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Abstract— Damage in parietal and/or motor cortex of the 
brain can lead to inability in proper visuo-motor coordination, 
hampering movement planning and execution. The objective of 
this work is to predict joint coordinates of hand by sequential 
prediction of the parietal and motor cortex 
Electroencephalogram (EEG) features from their occipital 
counterparts using artificial neural networks (ANNs). EEG 
signals during hand movement execution are acquired from 
occipital, parietal and motor cortical regions and the joint 
coordinates of hand are acquired using Kinect sensor. The 
acquired EEG signals are preprocessed followed by extraction of 
wavelet features and selection of the best features using Principal 
Component Analysis. The EEG features originating from one 
brain region are mapped to the features of another brain region 
using regression analysis on artificial neural networks with Back 
Propagation learning. The mapped motor cortical EEG signals 
are finally used to predict the hand joint coordinates using Back 
Propagation learning based ANN. The performances of various 
weight adaptation techniques for Back Propagation learning are 
evaluated. Regression analysis results indicate that Levenberg-
Marquardt optimization based weight adaptation performed best 
in terms of mean squared error, slope of the best linear fit and 
correlation coefficient between the original values and predicted 
results. 

Keywords—artificial neural network; back propagation 
learning; electroencephalogram; regression analysis; visual-motor 
co-ordination 

I. INTRODUCTION 
Brain Computer Interfacing (BCI) technology [1] has 

significant contributions in the development of rehabilitative 
aids for assistance in neuro-motor disabilities. The use of 
Electroencephalogram (EEG) in BCI is popular because of the 
simple acquisition and processing, non-invasiveness, high 
temporal resolution and ease of real time implementations 
associated with EEG signals. Instances of EEG based BCI 
study include decoding mental states and cognitive activities 
[2-3], prosthetic and robotic control through motor imagination 

[4-5], emotion recognition [6], object shape recognition from 
visual and tactile exploration [7] to mention a few. 

Patients suffering from Alzheimer’s disease, Optic ataxia, 
Balint’s Syndrome and other brain diseases usually have 
reduced parietal lobe and/or motor cortex functioning [8-10], 
prohibiting them to correctly control their motor movements. 
The present work, attempts to provide an artificial pathway to 
perform the task of visuo-motor coordination in patients with 
damage in the areas of brain involving decision making and/or 
coordination related to visual stimuli and corresponding motor 
actions; namely the parietal and motor cortex regions. Visuo-
motor coordination is obligatory for carrying out any motor 
execution task from visual stimulus. For instance, when a 
person tries to catch a ball thrown at him by another person, 
first the visual stimulus of the ball being thrown at him is 
processed by the occipital lobe of the brain. Then the decision 
regarding how to position his arms and fingers to catch the ball 
is made in the parietal region. Finally, according to the decision 
made, the motor cortex executes the movements of the hands. 
The occipital, parietal, and motor cortex controls the visuo-
motor coordination tasks in a synchronized manner as shown in 
Fig. 1. In case of damage to any of these brain regions by some 
accident, trauma, aging or brain ailments, it is difficult for a 
person to make proper visuo-motor coordination. Our objective 
is to develop a technology to circumvent the damaged parietal 
and/or motor cortex to accomplish motor execution only from 
the occipital EEG signals.  Previous works in BCI based 
rehabilitation include use of artificial limbs, wheelchairs, 
virtual games controlled by the brain signals of patients [11-
14]. However, to the best of the authors’ knowledge, no 
significant work is yet present that aims to design an artificial 
system capable of bypassing the natural visuo-motor 
coordination. 

  The problem can be briefly stated as formulation of a 
mapping between two regions of the brain. A supervised neural 
learning or regression algorithm is a good choice for such 
mapping. In this paper we propose the use of regression 
analysis on an Artificial Neural Network (ANN) to determine 
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such mapping. EEG signals from the occipital, parietal and 
motor cortex regions of a healthy individual for a visuo-motor 
coordination related task are acquired and subjected to feature 
extraction. The joint coordinates of the hand during movement 
execution are also captured using a Kinect Sensor [15]. A 
three-level ANN based linear regression analysis is done, the 
first level ANN is trained to predict parietal EEG features from 
occipital EEG features, the second level ANN is trained to 
predict motor-cortex EEG features from parietal EEG features 
while the final level ANN is trained to predict joint coordinates 
from the motor-cortex EEG features. All ANNs are trained on 
the principle of Back Propagation Learning [16-17] while the 
performance is evaluated by varying the weight adaptation 
techniques of the neural networks.  

 
Fig. 1. Movement Execution from Visual Stimuli in Human Brain 

The rest of the paper is structured as follows. The 
methodology followed in the work along with the tools and 
techniques are explained in Section II. Section III describes the 
experiments conducted. The results are discussed in Section 
IV. Finally in Section V conclusions are drawn and the future 
scopes of work are stated. 

II. METHODOLOGY 
This section describes the tools and techniques used in this 

paper and also provide the outline of the work. 

A. Feature Extraction  
For abstracting the relevant parameters of EEG related to 

the current task, EEG signals are subjected to feature 
extraction. After experimental trials with some commonly used 
EEG based features, Wavelet transform [18-19], which 
provides both frequency and time-domain analysis at multiple 
resolutions, is selected for feature extraction as it provides the 
best results on an average, while overcoming the limitations 
imposed by Short Time Fourier Transform. In Discrete 
Wavelet Transform signals are passed through high and low 
pass filters in several stages. At each stage i, each filter output 
is down sampled by two to produce the approximation 
coefficient Ai and the detail coefficient Di. The approximation 
coefficient is then decomposed again, to get the approximation 
and detail coefficients of the subsequent stages.  In the present 
work, Daubechies order 4 (Db4) mother wavelet is used for 
discrete wavelet transform. 

B. Feature Selection 
In order to reduce the dimensions of the EEG feature space 

thereby selecting only the best features, feature selection is 
performed using Principal Component Analysis (PCA) [20-
21]. PCA is an orthogonal linear transformation that transforms 
the input data into its Eigen space such that the elements of the 
transformed data are uncorrelated. We need to extract the first 

d principal components as the d best features. The Eigen space 
is so arranged that the Eigen vectors occur in decreasing order 
of Eigen values. The first Eigen vector has the direction of the 
largest variance of data and is the first principal component 
PC1 of the dataset. The second Eigen vector has the direction 
orthogonal to PC1 that has maximum variance and is the 
second principal component PC2. The process is continued to 
determine the higher principal components. Thus, d best 
features are selected from a total of D features by taking the 
first d components of the transformed feature space. 

C. Back Propagation Learning based Artificial Neural 
Networks for Regression Analysis 
The Back Propagation learning algorithm [11], [16-17], 

[22] is one of the most popular supervised learning algorithms 
to train an artificial neural network. It employs a feed-forward 
topology of neurons, as shown in Fig. 2, each layer with a 
number of neurons. The neurons in the intermediate and output 
layers receive weighted signals from those of the previous 
layer, which are summed up and then passed on to a non-
linearity. The error obtained at the output layer is given by (1) 
where targetr and Outr denote the target and output produced at 
the rth neuron of the output layer.  

 2(1/ 2) (target Out )r r
r

E = −∑  (1) 

 

 

 

Fig. 2. A 3-layered feed forward neural network where ai’s, bi’s and ci’s 
denote neurons in the input, intermediate and output layers respectively 

The steps of Back-propagation learning in the neural 
network are: 

1. Initialize i: =1 

2. For the input at the ith instance to the neural network, 
compute the outputs by a forward pass 

3. Compute the error vector Ei at the output layer by 
taking the difference of  each component of the target 
vector and that of the obtained output vector, i.e., 
Eij=Tij-Oij, for all j, where Eij,Tij and Oij denote the jth 
component of the ith error vector, target vector and 
output vector respectively. 

4. Repeat steps 2 and 3 for i=1 to n where n is the number 
of input instances. 

5. Determine the Root Mean Square (RMS) value of error  
(ERROR), whose jth component is given by  
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6. Back propagate the RMS error components of the last 
layer to the preceding layers and adapt the weights of 
the network according to some algorithm starting with 
the last layer. 

Repeat steps (2-6) until 2( )
j

j

ERROR∑ is sufficiently small. 

The weight adaptation of the neural network is thus an 
important factor determining the efficiency of its training. 
There are several well known algorithms for weight adaptation. 
Some of these, used in this paper have been briefly stated 
below. 

1) Gradient Descent Search 
Newton’s Gradient Descent Search (GDS) [22] follows the 

weight adaption rule (3-4) using the error function (1) which is 
a function of weights of the interconnection. 

 Ew
w

η ∂Δ = −
∂

 (3) 

 w w w= +  (4) 

where w are the weights of the network, E is the error 
function, and η is the learning rule (0<η<1). In our work, 
experimentally we have considered η  to be 0.01 and the 
minimum value of the error gradient reaching which the 
training of the network is stopped is taken as 1.0e-6. 

In order to overcome the problem of the network getting 
stuck at a local minimum, a momentum (mc) term can be 
added with the general gradient descent search principle [22]. 
The momentum helps to slide over through the local 
minimums in the error surface and reach the global minimum. 
Such a weight adaptation algorithm given by (5) is referred to 
as gradient descent search with momentum (M-GDS), where 

previousw denotes the previous change in weight. The constant 
momentum used in the present work has been varied from 0 
(no momentum) to 1 (high value of momentum) and found that 
a value of 0.9 improves results. 

 ( ) (1 )previous
Ew mc w mc
w

η ∂= + −
∂

 (5) 

2) Levenberg-Marquardt Optimization 
The simple form of gradient descent learning can be stated 

as (6), where Wi and Wi+1 denote weights of the network at 
two consecutive instants, η (>1) is the learning rate and d is the 
derivative of the error function. 

 1i iW W dη+ = −  (6) 

A weight update rule based on quadratic approximation, an 
improvement over the simple gradient descent learning is given 
by (7), 

 
1

1i iW W H d−
+ = −  (7) 

where H denotes an approximation to the Hessian of the 
error matrix. However quadratic approximation assumes the 
error function to be a linear function of weights which is true 
only near a minimum. The Levenberg technique involves 
blending of the above two techniques. The gradient descent 
method is used until we approach a minimum, and then 
quadratic rule is followed. Let λ be a blending factor that 
determines the mix between gradient descent and quadratic 
approximations. The update rule is 

 
1

1 ( )i iW W H I dλ −
+ = − +  (8) 

where I is the identity matrix. If λ is too small then it 
approaches quadratic approximation and if λ is too large then it 
approaches gradient descent learning. If by doing an update of 
weights using the above approach, the error is increased, the 
weights are reset and λ is increased by a significant factor as 
increase in error indicates that we are not near a minimum. If 
error is decreasing, that is we are getting closer to minimum, 
then we decrease λ. If λ is high and we are essentially doing 
gradient descent, to get benefit from the Hessian matrix, we 
should move further in directions in which the gradient is 
smaller. Using this concept, the Levenberg-marquardt (LM) 
optimization [23-24] technique for weight adaptation can be 
stated as (9), where Diag [H] denotes the diagonal of the 
Hessian.  

 
1

1 ( [ ])i iW W H diag H dλ −
+ = − +  (9) 

The initial value of λ is taken as 0.001 in the present work 
and the increase and decrease factors of λ are taken as 10 and 
0.1 respectively. The minimum value of the error gradient 
reaching which the training of the network is stopped is taken 
as 1.0e-6. 

3) Bayesian Regularization 
One approach to improve generalization in neural networks 

is to add constraints with the typical mean squared error 
objective function. The merit of such generalization lies in 
improving the degree of smoothening of the objective function, 
and such process is referred to as regularization.  

Bayesian regularization provides neural network training in 
a Bayesian statistical framework. This framework assumes the 
network weights to be random variables and attempts to 
maximize the conditional probability of the weights when the 
data is given using Bayes’ rule. If Ew be the sum of the square 
of network weights necessary for regularization and ED be the 
squared error norm, the problem is to minimize the objective 
function ( ) D wF w E Eβ α= + , [32] where α and β are 
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parameters of the objective function that depend on the 
variance of the weights and the measurement noise 
respectively. 

The main steps of Bayesian regularization [24-26], [32] 
(BR) with Gauss-Newton approximation to Hessian matrix is 
given below. 

1. Initialize α=0 and β=1 following Nguyen-Widrow 
initialization method. 

2. Execute one step of Levenberg-Marquardt algorithm to 
minimize F(w). 

3. Compute the effective number of 
parameters 12 (H )N trγ α −= − , where N is the total 
number of parameters in the 
network, 2 (w) 2 2T

NH F J J Iβ α= ∇ = + , where 
IN is the identity matrix of N×N, and J is the Jacobian 
of the training set errors. 

4. Compute α and β by / 2 (w)wEα γ= and 

(n ) / 2 ( )DE wβ γ= − , n depends on the number of 
samples and the network model like the number of 
layers and neurons in each layer. 

5. Repeat through step 2 until convergence in F(w) is 
observed.  

In BR the blending factor of the LM rule is taken as 0.005 
with the increase and the decrease factors being 10 and 0.1 
respectively in the present work. Training is carried till a 
minimum error gradient of 1e-10 is achieved.  

4) Scaled Conjugate Gradient 
Conjugate Gradient methods use the second derivative of 

the error function and find a better way to the minimum error 
than first order techniques, at a higher computational cost. It is 
called ‘conjugate’ because, unlike the normal gradient descent 
that proceeds in the direction of the gradient, it proceeds in the 
conjugate direction to the directions of the previous steps. 
Conjugate gradient method use the principle of line search that 
is computationally expensive. In Scaled Conjugate Gradient 
[27] (SCG) method, the expensive line-search and computation 
of Hessian of the error function is avoided using two 
parameters, σ, that determines change in weight for second 
derivative approximation and λ, that controls the indefiniteness 
of the Hessian. In the present work these values have been 
taken as 5.0e-5 and 5.0e-7 respectively. The minimum value of 
the error gradient reaching which the training of the network is 
stopped is taken as 1.0e-6. 

D. Overview of proposed methodology 
The schematic of entire course of work is presented in Fig. 

3, Fig. 4 and Fig. 5. The techniques of EEG signal acquisition 
and pre-processing as well as Kinect data acquisition are 
described in Section III.  The first, second and third level Back 
Propagation neural networks (BPNNs) are termed BPNN1, 
BPNN2 and BPNN3 henceforth. Fig. 3 illustrates the training 
of BPNN1 and BPNN2 by the EEG features of the occipital-
parietal and parietal-motor cortex regions respectively. The 

occipital EEG features are given as input to BPNN1 and the 
corresponding set of parietal EEG features is set as target 
outputs. The weights of the network are adapted until it learns 
to predict the parietal EEG features from that of occipital EEG.  

 
Fig. 3. Training phase to determine coordination between Occipital to 
parietal and parietal to motor cortex EEG features, Occipital Parietal and 
Motor Cortex EEG channels are denoted by O1, O2; P7 , P8 and FC5 and 
FC6 respectively 

 
Fig. 4. Training phase to generate joint coordinates from Motor Cortex 

All the techniques of weight adaptation previously 
discussed are applied to obtain a set of trained BPNNs for each 
algorithm. Similar procedure is carried out for BPNN2 as well. 
In Fig. 4 the training of BPNN3 taking the motor cortex EEG 
features as the input and the joint co-ordinate features as the 
targets has been illustrated. 5 significant joints spanning from 
the shoulder to the palm of a hand are considered in this 
present work. Each joint is represented by 3-dimensional joint 
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co-ordinates. The complete flow for testing the proposed 
system using the three trained BPNNs is illustrated in Fig. 5. 
The predicted parietal EEG features (YPAR) obtained from 
trained BPNN1 are supplied to BPNN2 from where the 
predicted Motor Cortex features (YMC) are obtained. YMC when 
supplied to the trained BPNN3 produce the predicted joint co-
ordinates.  The process carried out for predicting the co-
ordinates of each joint separately using BPNN3s trained in 
accordance. 

 
Fig. 5. Junction coordinates generation from predicted motor cortex EEG 
features 

III. EXPERIMENTS 

A. Experimental Paradigm 
1) EEG Acquisition and Pre-processing 
Experimental data is acquired from 8 right handed subjects, 

3 male and 5 female, in the age group 25±5 years, with their 
consent, over a period of 5 days. EEG is acquired using a 14 
channel wireless Emotiv headset [28] which has a sampling 
rate 128Hz.  The placement of electrodes follows the standard 
10/20 system of electrode placement [11] and is shown in Fig. 
6(a). EEG signals from occipital, parietal and motor cortex are 
further processed, acquired from three electrode pairs, i.e. O1-
O2; P7-P8 and FC5-FC6 (Fig. 6(a)).  The final joint co-
ordinates are generated from the predicted FC5-FC6 EEG 
signals. Though more electrodes can produce better results, we 
consider only these three electrode pairs as we have to 
demonstrate the processing according to the natural neural 
pathway. 

 

 

 

 

 

 
 

Fig. 6.  (a) Electrode Placement for EEG Acquisition (b) Experimental 
Paradigm 

Data acquisition is done following the paradigm illustrated 
by Fig. 6(b). There is an initial rest phase of 10 seconds. After 
a beep sound to declare the start of acquisition phase a person 
throws a ball towards the subject who is standing at a fixed 
spot at an appropriate distance. The subject watches the ball, 
plans his/her action and ultimately hits the ball with the bat. 
During this time EEG is acquired from him/her. The process 

approximately takes 2 seconds of time. This throw and hit 
process is continued for 10 times, on each subject. 

EEG has a wide frequency spectrum ranging from distinct 
bands [11]. The stimuli considered in the experiments are 
known to produce significant response limited to the frequency 
range of 4-30 Hz. To extract the EEG signals in the desired 
frequency range and thereby eliminate the other frequencies, an 
Elliptical Band pass filter of order 6 with 1dB passband ripple 
and 50 dB stopband ripple in the bandwidth 4-30Hz has been 
used. Spatial filtering by Common average referencing [11] has 
been performed on the filtered EEG signals to remove the 
interference in between channels. For each EEG channel, all 
the channels equally weighted are subtracted to eliminate the 
commonality of that channel with the rest and preserve its 
specific temporal features. 

2) Joint Co-ordinate Data using Kinect Sensor 
The Kinect [15], is a sensor device with set of IR and RGB 

camera that appears as a long horizontal bar with a motorized 
base as shown in Fig. 7(a). It detects the 3D image of an object 
and tracks the skeleton of the person standing in front of it 
within a finite amount of distance. The Kinect sensor with the 
help of the corresponding Software Development Kit (SDK) 
senses the skeleton and the body postures irrespective of the 
color of the skin or the individual’s dress. In Fig. 7(b) a 
skeleton generated by the Kinect has been shown. The Kinect 
Sensor produces the human skeleton represented by twenty 
body joints in the 3-D space. Out of these twenty joints, 5 
joints of the right hand are useful for the present work, denoted 
by yellow circles and marked, as there is no significant 
information from the rest of the body parts for hitting a ball by 
a right handed subject while standing at a fixed position. These 
joints are shoulder center (J1), shoulder right (J2), elbow right 
(J3), wrist right (J4) and hand right (J5). 

 

 

 

 

 

 
Fig. 7. (a) The Kinect Sensor (b) Full Body Skeleton acquired from the 
Kinect 

The Kinect produces skeletons at a rate of 30 
frames/second, and from each frame 3 coordinates specifying 
each of the 5 joints. Therefore for an instance of 2 seconds 
duration for each joint,  2×30×3(=180) coordinate points are 
obtained that are taken as a single instance of joint co-ordinates 
for a similar 2 seconds EEG feature space of wavelet 
coefficients. All data after acquisition is normalized for each 
joint in the range [-1,1]. 

B. Feature Extraction and Selection 
Wavelet Approximate (A3) and Detail (D3) Coefficients of 

level 3 decomposition with Daubechies order 4 mother wavelet 
has been used as EEG features according to the explanation in 
Section II. The order of decomposition is chosen by the fact 

  
10 Seconds 2 Seconds

Initial rest phase Action phase: visual assessment, planning and executionBEEP

1Sec

EEG 
Acquisition

 
(a)                                               (b) 
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that the EEG signals are acquired at 128Hz and as the region of 
interest is 4-30Hz the third level approximation and detail 
coefficients provide the best estimate of the EEG signals. Level 
2 Approximate Coefficients (A2) could also have been used 
but the use of A3 and D3 together produce a larger feature 
space and hence a better representation. Table I provides the 
decomposition of the EEG signal of sampling frequency 128 
Hz into respective frequency bands during wavelet 
decomposition. 

The time window for EEG extraction in all the three levels 
is kept at 2s. Experiments are conducted by taking smaller 
window lengths and concatenating the features obtained, 
however such methods provide no significant performance 
improvement but increase the computational complexity. The 
dimension of each feature vector for an EEG instance of 2 
seconds duration is 276. However, the dimension of an 
instance of Joint co-ordinate data obtained from 2 seconds 
duration for each joint has dimensions 180. In order to keep 
parity in the dimensions and reduce the feature size of EEG 
data, the 180 best EEG features have been selected in each 
experiment by PCA. The feature space is normalized in the 
range [-1,1]. 

TABLE I.   DECOMPOSITION OF EEG SIGNAL OF 128 HZ SAMPLING 
FREQUENCY 

Frequency 
Range (Hz) 

Wavelet 
Coefficient 

64-128 D1 
32-64 D2 
16-32 D3 
0-16 A3 

C. Regression Analysis using BPNN 
The Neural Networks are implemented varying the number 

of neurons in the intermediate layer from 3 to 12 and the best 
average performance is noted for 10. Back propagation 
learning is used with different weight adaptation techniques 
discussed before. In the training phase, data is crossvalidated to 
provide each neural network with 70% training data and 15% 
data each for validation and testing purposes. The performance 
is determined from linear regression analysis [29-30] to predict 
the respective targets from the corresponding input values. The 
slope (m) and the y-intercept of the best linear regression 
relating targets to network outputs (b), the mean squared error 
(MSE) and correlation coefficient (R) between the targets and 
the outputs are evaluated. For a perfect fit between the outputs 
and the targets, the slope would be 1, the y-intercept would be 
0 and the correlation coefficient would be 1. The value of the 
correlation coefficient determines how well the variations in 
the inputs are correctly produced in the targets. The value of 
the MSE should be as low as possible, and less than 1. 

IV. RESULTS AND DISCUSSIONS 
The results of regression analysis for mapping the features 

of the occipital→ parietal, parietal → motor cortex and finally 
motor cortex → joint co-ordinates have been described here.  

Fig. 8 (a), (b) and (c) graphically illustrate the output 
provided by regression analysis of the neural networks 
BPNN1, BPNN2 and BPNN3 for a particular case using LM 

optimization for weight adaptation. The network outputs 
(predicted EEG features) are plotted versus the targets (actual 
EEG features) as open circles. The best linear fit is indicated by 
a dashed line. The perfect fit (output equal to targets) is 
indicated by the red solid line. Here, it is difficult to distinguish 
the best linear fit line from the perfect fit line in (a) and (b) 
because the fit is so good as indicated by the values of the 
slope (m=0.9396 for BPNN1 and m=0.9327 for BPNN2), the 
y-intercept (b= -0.0426 for BPNN1 and b= -0.0441 for 
BPNN2) and the correlation coefficient (R=0.9600 for BPNN1 
and R=0.9638 for BPNN2). The performance of the BPNN3 is 
not as good, with m=0.46, b=-0.097 and R=0.7135. 

A single execution of any algorithm takes the data from the 
ith day of each subject for training and each of the data from the 
other days (total 5days) for testing separately and computes the 
mean over days for a subject and then over all subjects. Tables 
II, III, IV and V provide the performances in terms of Mean 
Squared Error (MSE), slope (m) and the y-intercept (b) of the 
best linear fit and correlation coefficient (R) respectively.  In 
each Table, the mean results are reported for 50 independent 
executions of each algorithm, along with the standard deviation 
in parenthesis. Ji denotes the Joint index according to Section 
III A 2. 

 
Fig. 8. Results of regression analysis of (a) BPNN1, (b) BPNN2 and (c) 
BPNN3 (for J1) for a particular testing sample 

From Table II it is observed that the mean values as well as 
the standard deviations of MSE are significantly low in case of 
BPNN1 and BPNN2, however, the MSEs increases on 
BPNN3, which is theoretically justified because BPNN3 tries 
to predict joint coordinates from EEG features. On an average, 
LM algorithm performs the best over all the three levels of 
BPNNs and BR is the second best. From Table III also it is 
concluded that LM performs best among the rest of the 
algorithms, in terms of the slope of the best linear fit. 
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TABLE II.  PERFORMANCE OF BPNNS : MSE  BETWEEN TARGETS AND 
OUTPUTS OF THE NEURAL NETWORKS 

Algorithm GDS M-GDS LM  BR SCG 

BPNN1 0.565 
(0.089) 

0.287 
(0.063) 

0.086 
(0.005) 

0.045 
(0.008) 

0.156 
(0.012) 

BPNN2 0.655 
(0.025) 

0.501 
(0.027) 

0.088 
(0.012) 

0.093 
(0.006) 

0.323 
(0.032) 

BPNN3 

J1 0.961 
(0.148) 

0.678 
(0.056) 

0.523 
(0.017) 

0.578 
(0.023) 

0.623 
(0.045) 

J2 0.966 
(0.090) 

0.822 
(0.075) 

0.536 
(0.045) 

0.665 
(0.019) 

0.789 
(0.053) 

J3 0.825 
(0.155) 

0.878 
(0.021) 

0.632 
(0.011) 

0.552 
(0.025) 

0.0534 
(0.055) 

J4 0.989 
(0.085) 

0.753 
(0.083) 

0.678 
(0.026) 

0.631 
(0.065) 

0.725 
(0.059) 

J5 0.786 
(0.091) 

0.891 
(0.021) 

0.673 
(0.034) 

0.680 
(0.042) 

0.721 
(0.076) 

 

TABLE III.  PERFORMANCE OF BPNNS : SLOPE OF THE BEST LINEAR FIT  

BETWEEN TARGETS AND OUTPUTS OF THE NEURAL NETWORKS 

Algorithm GDS M-GDS LM  BR SCG 

BPNN1 0.753 
(0.072) 

0.917 
(0.035) 

0.928 
(0.032) 

0.938 
(0.011) 

0.812 
(0.064) 

BPNN2 0.659 
(0.053) 

0.851 
(0.025) 

0.951 
(0.014) 

0.912 
(0.026) 

0.764 
(0.075) 

BPNN3 

J1 0.451 
(0.065) 

0.438 
(0.086) 

0.625 
(0.013) 

0.478 
(0.173) 

0.633 
(0.090) 

J2 0.432 
(0.055) 

0.561 
(0.052) 

0.586 
(0.057) 

0.568 
(0.051) 

0.554 
(0.103) 

J3 0.520 
(0.153) 

0.468 
(0.088) 

0.479 
(0.093) 

0.574 
(0.085) 

0.547 
(0.076) 

J4 0.477 
(0.059) 

0.562 
(0.093) 

0.671 
(0.089) 

0.585 
(0.075) 

0.348 
(0.098) 

J5 0.512 
(0.091) 

0.392 
(0.105) 

0.468 
(0.064) 

0.623 
(0.145) 

0.458 
(0.112) 

TABLE IV.  PERFORMANCE OF BPNNS : Y-INTERCEPT OF THE BEST 
LINEAR FIT BETWEEN TARGETS AND OUTPUTS OF THE NEURAL NETWORKS 

Algorithm GDS M-GDS LM  BR SCG 

BPNN1 -0.068 
(0. 062) 

-0.059 
(0.054) 

-0.015 
(0.087) 

-0.024 
(0.021) 

-0.048 
(0.007) 

BPNN2 -0.072 
(0.054) 

-0.065 
(0.036) 

-0.018 
(0.042) 

-0.025 
(0.067) 

-0.035 
(0.015) 

BPNN3 

J1 -0.088 
(0.039) 

-0.077 
(0.108) 

-0.074 
(0.133) 

-0.081 
(0.065) 

-0.053 
(0.073) 

J2 -0.075 
(0.112) 

-0.086 
(0.075) 

-0.069 
(0.068) 

-0.074 
(0.232) 

-0.089 
(0.059) 

J3 -0.091 
(0.098) 

-0.092 
(0.145) 

-0.073 
(0.077) 

-0.085 
(0.058) 

-0.075 
(0.051) 

J4 -0.095 
(0.023) 

-0.065 
(0.086) 

-0.075 
(0.117) 

-0.063 
(0.092) 

-0.091 
(0.062) 

J5 -0.089 
(0.056) 

-0.081 
(0.059) 

-0.073 
(0.032) 

-0.074 
(0.137) 

-0.082 
(0.033) 

 

A close  observation of the results of Table IV indicate that 
the best mean value of the y-intercept is obtained using BR 
algorithm, followed by LM as an average over all the BPNNs. 
From Table V it is observed that the maximum mean values of 
the correlation coefficient occur for LM algorithm. 

In Table VI we present the statistical significance level (SS) 
of the difference of the mean of the best two algorithms using 

t-test of 25 samples [31]. Here “+” indicates that the t value of 
49 degrees of freedom is significant at a 0.05 level of 
significance by two-tailed test, whereas “−” means the 
difference of mean is not statistically significant, and “NA” 
stands for not applicable, covering cases for which two or more 
algorithms achieve the best accuracy results. The best 
algorithm is marked in bold. To determine the best algorithm, 
the mean values of MSE, slope of best linear fit, y-intercept of 
best linear fit and correlation coefficient should respectively be 
minimum, maximum, nearer to zero and maximum. These four 
parameters are averaged over all the three levels of BPNNs 
over the independent runs. The mean values and standard 
deviations of the parameters are given in Table VI. LM turns 
out to be superior to the rest of the algorithms in terms for 3 out 
of the four parameter cases in a statistically significant manner, 
while BR has the second best performance. 

TABLE V.  PERFORMANCE OF BPNNS : CORRELATION COEFFICIENT  
BETWEEN TARGETS AND OUTPUTS OF THE NEURAL NETWORKS 

Algorithm GDS M-GDS LM  BR SCG 

BPNN1 0.782 
(0.039) 

0.891 
(0.073) 

0.956 
(0.017) 

0.975 
(0.015) 

0.856 
(0.010) 

BPNN2 0.745 
(0.020) 

0.882 
(0.043) 

0.961 
(0.019) 

0.966 
(0.019) 

0.899 
(0.040) 

BPNN3 

J1 0.558 
(0.028) 

0.591 
(0.077) 

0.853 
(0.027) 

0.778 
(0.020) 

0.523 
(0.055) 

J2 0.469 
(0.097) 

0.568 
(0.068) 

0.738 
(0.029) 

0.628 
(0.031) 

0.897 
(0.087) 

J3 0.721 
(0.235) 

0.439 
(0.034) 

0.832 
(0.082) 

0.763 
(0.126) 

0.772 
(0.089) 

J4 0.556 
(0.065) 

0.720 
(0.078) 

0.765 
(0.036) 

0.882 
(0.058) 

0.683 
(0.072) 

J5 0.534 
(0.072) 

0.662 
(0.065) 

0.822 
(0.075) 

0.675 
(0.034) 

0.596 
(0.041) 

TABLE VI.  STATISTICAL SIGNIFICANCE FOR MEAN VALUES OF 
PARAMETERS OVER ALL BPNNS 

Parameter GDS M-GDS LM  BR SCG SS 

MSE 0.850 
(0.032) 

0.695 
(0.043) 

0.432 
(0.055) 

0.487 
(0.078) 

0.584 
(0.052) + 

Slope best 
linear fit 

0.553 
(0.071) 

0.598 
(0.062) 

0.773 
(0.023) 

0.758 
(0.067) 

0.588 
(0.042) + 

y-intercept 
of best 
linear fit 

-0.097 
(0.052) 

-0.085 
(0.031) 

-0.044 
(0.054) 

-0.041 
(0.005) 

-0.059 
(0.009) - 

Correlation 
coefficient 

0.623 
(0.012) 

0.684 
(0.033) 

0.856 
(0.026) 

0.824 
(0.58) 

0.735 
(0.042) + 

 

The present work proposes a three level ANN framework 
for predicting the joint co-ordinates of the hand from occipital 
EEG responses. The idea behind such an architecture is to 
provide an alternative that mimics the natural neural pathway 
of visual-motor co-ordination that occurs in three stages: 
occipital→ parietal→ motor cortex→ joint movement. 
However in an attempt to reduce computational complexity a 
single level ANN that predicts joint co-ordinates directly from 
occipital EEG features without using the parietal and motor 
cortex EEG responses is studied. This ANN is also based on 
Back propagation learning and different weight adaptation 
strategies are employed. However the performance of such an 
ANN produce MSE values greater than 1 in many cases clearly 
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indicating that a single level ANN is not suitable for this 
purpose. 

V. CONCLUSIONS AND FUTURE DIRECTIONS 
The present work proposes a novel technique of predicting 

the joint coordinates during hand movement in response to a 
visual stimulus by developing an artificial neural network 
based strategy. This work finds applications in the 
development of a rehabilitative aid for circumventing the 
natural path of visual-motor coordination through the occipital-
parietal-motor cortex regions of the brain based on EEG 
analysis. The neural networks are trained using normalized 
features and hence in case of abnormal/unavailable parietal and 
motor cortex responses, these pre-trained neural networks from 
data of healthy subjects can be used to predict these signals in 
suitable patients. A number of different weight adaptation 
techniques for back propagation based learning of the neural 
networks has been evaluated and compared. Future 
applications of the work include the movement of a robot arm 
in real time conditions using the joint co-ordinates generated 
by the proposed method. Work is being done to implement a 
closed loop system that will provide the necessary feedback 
signals to overcome the errors in the movement of the robot 
arm while being controlled by the EEG of a patient. 
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