91.4±0.02

Poker Hand 44.1±0.02 44.6±0.02 44.7±0.02
Optical-digit 88.5±0.01 88.5±0.01 88.1±0.01

Adult 73.0±0.26 72.4±0.25 72.6±0.25
(b)

Data Sets KPCA IKPCA CIKPCA
Ozone 117.05±120.60 2.91±7.79 0.53±0.17

Thyroid 792.44±1.88 2.13±1.63 0.86±0.46
Poker Hand 133.30±17.43 1.18±1.00 0.46±0.35
Optical-digit 1293.52±677.33 70.21±241.64 1.53±0.50

Adult 186,418.4±64,463.0 95.6±61.8 38.8±23.8
(c)

Data Sets KPCA IKPCA CIKPCA
Ozone 10.5±12.5 17.9±30.9 8.7±6.4

Thyroid 11.2±2.6 15.0±9.1 16.3±3.8
Poker Hand 8.8±0.9 8.9±2.1 8.5±1.1
Optical-digit 38.4±24.1 111.77±126.5 33.9±10.7

Adult 11.1±4.1 15.9±9.1 13.2±5.3

of selected data is given. Therefore, the computation time for
CIKPCA is reduced.

To understand the results of the computational time in
Table II (b), let us study the computational complexity
of IKPCA and CIKPCA. The highest computation time in
IKPCA comes from the calculation of ‖h‖2. Its computa-
tional complexity is O(m2d2) where m and d are the number
of linearly independent data and the dimensions of an eigen-
feature space, respectively.

On the other hand, the computation in CIKPCA is dom-
inated by the calculation of the denominator of the accu-
mulation ratio shown in Eq.(11) or ‖h‖2 in Eq. (25). Its
computation complexity is O(m3L + nL2) or O(m2d2L)
where n and L are the number of input space and the size of
data chunk, respectively. To calculate the denominator, we
need to obtain βT (ΦT

mc) where βT = H−1mmKm(x) (see
Eq. (15)). Here, the computational of H−1mm is O(m3). In
addition, the computation complexity to calculate the third
term of the right hand side in Eq.(11) is O(nL2). Therefore,
the computational time is dominated in the calculation of the
third term in Eq.(11) when large chunk of L data is received.
Otherwise, the computational complexity is dominated in the
calculation of ‖h‖2 when the moderate size of chunk data is
received.

However, in our proposed method, a chunk of data is
divided into small chunks and only some training data are
selected when a large chunk of data is received. Therefore,
the size of data chunk is usually small (l̃ for small chunks
and L̃ for selected data in a chunk). In this case, our
proposed method would not encounter the problem of large
data chunk. The computational complexity of Eq.(11) and
‖h‖2 is reduced to O(m3 + n) and O(m2d2), respectively.

In addition, Table II (c) shows the eigen-space dimension-

ality for the three models. It is observed that the dimension
of the eigenspace for CIKPCA are smaller than KPCA for
almost all the data sets. Thus, it suggests that although the
dimension of the eigen-feature space is small, but it contains
almost the same energy as KPCA for the classification.
The computational time are reduced with only some useful
features.

It is concluded that the computational time of CIKPCA
are obviously faster than KPCA and IKPCA while the
recognition accuracies are almost similar for all the models.
Therefore CIKPCA is more efficient than KPCA and IKPCA.

C. Efficiency of IKPCA with Different Number of Chunk
Sizes

As mentioned before, Takaomi et al. [10] found that more
time is needed for the large chunk data. Therefore, the
objective of this experiment is to measure the influence
of the data division and the data selection when a chunk
of data is received. The computational complexity of the
proposed method is often dominated in the calculation of
‖h‖2. Its computational complexity is O(m2d2). Thus, in
order to measure the important of the data division and
the data selection, the computation time of CIKPCA and
IKPCA are compared with regards to the different number
of chunk sizes. Fig. 1 shows the influence of the chunk
sizes on the learning time for the three data sets, Ozone,
Thyroid, and Poker Hand data. Since the data in a chunk
have been selected, it is expected that the eigen-feature
space is constructed with only some useful data. Therefore,
the learning time are expected to be shortened. In this
experiment, we evaluate the learning time of IKPCA and
CIKPCA for the chunks sizes at 100, 300, 500, 800 and
1000.
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Fig. 1. Learning time (sec.) vs. different number of chunk sizes for (a) Ozone, (b) Thyroid and (c) Poker Hand data.

As seen in Fig. 1, we observed that the computation
time for CIKPCA are significantly shorter than IKPCA with
regards to the different number of chunk sizes for the three
data sets. In CIKPCA, the data are first selected when a
chunk of data is given; therefore, the training data in a chunk
are reduced. The kernel matrix is computed based on the
smaller size of data leading to the significant reduction in
the computation time. Furthermore, the computation time are
decreased as the chunk size becomes large. This is due to the
reduction of the total number of eigenvalue decomposition
when the chunk size becomes large. For IKPCA, the training
data is learned one by one although the training data are given
in a chunk. Hence, the learning time is not affected by the
chunk sizes.

Since the computation time are reduced significantly in
the proposed method, we further evaluate the efficiency of
CIKPCA by evaluating the influence of chunk sizes on the
recognition accuracy.

Fig. 2 shows the recognition accuracy of IKPCA and
CIKPCA with regards to the different number of chunk sizes
for the three data sets. As seen in Fig. 2, the recognition
accuracies are almost similar between IKPCA and CIKPCA
for the three data sets. The learning accuracies of the pro-
posed method are almost the same with IKPCA with regards
to the different number of chunk sizes although the amount
of training data are reduced. It suggests that the essential
information is not lost and the selected data contains some

useful information for the eigen-feature augmentation.
Therefore, it is concluded that the proposed method is

more efficient than Takeuchi et al.’s IKPCA where the
computation time are reduced significantly without reducing
the recognition accuracy.

V. CONCLUSIONS

As a conclusion, fast CIKPCA is proposed. To reduce the
computational time of the proposed method, the data given
in a chunk are first divided into small chunks and data are
selected from the smaller chunks based on the accumulation
ratio. The reason of data selection is to retain only some
useful data for the eigen-feature space learning. In addition,
the computation time are reduced since the computation time
of kernel matrix decomposition are reduced.

Then, compact feature space is constructed by the linear
combination of the linearly independent data that are selected
from the reduced data and the eigenvalue problem is solved
only once for the selected data.

In this paper, CIKPCA is compared with KPCA and
Takeuchi et al.’s IKPCA. Experimental results demonstrated
that CIKPCA requires shorter learning time than IKPCA
and KPCA with similar recognition accuracy for all the
models. To further evaluate the effectiveness of CIKPCA, the
computational time of CIKPCA is compared with IKPCA
with regards to the different number of chunk sizes. The
results of all the data sets revealed that CIKPCA requires
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Fig. 2. Recognition Accuracy (%.) vs. different number of chunk sizes for (a) Ozone, (b) Thyroid and (c) Poker Hand data.

shorter time compared to IKPCA for all the chunk sizes.
The learning time are reduced when the chunk sizes becomes
large. In addition, the total number of eigenvalue decompo-
sition are reduced when the chunk size becomes large. In
general, the proposed method could accelerate the learning
time without reducing the recognition accuracy. Therefore,
we conclude that division of data into smaller chunks and
selection of training data is important in order to accelerate
the learning time. In the future, we will compare the pro-
posed method with Chunk Incremental Principal Component
Analysis (CIPCA).
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