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Abstract—Sintering is a key process for the industrial clinker 
production. The sintering state estimation in clinker is an 
essential factor for its process control. In this paper, a feature 
extraction method from flame image and a robust extreme 
learning machine (RB-ELM) classifier are provided to recognize 
sintering process in rotary kiln. After a preprocessing of image 
denoising and illumination compensation, material region of 
flame image is segmented by region growing algorithm and a 5-D 
statistic feature vector is extracted from it for the following 
classifier. In order to reduce the influence of outliers in training 
data caused by blurring image and to achieve a real-time 
application on site, a robust extreme learning machine, which 
adopted iterative weight least square (IWLS) method based on 
M-estimator, is used for fast classification of sintering state. 
Experimental results show that the proposed method can 
recognize sintering state accurately, quickly and robustly.  

Keywords—rotary kiln; vision detection; extreme learning 
machine; robust estimation; flame image 

I. INTRODUCTION  
Rotary kilns are widely used in nonferrous metallurgy, 

cement and other industry. The sintering state estimation of 
clinker in rotary kiln is very essential in production control 
process, which can directly influence the quality of products, 
energy consumption and pollutant emission level. 
Traditionally, the sintering state of materials in kiln can be 
divided into three categories: 1)normal sintering, 
2)oversintering, and3) undersintering. Normal sintering 
materials are qualified products and others are unqualified. 

The kiln typically consists of a refractory steel cylinder of 
diameter 4-5m with a ratio of length to diameter greater than 
20m. It is inclined along its length at an angle to the horizontal 
of a few degrees and rotate about its axis slowly at a rotation 
speed ω  about 1 rev per 60-80 seconds [1]. The raw material 
and coal powder are fed into the kiln from the feed port of the 
cylinder. Sintering procedure is finished in kiln with the 
revolution of cylinder, and the clinker flows continuously to 
the discharge port through the inclination and rotation of the 
cylinder. The kiln is filled with material generally less than  
30% by volume. The motion of granular in the kiln flow 

through the cylinder is shown in Fig.1 [1].  

  

Fig. 1. Motion of granular in the kiln. 

 For a long time the sintering state of material is observed 
by  operator in  a  manual  mode.  Recently,  combining  image 
analysis and machine learning  algorithms  to  detect  burning  
condition  and  control coal-feeding of rotary kiln have 
received more and more significant attentions. The camera 
locates in the discharge port of kiln and the image captured by 
it is shown in Fig.2. Lin [2] et al. calculated the 1-4 order 
statistic HSI data of rotary kiln flame image to establish the 
identification model for combustion condition using 
multivariate regression method. By Gabor wavelet based 
texture coarseness and Fuzzy C-Means cluster algorithm Sun 
[3] et al. proposed an improved segmentation method for flame 
image of rotary kiln burning region. He [4] et al. calculated the 
Grey-Level Co-occurrence Matrix (GLCM) texture features of 
clinker region and classified the sintered clinkers to different 
qualities. Zhang [5] et al. realized a content-based retrieval 
system for kiln sintering region flame image by the texture and 
fire features of it. Li [6] et al. used a set of heterogeneous 
features and fusion techniques to construct a flame-based 
sintering state recognition system. The flame images captured 
by the digital camera were always partitioned to several 
regions such as coal region, bright region and material region 
et al (Fig.2). The above mentioned methods mostly extract 
various features such as HSI, texture feature and so on from the 
segmented regions. Fig. 3. is the typical flame image sequence 
captured from the rotary kiln of a large alumina plant. Because 
of illumination and fog in kiln, the image is so blurring that it is 
difficult to segment material zone, and extracting texture 
feature from it is even more impossible. So the sintering state 
detection methods mentioned above can not work well in 
blurring flame image. On the other hand, the above methods 
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are lack of efficient and real-time ability because of complex 
classifier and feature computing. 

 

Fig. 2. Rotary kiln axial fuzzy video images. 

 
Fig. 3. Flame image sequence captured in sintering area of rotary kiln. 

In this paper, a new feature extraction method and fast 
robust classifier are presented to recognize the sintering state in 
rotary kiln based on blurring flame images. After an image 
preprocessing for noise removal and illumination 
compensation, material region is segmented by region growing 
algorithm and a 5-D statistic feature vector is extracted from it 
as the inputs to the classifier. Subsequently, a robust extreme 
learning machine (RB-ELM) is used to recognize the sintering 
state with the features, which has not only shorter training time 
for real-time application than other classifiers, but also has 
robust abilities to overcome the negative influence of outliers 
in feature caused by blurring image on site. 

The rest of the paper is organized as follows. In Section II, 
the preprocessing procedure, material region segmentation, and 
feature extraction are described. Section III describes the 
robust extreme learning machine algorithm. Section IV 
presents its results and compares them to other classification 
methods. Finally, the authors’ conclusions and discussion 
conclude this paper. 

II. PROPOSED PREPROCESSING, SEGMENTATION AND 
FEATURE EXTRACTION METHOD  

This section presents the proposed preprocessing 
procedure, material region segmentation and feature extraction 
methods. The following process stages may be identified: 1) 
original blurring image preprocessing, 2) material region 
segmentation and postprocessing, and 3) statistic feature 
extraction for sintering state classification. 

A. Preprocessing 
Processed images gI are monochrome and obtained by 

extracting the green band from original RGB kiln sintering 
images. The green channel provides the best contrast of the 
RGB representation (Fig. 4.). 

  
Fig. 4. RGB image and green channel image. 

Because of the burning of material the kiln sintering images 
represent serious illumination variation, and the ROI is difficult 
to be segmented. We use Fuzzy C-Means (FCM) [7] and 
region growing algorithm [8] to segment the material region, 
the results are shown in Fig.5. It is failed to segment the 
material region correctly because of uneven illumination in 
kiln. So, a preprocessing procedure comprising noise removal 
and background homogenization is applied. 

  

(a)                            (b) 

Fig. 5. Segmentation result without preprocessing: (a)  FCM segmentation 
image    (b) region growing segmentation image 

A 7×7 median filter is applied to eliminate occasional salt-
and-pepper noise. Further noise smoothing is performed by 
convolving the resultant image with a Gaussian kernel of 
dimensions 9 9m m× = × , mean 0μ =  and variance 2 25σ = .The 
denoising image rI  is shown in Fig.6(a). To overcome the 
background intensity variation caused by burning of material in 
rotary kiln, a background image  BI  , is produced by applying 
a 180×180 mean filter (Fig. 6(b)). The difference D between 

rI and BI is calculated for every pixel: 

( , ) ( , ) ( , )r BD x y I x y I x y= −                       (1) 

Then a shade-corrected image scI  (Fig. 6(c)) is obtained by 
transforming linearly values into integers covering the whole 
range of possible gray-levels (0-255, referred to 8-bit images). 
In order to reduce the influence by intensities variations 
between images, a homogenized image (Fig. 6(d)) is produced 
as follows: the histogram of scI  is displaced toward the middle 
of the gray-scale by modifying pixel intensities according to 
the following gray-level global transformation function: 

_ max( , ) ( , ) 128H sc scI x y I x y I= + −                  (2) 

The variable denoted by _ maxscI  defines the gray-level 
presenting the highest number of pixels in  scI . Pixels in 
images with different illumination conditions will standardize 
their intensity around this value. 
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        (a)                                      (b) 

  
(c)                                     (d) 

Fig. 6. Illustration of the preprocessing process: (a) Denoising result of green 
channel image. (b) Background image. (c) Shade-corrected image. (d) 
Homogenized image. 

B. Material Region Segmentation and Postprocessing 
After preprocessing, we use the region growing algorithm 

to segment material region. As mentioned above, the material 
region is located in the lower right side of image. Thus the 
region growing algorithm uses a seed point which is located in 
the fix position to segment the material region and gradually 
incorporates pixels into region R if the pixel ( , )f x y satisfies 
the similarity constraint: 

( , ) seedf x y Tμ− ≤                            (3) 

{ } { }max ( , ) min ( , ) | ( , ) sT I x y I x y I x y M= − ∈               (4) 

Where ( , )I x y  is intensities of 8 neighbors of seed point. 
seedμ  is the mean intensities of 8 neighbors of seed point. sM  

is 11 11× masks with center seed. Eq. (3) and Eq. (4) are used to 
determine whether the region is extended. If there is no region 
extension, region growing is stopped. 

Fig. 7(a) shows the region growing results of the HI . To 
fill the hallow in the material region, a morphological closing 
using a 20-pixel diameter disk, defined in a square grid by 
using eight-connexity, as structuring element. Fig. 7(b) denotes 
the resultant image DI . 

  
(a)                             (b) 

Fig. 7. Segmentation result of material region: (a) region growing result. (b) 
postprocessing image. 

C. Feature Extraction 
The aim of the feature extraction stage is the 

characterization of material region by means of a feature 
vector.  The material  region  is  represented in  terms of  some 
quantifiable measurements which may be easily used in the 
classification stage to decide which sintering state the current 
sintering material belongs to. The quality of sintering stuff can 
be catalogued into three groups: (1) oversintering stuff, 
characterized by small granularity, deep liquid phantom, and 
bad mobility. (2) undersintering stuff, characterized by loose 
granularity and over-flexible mobility. (3) normal sintering 
stuff, characterized by homogeneous flow, moderate 
granularity. The sintering state has some relation with the 
temperature of kiln and the gray-level of image is in proportion 
to the temperature. So in this paper, a set of gray-level-based 
statistic feature is derived from segmented images: 

1). average gray-level of material region: 

1

1

1 ( , ) ( , )
H

i i D
i

f f x y f x y I
M =

= ∈∑                         (5) 

Where DI  represents the segmented material region, and M 
is the pixel number of material region. f1 represents the 
illumination intensity of material region. 

2). average grey-level of original green band image: 

2

1

1 ( , ) ( , )
S

i i g
i

f f x y f x y I
S =

= ∈∑                           (6) 

Where gI  is the green channel image of original RGB color 
image, and S is the pixel number of green band image. 

3). the leftmost x-coordinate of material region: 

3 min 1min( ,.... ,... )i n i Df x x x x x I= = ∈               (7) 

4). the topmost-coordinate of material region: 

4 max 1max( ,.... ,... )i n i Df y y y y y I= = ∈            (8) 

5) angle of centroid swing 
On the basis of results of experimental study, the repose 

angle γ  is one of the most important material properties 
describing the granular material motion in rotating kiln [9,10]. 
The value of repose angle reflects the viscosity and fluidity of 
stuff indirectly, which is the higher viscosity and weaker 
fluidity, the bigger angle of repose. In our experiment, to 
simplify computation complexity we use the angle of centroid 
swing θ  to substitute for the repose angle (Fig. 8.). The angle 
of centroid swing means the angle between the line from 
material centroid to image central point and the vertical line. 
The angle of centroid swing is in proportion to the angle of 
repose and its computation is simple than the angle of repose. 
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5 ( )c m

c m

x xf arctg
y y

θ −= =
−

                (9) 

Where cx   and cy  are  x-coordinate  and  y-coordinate  of 

centroid of material region, mx , my are central point’s 
coordinates of whole image. 

1

1

( , )

( , )

M

i i
i

c M

i
i

f x y x
x

f x y

=

=

=
∑

∑
                      (10) 

1

1

( , )

( , )

M

i i
i

c M

i
i

f x y y
y

f x y

=

=

=
∑

∑
                     (11) 

( ),if x y is the gray-level value of pixel p in the material 

region ix  is the corresponding x-coordinate of p and iy  is the 
y-coordinate of it. 

γ

Vertical line

Horizontal line

Granular bed
θ

ω

h

Centroid of
material zone

 
Fig. 8. Schematic diagram of granular material transport. 

D. Outliers in Feature 
We record a typical working condition of 10 minutes from 

an industrial alumina rotary kiln with a digital video camera, 
which at a frame rate 12 frame per second. The computer 
captures 7200 frames of stuff motion automatically. It is in the 
normal sintering state with the first 5-minute(about 1-
3500frame) and in undersintering state with the latter 5- minute 
(3501-7200)  labeled  by  kiln  operator   expert.   

The value of feature 3f  during this period is shown in 
Fig.9. The x-axis of table presents the frame number and y-axis 
presents the detected value. We can see it varies drasticly at 1- 
3500 around and fluctuation range gets narrow at 3500-7200. 
Fig. 10 shows the value of angle of Centroid swing. There are 
some outliers in feature sequence also. 

 
Fig. 9. Leftmost x-coordinate curve. 

 

Fig. 10. Centroid swing angle curve. 

There are some outliers in both of leftmost x-coordinate 
and centroid swing angle in Fig. 9. and Fig. 10.. These outliers 
exist because of the unsuccessful segmentation of material 
region. Due to the electromagnetic disturbance and dust of kiln, 
some images are blurring and the material region is difficult to 
be segmented. The unsuccessful segmentation results are 
shown in Fig. 11. To reduce influence of these outliers in 
features, we use a new classification algorithm to recognize the 
sintering state of material. 

   
 

Fig. 11. Unsuccessful segmentation image. 

III. CLASSIFIER FOR SINTERING STATE RECOGNITION 

A. Backgroud of Robust Neural Network 
During the recent years, even though various learning 

algorithms have been studied in the literature [11]-[15], those 
approaches still suffer from the same problem such as slowly 
training speed, too many parameters need to be set and the 
complexity structure of methods. Unlike conventional neural 
network theories, a novel neural network architecture was used 
that in order to let single-hidden layer feed forward networks 
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work as an universal approximator. Such learning algorithm 
referred to as extreme learning machine(ELM) was proposed 
by Huang et al., which randomly generates hidden nodes and 
only need to adjust the output weights linking the hidden layer 
and the output layers[16]-[19]. ELM has the advantages of fast 
training speed, simple structure and superior universal 
approximation capability[20]-[22]. The network is obtained 
with very few steps and very low computational cost. 

For N arbitrary distinct samples ( )i ix , t , where 
T

1 2[ , ,..., ] n
i i i inx x x R= ∈x  and T

1 2[ , ,..., ] m
i i imt t t R= ∈it , standard 

SLFNs with hidden nodes L  and activation function ( )g x  are 
mathematically modeled as 

=βH T                            (12) 

where 

1 1 1 1

1 1

( ) ( )

( ) ( )

L L

N L N L N L

g b g b

g b g b
×

⋅ + ⋅ +⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⋅ + ⋅ +⎣ ⎦

"
# " #

"

a x a x
H

a x a x           (13) 

[ ]T
1, , L d

L R ×= ∈"β β β β2 is the weight vector connecting the ith 

hidden node and the output nodes. [ ]T
1 2, , N

N R= ∈"T t t t is the 
output vector of samples. H is hidden layer output matrix of 
neural network, the ith column of H  is the ith hidden node 
output with respect to inputs 1 2, , , N…x x x . Huang proved if the 
activation function ( )g x  is infinitely differentiable, input 
weight vectors ia  and hidden biases ib  are randomly chosen 
[23], β  can be calculated directly in the following 

     
† T 1 Tˆ H T H H H T−= = ( )β                 (14) 

B. Robust ELM 
ELM has the advantages of fast training speed and simple 

structure, but the generalization performance still may be 
destroyed by the unstable, high-disturbance learning data. 
Horata[24] proposed three algorithm, i.e. the iteratively 
reweighted least squares, ELM based on the multivariate least-
trimmed squares, and ELM based on the one-step reweighted 
to solve the outliers robustness problem. As discussed above, 
there are many outliers in the training data because of the 
unstable segmentation results of flame image, which would 
reduce the generalization performance of neural networks. In 
this section, to deal with the corrupted data by outliers in 
industrial field, we use RB-ELM (Robust extreme learning 
machine) to recognize the sintering state. 

1) calculating β  by M-estimator 
The SLFNs model, (12), is redefined as 

              +H T e=β                 (15) 

Where residuals error vector [ ]1 2= Ne e e"e  and 

1

L

i i ij j
j

e h
=

= −∑t β  is the ith sample’s error. The traditional least 

square method is to minimize the residual sum of squares with 
the following cost function : 

2

1

N

i
i

Q e
=

=∑ .                               (16) 

The above cost function, such as (16), easily amplifies the 
influence of abnormal values(outliers) for system estimation 
because of the error square. The basic idea of M-estimator [25] 
is that using iterative weight least square to estimate regression 
coefficient β , and determining samples weight by the size of 
residuals. In order to alleviate the outlier problem, M-
estimators are used as the cost function of the networks in this 
paper. An M-estimator is of the following form according to 
(16): 

1
( )

N

i
i

Q eρ
=

=∑                           (17) 

Where ρ is the kernel function which has the lower order 
than square. In order to minize the Q with β ， the partial 
derivative of cost function with respect to β  is 

1 1
( ) 0

N L

i ij j ij
i j

h hψ
= =

− =∑ ∑t β    (18) 

where ψ  is the derivative function of ρ ( ψ ρ′= ), if 
making ( ) ( ) /i i i iw w e e eψ= = , then the (18) conversion to  

1

0
N

i i i
i

w e
=

=∑ H . Its vector representation is : 

              
TH We = 0     (19) 

Where 1 2 N=diag( , , )w w w"W is the error weighted 

matrix and ( ) ( ) /i i i iw w e e eψ= = is the ith sample’s error 
weight. Substitute (15) into (19), we can obtain the final 
estimating equation. That is 

T 1 T−= H WH H WY( )β   (20) 

Equation (20) is an equation of weighted least squares 
estimation. In order to reduce the inference of outliers, the 
weight of each sample is determined by the residual. Given a 
higher weight to a smaller residual sample, and given a lower 
weight to a larger residual sample. Then calculate each new 
residual by the given weight, iterative again and again, until the 
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change of weight coefficient is less than a certain allowable 
error. In this way, the robustness property of algorithm is 
enhanced. 

2) selection of kernel functions   

In the theory of M-estimator, there are many kernel 
functions ρ  in (17). In this paper, we select Huber kernel 
function to substitute the residual sum of squares Q , such as  

2

2

/ 2
( )

/ 2

x x k
x

k x k x k
ρ

⎧ ≤⎪= ⎨
− >⎪⎩                 (21) 

Where k is  a  tuning  constant,  the default value is 1.345. 

The derivative function of ( )xρ  is ( )xψ  

( )
k x k

x x x k
k x k

ψ
− < −⎧
⎪= ≤⎨
⎪ >⎩                       (22) 

3) normalizing error 

In order to enhance the robustness of M-estimator, a robust 
scale estimate is used to standardize the error wi in weighed 
matrix W. The value of s  is defined as ( ) / 0.6745imed e . So, 
the standardized residual is defined as 

/ 0.6745 / ( )i i i iu e s e med e= =                   (23) 

where med means MAD (median absolute deviation). So 
the ith sample’s error weight is redefined as 

( )i
i

i

uw
u

ψ=                                      (24) 

Where ( )xψ  and iu are defined by (22) and (24) 
perspectively. 

C. Procedure of RB-ELM Algorithm 
Given a training set { , , 1,2, , }n mZ R R i N= ∈ ∈ =( ) …i i i ix ,t x t , 

activation function ( )g x , and hidden node number L. 

a) Randomly assign input weight ia and bias ib , W=I, (0)ˆ =0β . 

b) Calculate the hidden layer output matrix H . 

c) Calculate the initialized output weight 
( ) T 1 Tˆ i −= ( )H WH H WTβ ， and calculate the initialized 

individual error e ;  

d) If ( ) ( 1)ˆ ˆmax(| |)i i ε−− ≥β β  then, 

updating the error weight matrix 1 2 N=diag( , , )w w w"W  with 

calculating the standardized residual iu and ( )i
i

i

uw
u

ψ
=  and 

then back to step c)  

Else  

algorithm finished and output the latest ( )ˆ iβ . 

end if  . 

IV. EXPERIMENTS 
In this paper, the original flame images were picked out 

from the flame’s monitor video of No. 6 rotary kiln at the 
ZhongZhou Aluminum Corporation in China. We extracted the 
frame at a rate of 1 frame per minute and labeled its sintering 
state as undersintering images, normal sintering images or 
oversintering images by kiln worker expert. Training set has a 
total of 4500 typical flame images and testing set has 2000 
images with three kinds of sintering states. We extracted the 
features from preprocessed image and each image is 
characterized by a vector in a 5-D feature according to (5)-(11). 
The information of Kiln data is shown in Table I and the 
testing results are shown in Table II.  

The images with 5-D feature are classified by the RB-ELM 
mentioned in section III. The classification result of RB-ELM 
is shown in Table II. Meanwhile other classified algorithms are 
compared to the RB-ELM and the experiment results are listed 
in Table II. The total time required to process a single image is 
less than approximately 30 seconds, running on a PC with an 
Intel Dual-Core CPU at 2.60 GHz and 2 GB of RAM. The 
recognition test time of RB-ELM and ELM are less than BP 
and SVM. 

TABLE I.  INFORMATION OF KILN DATA 

Training Testing Attributes Classes 

4500 2000 5 3 

 
Table II shows that the recognition accurate rates of RB-

ELM, ELM and SVM are more than 80%, which demonstrates 
the effectiveness of image processing procedure and 5-D 
features chosen in this paper. The test result of RB-ELM is 
better than ELM, SVM and BP,  which shows that the RB-
ELM can solver the outlier problem  in feature data better than 
other learn machines. 

We update the existing expert control system with the 
above sintering process recognition methods in this paper for a 
rotary kiln in ZhongZhou Aluminum Corporation in China. 
The updated control system could take different strategy 
according to the recognition result, which achieved a great 
quality improvement of final production.The results are shown 
in table III. Before we used the expert control system, the 
average quality rate was 63.1% and it raised to 87.5% when we 
apply the automation control system in rotary kiln. 
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TABLE II.  THE COMPARISON OF PERFORMANCE OF ROBUST-ELM, ELM 
AND SVM 

 
Time(S) Accuracy (%) Number    

of 
hidden 
nodes 

Training Testing Training Testing 

RB- 
ELM 

0.6319 0.0253 79.43 81.17 100 

ELM 0.2431 0.0288 79.30 80.91 100 

SVM 3.2031 0.5938 79.55 81.05 C=32,g=
32 

BP 6.553 0.412 76.23 75.03 50 

TABLE III.  THE COMPARISON OF QULITY RATES OF AUTOMATION 
CONTROL SYTEM AND MANUAL CONTROL IN NO.6 ROTARY KILN 

 Automation control Manual control 
Average quality 

rate(%) 
87.5 63.1 

V. CONCLUSION 
Sintering state is important for the sintering quality of 

material in rotary kiln. The digital image captured in sintering 
area can  assist in  estimating  the  sintering  state  of  material. 

However, material region’s segmentation of blurring image 
is difficult because of the disturbance of field environment. 
This paper proposes a novel method to recognize the sintering 
state of material in the rotary kiln based on RB-ELM (robust 
extreme learning machine), being the feature vector 
representing each image composed of gray-level statistic 
features. Firstly, preprocessing procedures such as illumination 
compensation and background homogenization are carried out 
to balance the image illumination. Secondly, material region is 
segmented by region growing algorithm. Then a 5-D feature 
vector based on grey-level statistic is extracted from segmented 
image. Finally the features are put into a RB-ELM to classify 
the sintering state. RB-ELM can effectively reduce the 
interference of outliers and noisy data. From the simulation 
results, for some cases, RB-ELM proved the superior robust 
capacity to ELM, and it still keeps the rapidity of ELM. Field 
experiment results show that the proposed approach in this 
paper can recognize the sintering state of material in rotary kiln 
effectively. 
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