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Abstract—VSF–Network, Vibrate Synchronize Function Net-
work, is a hybrid neural network combining a Chaos Neural
Network with a hierarchical network. VSF–Network is designed
for symbol learning by a neural network. It finds unknown parts
of input data by comparing to learned pattern and it learns
unknown patterns using unused part of the network. The new
patterns are learned incrementally and they are represented as
sub-networks with unused parts of hierarchical neural network.
Combinations of patterns are represented as combinations of
the sub-networks. The combinations of symbols are represented
as combinations of the sub-networks. In this paper, the two
theoretical backgrounds of VSF–Network are introduced. At the
first, an incremental learning framework with Chaos Neural
Networks is introduced. Next, the pattern recognition with the
combined with symbols is introduced. By Stochastic Catastrophe
Model, the authors explain the combined pattern recognition.
Through an experiment, both the incremental learning capability
and the pattern recognition with pattern combination.
Index Terms: Incremental learning, Chaos Neural network,
Nonlinear dynamics, Stochastic Catastrophe Model.

I. INTRODUCTION

The purpose of our research is developing a model of
symbol-generation using neural networks. Model of symbol-
generation have been proposed in the past years. Inamura[1]
has proposed a model about stochastic behavior identification
and symbol-generation. On the model, symbols are learned
through the following steps.

1) At the first stage, patterns are learned by abstraction of
input data. The pattern becomes a prototype of a symbol
or low-level units of symbol. We refer this level pattern
as proto-symbol.

2) Combinations of proto-symbol are learned by refining
learned proto-symbol.

3) The refined symbols and the combinations of them are
maintained.

Not only the patterns abstracted from input data but learning
relations of learned patterns also are key component of the
process. In these steps, the key of symbol-generation are
summarized as following two points.
• Patterns are proto-symbol and they are learned by ab-

stracting input data.
• The relations among acquired proto-symbol are ab-

stracted and maintained.
In the case of the neural network model for symbol-generation,
incremental learning of proto-symbol and the significant prop-
erty of proto-symbol that they can be used be used in com-
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bination or alone are key component of the model. We have
proposed VSF–Network[2] to implement incremental learning
of symbols and pattern recognition with their combination.
And we have reported our model and its performance in
recent years[3], [4]. In this paper, we show its theoretical
backgrounds and the results of the experiments related to
the backgrounds. At the first section, we show theoretical
background of incremental learning. In the following section,
we show also the background of the pattern recognition by
proto-symbol combination.

II. INCREMENTAL LEARNING AND PATTERN
RECOGNITION BY CHAOS NEURAL NETWORK

A. Incremental Learning

As for neural networks, learning of symbol is an instance
of incremental learning[5]. The reason is that the neural net-
work has to learn incrementally new patterns keeping learned
patterns. On the incremental learning by neural network,
correlations of learned patterns take an important role for the
learning. Lin and Yao[6] have proposed Negative Correlation
Leaning model as a model of the incremental learning. By the
proposed method, the neural networks learn incrementally with
increasing neurons based on the correlation between learned
pattern and newly input pattern. Because the suitable number
of neurons cannot be defined before learning, it is reasonable
to determine the number of neurons according to progress of
learning. Furthermore, there are redundant neurons in learned
natural networks. Over-learning for patterns is caused by the
redundant neurons. If we increase neurons in neural networks
unconditionally, the problem is getting worse.

One way to solve the problem is that reusing neurons and
learning new patterns incrementally, if there are neurons that
do not participate pattern recognition on neural networks. By
our model, new patterns that have low correlation to learned
patterns are learned by reusing a part of neurons in the
neural networks. VSF–Network learns patterns incrementally
by dividing the network into sub-networks, if it has redundant
neurons during incremental learning. The redundant neurons
are found by CNN, Chaos Neural Network[7]. CNN checks
whether redundant neurons exist or not in hidden layer of
HNN, hierarchical neural networks. If any redundant neuron is
not found, VSF-Network begins to increase neurons in hidden
layer of HNN. In this paper, we assume that there are several
redundant neurons in VSF–Networks after several learning
phases.
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B. Pattern Recognition by Chaos Neural Network

Malsburg[8] proposed a hypothesis that the binding problem
can be solved by synchronized firing among neurons. The
binding problem is the problem how a number of recognize ob-
ject can be recognize. In this model, each pattern configuring
recognized objects corresponds to each group of synchronized
firing neurons, and each pattern is recognized by this group.
Based on this hypothesis, we apply the synchronized neuron
group to recognize partial pattern configuring a recognized
object, and we determine whether input data has unknown
parts for memorized patterns.

By CNN, we can find chaotic retrieval dynamics in addition
to normal dynamics by associative memory[9]. The chaotic
retrieval dynamics can be find when input pattern is patchy
patterns to stored patterns. If CNN works as an associative
memory, internal status of neurons change periodically. Some-
times, statues of neurons match statuses of other neurons. This
phenomenon is called the synchronized oscillation. In Fig.1,
outputs from elements of GCM for epochs t (t = 1, · · · , 100)
are plotted. A part of outputs show synchronized oscillation
and other outputs show isolated behavior to other elements.

Fig. 1. Statuses of GCM with time evolution

The iTh. output xi of CNN that has M input neurons and
N chaos neurons is defined by (1).

xi(t+ 1) = f [ξi(t+ 1) + ηi(t+ 1) + ζi(t+ 1)] (1)

In (1), an input term ξi, a feedback termηi of internal status
and an inhibitory ζi are respectively defined as follows.

ξi(t+ 1) =
N∑
j=1

vij

t∑
d=0

Aj(t− d)

= ksξi(t) +
N∑
j=1

vijAj(t)

(2)

ηi(t+ 1) =
N∑
j=0

wij

t∑
d=0

kdmf {xj(t− d)}

= knηi(t) +
N∑
j=1

wijxj(t)

(3)

ζi(t+ 1) = −α
t∑

d=0

kdrf {xi(t− d)} − θi

= krζi(t)− αxi(t)− θ(1− kr)
(4)

In (2), (3) and (4), A(t) is input at a time t and vjk is the
connection weight between the k Th. element of input pattern
and the chaos neuron j. wij is the connection weight between
chaos neuron i and chaos neuron j. ks, kn(≃ kdm), and kr(≃
kdr ) is a parameter for the each term. α is the parameter and θi
is the threshold for the inhibitory term. f is Sigmoid function
defined by (5).

fa(x) =
1

1 + e−ax
(5)

The ξi is the self-interaction and ηi is an interacting term
to other neuron j (̸= i), so CNN is a system that a status
of neuron i diffuses to entirety of CNN through η and each
neuron interacts to others. By this reason, CNN is an instance
of Globally Coupled Mapping[10], GCM, that is a derivation
of Coupled Map Lattice[11].
N neurons CNN as GCM is defined by (6).

yi =(1− ε) fa (xi)

+
ε

N

N∑
j=1,j ̸=i

fa (xj) (1 ≤ i ≤ N)
(6)

In (6), a is a parameter of a sigmoid function f , ε is a strength
parameter of interactions among elements. Various dynamics
on GCM have been reported. Komuro[12] analyzed dynam-
ics on GCM using traverse Lyapunov exponents. Traverse
Lyapunov exponents on an invariant manifold show stability
of a trajectory to complementary spaces. Retracting observed
on GCM is that several oscillators discretely oscillated are
synchronized with other oscillators and show an identical
oscillation. The fact that each element in synchronizing group
converges to an invariant manifold was shown in his analysis.

Based on this finding and assumption that the invariant
manifold corresponds to an equilibrium point, we can assume
relation between stored patterns in an associative memory and
a synchronized group on CNN. That is, patterns correlated
with learned pattern reach equilibrium point corresponding to
stored pattern as the result of the time-evolution. In contrast,
other elements that have low correlation with the learned
patterns do not reach any equilibrium point and they are in
a unstable state.

C. Correlation between Associative Memory and Patterns

The dynamics of CNN is described as a dynamics of asso-
ciative memory. On associative memory, information is stored
as distributed pattern and required information is retrieved
as partial information[13]. Hopfield[14] shows that dynamic
system (7) has attractors and a part of them are equilibrium
points, if weight matrix is a symmetric and output function
is a monotonic increase. Kadone[15] studied about correlation
between learning patterns and attractors of retrieved pattern
reducing equilibrium points of the attractor. A time evolution
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of retrieving process by CNN is defined as (7).

x(t+ 1) = f(u(t))

u(t) =WX(t)− αI
(7)

On (7), u is an inner status of a neuron and Wij is a connection
weight between neuron i and j. α is a parameter to be 0 to on-
diagonal element of Wii As shown in (8), connection weights
W are learned is with adding self correlation of the weights,
if new patterns are input.

W =

p∑
µ=1

ξµξ
T
µ − αI (8)

ξµ is a N column vector for a pattern µ.
We express highly correlated part of patterns µ,ν (µ ̸= ν)

as ξ�,a, low correlated part of the patters is expressed as ξ�,c
and N = Na+Nc. Na and Nc show the number of elements
of ξ·,a and ξ·,c A correlation between ξµ, ξν is defined by (9).

1

N
ξT�,aξ�,a ≃ 1,

1

N
ξT�,aξ�,c ≃

{
1 (µ = ν)

O( 1√
Nc

) (µ ̸= ν)

(9)

A status of equilibrium point of (7) is determined by
Wf(u).

Wf(u) =

(
p∑

µ=1

ξµ, ξµ
T − αI

)
� f(u)

=
∑
µ

ξpµ=1ξµ
T � f(u)− αf(u)

(10)

Here ξµ = ξµ,a + ξµ,c, so (10) is rewritten as∑
µ

(ξµ,a + ξµ,c)ξµ
T � f(u)− αf(u)

=
∑
µ

ξµ,aξµ
T � f(u) +

∑
µ

ξµ,cξµ
T � f(u)− αf(u)

(11)

We assume f(u) = ξν and yield ξµ,aξTµ � ξν ≃ ξµ,a from the
correlation (9) and we obtain

Na
N

∑
µ

ξµ,a +
Nc
N

∑
µ

ξµ,c
T ξµξν,c − αξν

=
Na
N

∑
µ

ξµ,a +
Nc
N

∑
µ

O(
1√
N

)ξν,c − αξν .
(12)

The first term of (12) has a high correlated part to ξµ and
ξν ≃ ξµ,a. Therefore,

Na
N

∑
µ

ξµ +

O
(
1
/√

N
)

N
− α

 ξν . (13)

If Na is greater than Nc, (13) reaches an equilibrium point
ξµ. If Nc is greater than a certain amount of value, (13)
can not reach any an equilibrium point. As shown in the
previous section II-B, clustered elements on GCM behavior
on stable manifolds but unclustered elements cannot reach

any stable manifold. If governed dynamics of GCM and
associative memory are same one, the equilibrium points on
associative memory correspond to the stable manifold. Based
on this discussion, we conclude that CNN has an ability to
find unknown part from input pattern. We apply CNN to find
unknown part of input data at the hidden layer of a hierarchical
neural network.

III. RECOGNITION OF COMBINATIONAL PATTERNS

All proto-symbols learned by VSF–Network do not always
need for recognition. If a pattern for single proto-symbol
is given, VSF–Network retrieves a pattern for single proto-
symbol. The probability density learned by VSF–Network is
a multimodal distribution in a range of values and it is a
unimodal distribution in other range. This means that multiple
components or single component of limit mixture model are
selected based on situations. To implement these dynamical
process on VSF–Network, we developed weight update rule
based on stochastic catastrophe theory[16], [17].

A. Patterns Combination and Mixture model
According to the neural manifold proposed by Amari[18],

learning process and its results can be considered an approxi-
mation of probability density. Let M is a space spanned by a
multi-layer neural network. The space M is called as neural
manifold for the multi-layer neural network. The manifold is
the space coordinates system with θ and a point on M ex-
presses a probability distribution p(y | x; θ). Here θ is connec-
tion weight among neurons and θ = (w1, · · · , wm; v1, · · · , vn
in the case of 3-layer neural network.

The distribution of y that x is given is expressed by a
conditional probabilistic distribution Let a probability density
of input x is q(x), then the joint distribution for the input and
output is

p(y | x; θ) = q(x)p(y | x; θ). (14)

If learning by hierarchical neural network is a distribution
estimation of values corresponding to input, the learning by
VSF–Network is an estimation of a limited mixture model for
a probability density function p(x|a) with a parameter ck

f (x |a ) =
K∑
k=1

ckp (x |ak ) (15)

where p(x|ak) is a probability density corresponding to each
proto-symbol.

One of learning algorithm for θ is the back-propagation.
That is defined as

e (xt, yt; θ) =
1

2
|yt − f (xt; θ)|2.

The stochastic descent method changes parameter θt at time t
by

θt+1 = θt − η∇e, (16)

based on the expected values xt, yt. In (16), η is learning
constant. ∇ is gradient and it is defined as

∇e =
(
∂e

∂θ1
, · · · , ∂e

∂θN

)
. (17)
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Fig. 2. An Overview of Stochastic Catastrophe model

B. Stochastic Catastrophe Model

On VSF–Network, there are several singular points, because
equilibrium points are singular points from another perspec-
tive. In general, there are singular points on manifold spanned
by non-liner function. At neighborhood of singular point,
bifurcation occurs. The number of value corresponding to one
variable changes at bifurcation point. For example, the number
of real root of 3 degree equation x3 − cx = 0 is 1 at the left
side of the point c = 0 and it is 3 at the right site of the point
c = 0. Based on the condition of parameters, there are two
case of mapping,

f(x)→ y1, y2, y3,

f(x)→ y.

Thom proposed catastrophe theory[19] about the bifurca-
tions at equilibrium points to explain a sudden change of status
at bifurcation point. We consider bifurcation at singular point
on neural a manifold based on catastrophe theory. Existence
of multiple solutions for a variable x means that multiple
parameters for distributions exist. And existence of multiple
parameters for distributions means that multiple components
of limit mixture model are selected. If each of the components
correspond to sub-network of VSF–Network, we can imple-
ment automatic sub-network selection based on input.

Cobb[16] applied catastrophe theory into multimodal den-
sity estimation and the estimation of multimodal probability
density through use of the bifurcation of solution at the sin-
gular points was proposed. We apply the model to implement
a combinational pattern recognition of the proto-symbols by
VSF-Network.

We introduce the density function of stochastic catastrophe
theory according to a series of studies by Cobb[16], [17], [20].
At the first, Cobb introduces a class of probability densities
fk that is expressed in the general form

fk(x) = ξ(β) exp

[
−
∫ x g(s)

v(s)
ds

]
(18)

In (18), ξ is a normalized function, g(x) = β0 + β1x+ · · ·+

βkx
k, k > 0 and v(x) has one of the following principal forms.

v(x) =


1 −∞ < x <∞ ; Type N
x 0 < x <∞ ; Type G
x2 0 < x <∞ ; Type I
x (1− x) 0 < x < 1 ; Type B

The densities described by (18) are a generalization of the
Pearson system. On differentiation with respect to x, (18)
yields

f ′(x)

f(x)
= −g(x)

v(x)
, (19)

which contains Pearson’s differential equation as a special
case. So, this density function can be applied various para-
metric densities.

In the Pearson system, the degree k of the polynomial g
is one and the degree of v is at most two. The polynomial g
will be called the shape polynomial for the density f . We are
principally concerned with the multimodal forms that appear
when the degree of g exceeds one. The maximum number of
modes possible in a given family is determined by the degree
of its shape polynomial, k. From (19), it may be seen that
the critical points of the density (i.e., those points x such that
f ′(x) = 0) are exactly the roots of g(x). Whether such a
point is a mode or an antimode (a relative minimum) depends
on the sign of g′′(x) − {g′(x)}2. At the roots of v(x) the
density either has a zero (f(x)→ 0) or a pole (f(x)→∞),
depending on the coefficients of g(x). The only exceptions to
this occur at points that are roots of both g(x) and v(x).

The generalized family of Pearson distributions may also
be characterized in terms of nonlinear diffusion processes. Let
2µ(x) = g(x) − v′(x), and δ2(x) = v(x). Then f(x) is the
stationary density of a stochastic process x that is governed
by the SDE, stochastic differential equation

dXt = −µ (Xt) dt+ δ (Xt) dWt (20)

where Wt is a standard Wiener process. The stochastic flow
defined by (16) is also governed by the SDE (20).

In the Type N cases, namely v(x) = 1, these equilibrium
points are exactly the modes and antimodes of the corre-
sponding probability density function. In these cases, modes
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correspond to stable equilibrium points, while antimodes cor-
respond to unstable equilibrium points. Bimodal stationary
densities can arise when there is but one corresponding stable
equilibrium.

To simplify the notation, let Nk(x) refer to the density of
the Type N family of degree k for permissible k. The Nk
densities have as their principal member the normal density,
N1. The general form for an Nk density is

Nk (x) = ξ exp
[
θ1x+ θ2x

2 + · · ·+ θk+1x
k+1
]

(21)

where θj = −βj−1/j. Nk has finite moments of all orders
if k is odd and θk+1 < 0. Cobb[16] proposed a solution of
SDE (20) that satisfies the general form for an Nk density.
Grasman[21] proposed stochastic catastrophe density function
based on Cobb[16], which is expressed as

f (y) =

ψ

σ2
exp

[
α (y − λ) + 1

2β(y − λ)
2 − 1

4 (y − λ)
4

σ2

]
(22)

In (22), ψ is a normalizing constant, λ merely determines the
origin of scale of the state variable and δ is a scale parameter.
β is called the bifurcation factor, as it determines the number
of modes of the density function, while α is called asymmetry
factor as it determines the direction of the skew of the density.
The density is symmetric, if α = 0 and becomes left or right
skewed depending on the sign of α.

An overview about the relation between stochastic catastro-
phe model and multimodal densities generated by the density
(21) is shown in Fig.2. β is called the bifurcation factor, as it
determines the number of modes of the density function, while
α is called asymmetry factor as it determines the direction of
the skew of the density. The density is symmetric, if α = 0
and becomes left or right skewed depending on the sign of α.

IV. VSF–NETWORK AND SELECTIVE WEIGHT UPDATE

Fig. 3. An Overview of VSF-Network

In Fig.3, an overview of VSF–Network is shown. VSF–
Network is composed of BP–module,a hierarchical network,
and CNN–module that is CNN. CNN–module finds known or
unknown parts of an input data and an used part of hidden
layer neurons of BP–module. BP–module is trained with the
selective weight update rule based on information from CNN-
Module.

A. Learning Procedure

VSF–Network works for the incremental learning only,
so the learning of VSF–Network is assumed that the initial
connection weights among layers have been learned before
the its incremental learning. The learning of VSF–Network is
performed as follows.

1) Data are input to the input layer of BP–module.
2) The outputs of the hidden layer in BP–module are input

to CNN–module and they are used as the initial state of
each neuron of CNN–module.

3) From the initial state, CNN–module performs the re-
trieval process based on the dynamics of (1) for times
t = 1, · · · , T . The consistent rates defined by (31) are
calculated.

4) The rest process of the forward path on BP–Module is
performed. The error Ek,µ between the output Ŷk of BP-
module and the target output Y µ for the input data is
calculated.

5) The connection weights among layers are updated based
on the weight update rule defined by (29) and (30).

B. Selective Weights Updating

By the previous section, we can identify unknown parts
of inputs and identify redundant neurons with equilibrium
point analysis for attractors of pattern retrieving on associative
memory. If inputs for associative memory are statuses of hid-
den layer of multi-layer network, the retrieved patterns of the
associative memory are statuses of hidden layer of the multi-
layer network. The statuses based on learning experiences of
the multi-layer network. If inputs for CNN are statuses of
hidden layer, we can find redundant neurons at hidden layer
that do not relate to pattern recognition. On CNN, redun-
dant neurons that do not relate to pattern recognition show
asynchronous oscillation while the network retrieves patterns.
With updating only connection weights for neurons that show
asynchronous oscillation, the network can learn new pattern
without degradation of capability for learned patterns. From
these standpoints, we have been proposed weight updating
method for neural network[3]. We can summarize properties
of the selective weight updating rule as the following three
points.
• If multi-layer network has redundant neurons, then the

weights are updated.
• The connection weights for neurons that show syn-

chronous oscillation to other neurons are not updated.
• The connection weights for neurons that show asyn-

chronous oscillation to other neurons are updated.

2633



The delta rule for multi-layer network can be changed based
on this selective weights update rule as follows. In (23), the
∆Wij is the delta value for the weight between the iTh.
input layer neuron and the jTh. hidden layer neuron. ∆Wjk is
the delta value for the weight between the jTh. hidden layer
neuron and the Th.kTh. output layer neuron.

∆Wij =

{
η
∂Eij

∂Wij
(λi ≤ P )

0 (λi > P )
,

∆Wjk =

{
η
∂Ejk

∂Wjk
(λi ≤ P )

0 (λi > P )
.

(23)

Here η means coefficient for update, Ejk means learning error,
λi is degree of coincidence calculated with (31) and P means
threshold for λi.

C. Density Estimation and Selective Weights Updating

The estimation problem for these multimodal densities
can be stated where we give the type and degree of the
density, estimate the coefficient vector β = (β0, β1, · · · , βk).
Grasman[21] proposed estimation method for the density
function (22) based on methods proposed by Cobb[20]. The
core of Grasman’s method is the fitting method that performs
maximum likelihood estimation of all the parameters from
(24) to (26) for observed dependent variables Yi1, · · · , Yip, and
independent variables xi1, · · · , xip, for subjects i = 1, · · · , n,
the distribution of

yi = w0 + w1Yi1 + · · ·+ wpYip, (24)

where w0, · · · , wp are the first order coefficients of a polyno-
mial approximation to the transformation. (24) is modeled by
(22), with α 7→ αi and α 7→ αi, where

α = a0 + a1Xi1 + · · ·+ apXip (25)

β = b0 + b1Xi1 + · · ·+ bpXip. (26)

The negative log-likelihood for a sample of observed values
(xi1, · · · , xiq, yi1, · · · , yip), i = 1, · · · , n is

L(a, b, w;Y,X) =
n∑
i=0

logψi −
n∑
i=0

[
αiyi +

1

2
βiy

2
i −

1

4
y4i (y − λ)

4

]
(27)

The learning by VSF–Network is a minimizing L with
respect to the parameters w0, · · · , wp, a0, · · · , ap, b0, · · · , bp.
From a standpoint of the subject of this section, the main target
of learning by VSF–Network is an estimation of parameters
controlling mode of densities. An equilibrium point, as a
function of the control parameters α and β, are solutions to
the equation

α+ βy − y3 = 0. (28)

This equation has one solution if λ = 27α − 4β3, which is
known as Cardan’s discriminant, is greater than zero, and has
three solutions if λ < 0. Because VSF–Network performs
incremental learning, so it should update the parameters to

λ < 0. λ is determined by the parameters α and β, so VSF–
Network should learn unknown patterns to increase β without
changing parameter corresponding to known patterns. For the
purpose, we apply the correlations among weights by the term
corki,kj . The selective weight update rule (23) is modified as,

∆Wij =

{
η
∂Eij

∂Wij
(λi ≤ P )

0 (λi > P )
,

∂Eij

∂Wij
= (1.0− |corki,kj |)−1

n∑
j=1

∂Ejk

∂Wjk
f ′ (Hµ

i ) .

(29)

Here corki,kj is correlation between neuron ki and kj in
hidden layer, and Hi is output from neuron i in the hidden
layer. The update rule between neuron k in output layer and
neuron j in hidden layer is also modified as,

∆Wjk =

{
η
∂Ejk

∂Wjk
(λi ≤ P )

0 (λi > P )
,

∂Ejk

∂Wjk
=

(
m∏
i=1

(1.0− |corij |)
)−1 n∑

j=1

Eµ f ′ (Oµk )

(30)

VSF–Network measures degree of coincidence between
chaos neuron i and jat a part of the times t = 1, · · · , T . This
measurement is implemented with a correlation integral(31)
based on Heaviside function (32).

C(r) =
1

n2

n∑
i,j=1i̸=j

H(|xi − xj |) (31)

H(t) =

{
0 (t < Θ)

1 (t ≥ 0)
(32)

Here xi and xj show a status of chaos neuron i and j and Θ
is a threshold of function eq:Hviside.

V. EXPERIMENT AND RESULT

In this section, we show a basic capability of VSF–Network
through an experiment. The task for the experiment is a
learning of avoiding obstacles by a rover. The goal of this
task is that a rover learns an obstacle avoidance. The rover
learns whether it can avoid an obstacle when the rover begins
turning to the left from the point placed in. When the rover
can avoid the obstacle, the output is = 1 otherwise = 0. It has
the following three conditions about obstacle setting.
• Condition 1: T-Junction obstacle
• Condition 2 : Simple obstacle
• Condition 3 : Combined obstacle

We show an overview of these conditions in Fig 5.
The procedure of the experiment are described as fellows.
• The initial step

– The initial weight for BP–Module is learned by
multi-layer network using m records of from con-
dition 1 of each task.

• The incremental learning step
– We provide the patterns differ from the patterns that

are assigned at the previous step. The input data is
n records from the condition 2.
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Fig. 4. Results of Experiment

Fig. 5. Conditions of Task

• The step for testing learning performances.
– We compare MSE (33) of each trial of the incremen-

tal learning to show the effect of the learnings.
– To confirm the combination form, the data combined

the condition1 and condition 2 are used in this step.
MSE, Mean Squired Error, is defined as

MSE(ŷ) = E
[
(ŷ − y)2

]
. (33)

Here ŷ is an output from a network and y is an expected value
for an input data.

In TABLE I, we show parameters and those settings of
VSF–Network for the experiment. The parameters for CNN
are set to show weak chaotic status. The number of learning
at the initial step is 20, 000 and the number of learning at the
initial step is 3, 000.

We show the result of incremental learning by VSF–
Network for this task. Fig.4 shows the changes of MSE with
the progress of the incremental learning for this task.

For incremental learning of the task, the effect of VSF–
network is observed. VSF-Network learns new patterns in-
crementally and its weights are not destroyed. The combined
patterns are learned without learning with the progress of

TABLE I
PARAMETER SETTING

Parameter Description Value

ε Gradient of Sigmoid function 1.0
ks Coefficient of (2) 0.95
kn Coefficient of (3) 0.1
kr Coefficient of (4) 0.95
α Inhibitory parameter of (4) 2.0
θ Threshold for (4) 0.2

τhst Time width of vibration period 100
η Coefficient of selective weight update rule 0.1
P Threshold for λi in selective weight update rule 0.01
Θ Threshold for (32) 0.01

incremental learning. After a certain number of incremental
learning, MSE of every incremental learning reaches a equi-
librium status. VSF–Network incrementally learns by reusing
neurons which are considered as inconsequential neurons for
identification of learned patterns. The incremental learning
stops when redundant neuron is lost.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we show the theoretical backgrounds of
VSF–Network. The background consists of two parts. The
first background is incremental learning and Chaos Neural
Network. VSF–Network can identify unknown parts of input
data and a part of neurons for reusing based on a dynamics of
Chaos Neural Network. It learns only unknown parts of input
data.

Another background is the estimating theory for multimodal
or mixture probability density. The ability of VSF–Network for
recognizing combined patterns that are learned by every sub-
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network can be explained by geometrical properties of solution
space.

Finally, we show that VSF–Network can recognize the
combined patterns only if it have learned parts of the patterns.

The next step of our research concerns a detail consideration
of the its dynamics. The current our theoretical scheme de-
pends on two different bases. The first part of our scheme, the
part for incremental leaning, is based on deterministic dynam-
ics. The second part of our scheme, the part for recognition by
proto-symbol combination, is based on stochastic dynamics.
Originally, these are dynamics on an identical manifold, they
should be discussed on the same condition.
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