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Abstract— Compact Bionic Handling Assistant (CBHA) is a
continuum manipulator, with pneumatic-based actuation and
compliant gripper. This bionic arm is attached to a mobile
robot named Robotino. Inspired by the elephant’s trunk, it
can reproduce biological behaviors of trunks, tentacles, or
snakes. Unlike rigid link robot manipulators, the development
of high performance control algorithm of continuum robot
manipulators remains a challenge, particularly due to their
complex mechanical design, hyper-redundancy and presence
of uncertainties. Numerous studies have been investigated for
modeling of such complex systems. Such continuum robots,
like the CBHA present a set of nonlinearities and uncertain-
ties, making difficult to build an accurate analytical model,
which can be used for control strategies development. Hence,
learning approach becomes a suitable tool in such scenarios
in order to capture un-modeled nonlinear behaviors of the
continuous robots. In this paper, we present a qualitative
modeling approach, based on neuronal model of the inverse
kinematic of CBHA. A penalty term constraint is added to
the inverse objective function into Distal Supervised Learning
(DSL) scheme to select one particular inverse model from the
redundancy manifold. The inverse kinematic neuronal model is
validated by conducting a real-time implementation on a CBHA
trunk.

I. INTRODUCTION

In recent years, continuum manipulators ([1], [2]...) have
been the subject of intensive research ([3], [4], [5]) due
to their dexterity, and ability to adapt dynamically to the
manipulation in unstructured environments. Such classes of
robots have often a high number of passive joints associated
with links designed with soft materials. Hence, their use for
practical applications requires modeling and development of
real-time efficient algorithms to extract their full physical
potential.

Hyper-redundant robots such as CBHA are those having
a higher degree of freedom, involving more mobility and
reachability of targets citeantonelli2009stability. This redun-
dancy can be exploited for obstacle avoidance, singularities
elimination, various criteria performance enhancing, and as
well as for smooth motion tasks achieving. Focusing on their
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kinematic modeling, unlike of rigid manipulators where the
pose of any point in robot workspace can be fully defined by
links lengths and joint angles, the kinematic of continuum
robots remains difficult to obtain with high accuracy, be-
cause, they are under-determined systems with high number
of parameters. Their modeling is carried out with continuum
mechanics approach. Therefore, their kinematic equations
can be solved by using integral resolutions, which are time
consuming for autonomous systems.

The most widely proposed methods for solving the inverse
kinematic problem for redundant manipulators are based on
Jacobian pseudo-inverse citemayorga1995fast, [8]. The latter
uses the forward kinematic transformation and quaternion
representation of the orientation matrices. Afterward, a com-
puter simulation is performed to evaluate the efficiency of
the Jacobian in converting joint velocities into Cartesian
velocities and to investigate the accuracy of Jacobian pseudo-
inverse for various sampling times. But in the case of hyper-
redundant manipulators with high degrees of freedom, the
computational burden of pseudo-inverse Jacobian becomes
prohibitive, despite of proposed improvements [9], [10].

Some researchers have investigated how continuum robots
behavior can be analytically modeled [3], [11], [5] but these
approaches lead often to less accurate models due to con-
sidered assumptions (constant curvature bending, no gravity
force...). Hence, they cannot capture the full complexity of
continuous deformations. Because continuum deformations
are potentially infinite-dimensional, since the entire arm’s
material is deformable. This kind of deformation could only
be reconstructed using redundant sensors. In such scenarios,
learning approach becomes a suitable tool in order to capture
un-modeled nonlinear behaviors of the continuous robots.

The learning approach has been investigated by some
researchers. In [12], [13], the authors tackle the redundancies
by partitioning the configuration space in a set of local re-
gions, and building a global solution from these local regions.
But the use of local experts requires an oracle determining
model responsibilities, which may become difficult to obtain
for hyper-redundant robots. In [10], authors used an adaptive
MLP neural network to control a 6 DOF parallel robots in
force/position. An interesting approach is presented in [14],
[15], the authors proposed the goal babbling approach to
solve the inverse kinematic problem of Bionic Handling As-
sistant (BHA). They referred to the successful bootstrapping
of some motor skill by repeating the process to accomplish
multiple goals related to that skill. Starting from a particular
goal, a new goal is randomly drawn from a set of target
positions and the endpoints are linearly interpolated. The
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current inverse kinematic is used to estimate the current
posture. However, if this approach has given excellent results
for BHA trunk [14], its implementation to its compact
version (CBHA) requires some improvements, because their
control architecture involves several interactive loops which
can increase significantly the computational time. In addition,
the CBHA manipulator is designed to be used as an extension
to mobile robot named Robotino which is supposed to be
reactive with autonomous navigation. Braganza et al. [16]
implemented a low-level joint controller of a soft extensible
manipulator by using neural networks to compensate for the
dynamic uncertainties. Giorelli et al. [17] used a feedforward
neural networks to approximate the inverse kinematic model
of a non constant curvature soft manipulator driven by three
cables. Thus, a geometrical model of the manipulator has
been used for sample data pairs generation and a direct
inverse learning approach has been used to approximate the
IKM.

In contrast to Giorelli et al. [17] approach, where a direct
inverse learning have been used to approximate the IKM of a
3 inputs/3 outputs system, in this paper, due to redundancies,
a squared penalty term is incorporated in Distal Supervised
Learning (DSL) scheme to select one particular inverse
model from the redundancy manifold. Jordan et al. [18]
proposed a DSL approach to determine the inverse model
of a controlled system based on its forward model. In the
literature, Stitt et al. [19] used the DSL approach to control
biped robot movements, and Howard et al. [20] used it to
build a system that can learn to mimic speech using its own
vocal tract.

In this work, MLP and RBF Neural Networks are inte-
grated in DSL scheme to determine the inverse kinematic
of a CBHA manipulator, using only the information of the
Cartesian position of the CBHAâĂŹs effector. This paper
is structured as follows: Section 2 presents the inverse
kinematic problem formulation. While the direct inverse, the
DSL learning, and the prediction by with neural networks
is presented in Section 3. Section 4 provides experimental
results and discussions. Section 5 gives the conclusions and
future works.

II. INVERSE KINEMATIC PROBLEM
FORMULATION

The CBHA depicted in Fig. 1 is attached to an omni-
directional mobile robot platform called Robotino to form
the RobotinoXT (Fig. 2). It comprises two main segments
each with three pneumatic-actuated bellows. A ball-joint as
wrist, controlled using two actuators, and two compliant jaws
constituting the gripper, controlled by one actuator. Each
actuator can be controlled separately. The venting of the
backbone tubes allows resetting its shape; and supplying it
with compressed air leads to its expansion. The bionic trunk
composes of nine sensors; six wire-potentiometers, installed
on the surface of each flexible backbone tubes to measure
their actual elongations. Two sensors are used for the rotating
part and the last one to detect the gripper status.

Fig. 1. CBHA manipulator

Fig. 2. Robotino XT platform

Nowadays, the CBHA placed of the Robotino mobile
robot platform is controlled in an open-loop configuration
using a joystick interface. The problem is to keep this
control autonomous and in closed-loop scheme. The main
difficulty is the establishment of an accurate IKM allowing
obtaining the relationship between the Cartesian coordinates
of the tip of the arm and the tube-lengths (non-linearities,
uncertainties, and non-uniqueness of the inverse kinematic
function). Thus, this is our main interest in this work. We
study the IKM of the two jointed segments (red and green
segments of the Fig. 1), so that the Cartesian coordinates and
the tube-lengths are respectively used as inputs and outputs
of the neural network. Note that, we have opted to IKM
model (the relationship between the Cartesian coordinates of
the tip of the arm and the tube-lengths), because frictions
and hysteresis related to CBHA structure can cause largely
different postures when applying the same pressure several
times. Since pressure does not provide reliable information
about the robot position and movement in space, reaching
solely concerns the geometric information (length sensors).
This geometric information (length sensor values) can be
controlled by dynamically adjusting the pressure in each
actuator.
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Fig. 3. Composite learning system [18]

III. DIRECT AND DISTAL SUPERVISED
LEARNING

A. Direct Supervised Learning

The idea in direct inverse modeling is to observe the
input/output behavior of the environment and to train the
inverse model directly by reversing the roles of the inputs and
outputs. Although the excellent results obtained [17], [21] in
direct supervised learning, we note two drawbacks that limit
its usefulness: First, when the environment is characterized
by a many-to-one mapping from actions to sensations, the
inverse mapping will map more than one images to a given
point. The particular manner in which the inconsistency is
resolved depends on the form of the cost function; the use
of the sum-of-squared error yields an arithmetic average
over points that map to the same endpoint (centroid). If
the centroid does not belong to the manifold of the images,
the non-linear many-to-one mappings can yield non convex
inverse images. The second drawback with direct inverse
modeling is that it is not "goal-directed." The algorithm
samples in action space without regard to particular targets
or errors in the sense space. That is, there is no direct way
to find an action that corresponds to a particular desired
sensation. To overcome the two problems, Jordan et al. [18]
proposed a new architecture for control that they called Distal
Supervised Learning.

B. Distal Supervised Learning approach

The distal supervised learning consists in composing a
learning system as depicted in (Fig. 3). The current state
of the environment is X [n− 1]. The intention is p [n− 1],
the action is u [n− 1], and the predicted outcome from the
forward model is ỹ [n]. We will also refer to the actual
outcome as y [n] and the desired output as y∗ [n]. The
forward model is a model that predicts the outcome of
the environment given the current state and the action. The
forward model can be learned by applying actions and
comparing actual outcomes y [n] with predicted outcomes
ỹ [n]. The idea of Jordan et al. [18] was to avoid the
direct inverse modeling entirely. They used the fact that
the composition of the inverse and forward models must
yield the identity function. They proposed training first a
neural network to model the forward kinematics, and to
use this network to train indirectly the inverse model. The
composite learning system can be trained by any supervised

learning algorithm (back-propagation algorithm, generalized
delta learning rule...); however, the learning algorithm must
not alter the forward model (fixed forward weights) while the
composite system is being trained. The inverse model will
be eventually learned if the training input-output pairs stand
for the identity function. In this way, the effect is that only
one of the possibly many solutions is chosen for a given
target point. But, without additional information about the
particular structure of the input-to-action mapping there is no
way of predicting which of the possibly infinite set of inverse
models the procedure will find. Moreover, further virtue of
the distal learning approach is the possibility to incorporate
additional constraints in the learning procedure. In this work,
a squared penalty term is added to the objective function of
the inverse neural network into DSL scheme to select one
particular inverse model from the redundancy manifold.

C. Prediction procedure based on MLP neural networks

A multi-layer perceptron neural network is composed of
a large number of highly interconnected units (neurons)
working in parallel and organized in layers with a feed-
forward information flow. The architecture of the MLP is
structured as follows: the signals flow consecutively through
the different layers from the input to the output layer.
The intermediary layers are known as hidden layers. For
each layer, each elementary unit calculates a scalar product
between a vector of weights and the output vector given
by the previous layer. A transfer function is subsequently
applied to the result to produce an input for the next layer. A
common transfer function for the hidden layers is the sigmoid
function:

f(x) =
1

1 + exp(−x)
. (1)

Arriving at the neuron of the output layer, other transfer
function can be used; for example, the identity function (sim-
ple linear activation) can be used for regression problems.
MLP neural networks (MLPNNs) are trained by the error
back-propagation (EBP) algorithm, optimized according to a
predefined criterion [22].

D. Prediction procedure based on RBF neural networks

RBFNN is composed of three layers (input, a hidden, and
an output layer). Input neurons just propagate input variables
zj to the next layer. Each neuron in the hidden layer is
associated with a kernel function ϕj (usually a Gaussian
function) characterized by a center cj and a width σj .

ϕj(‖z − cj‖) = exp

(
−1

2

(
‖z − cj‖
σj

)2
)
. (2)

The output layer consists of one neuron which is the target
to be predicted. The output function is given by:

f(z) =
∑P

j=1
λjϕj (‖z − cj‖) . (3)

Where P and λj are respectively the number and the weight
of the radial functions. For more details about artificial
neural networks (RBF and MLP), we refer the reader to
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Fig. 4. Trilateration process

[23], [24], [25], [22]. We use an online learning rule that
makes incremental changes to the parameters of the two
neural networks based on the instantaneous value of the cost
functional (mean square error MSE) achieved on the training
set and defined as follows:

MSE =
1

NT

∑NT

q=1

∑L

n=1

(
f̂
(
xnq )− ynq

)
(4)

Where NT is the number of training samples; L is the
number of output, f̂

(
xnq
)

is the value predicted by the model
and ynq is the measured value.

IV. EXPERIMENTS AND RESULTS

To verify the performances of the proposed approach, the
validation of the inverse kinematic model based on MLP
and RBF Neural Networks has been implemented in real-
time on a bionic arm manipulator. In this section, we first
provide a description of the sample data acquisition followed
by the application of the distal learning approach for the
identification of the inverse kinematic model of the CBHA
system. Finally, the learning phase results and the real-
time experimental results are described, which illustrate the
effectiveness of the proposed approach for the case of the
CBHA system.

A. Data acquisition

To build the learning data base, the CBHA’s tip position is
evaluated experimentally by means of a trilateration system
(Fig. 4) developed in [26]. The test bench consists of:

• 1 profiled metallic platform,
• 4 external proportional potentiometers
• 6 wire-potentiometers.

From external potentiometers values and using the simple
trigonometry transformation, we can evaluate the CBHA’s
tip position with an accuracy of about ±0.003m. The learn-
ing base is built as followed: The CBHA posture (wire-
potentiometer values) is varying proportionally with the
pressure used to control tube-lengths. The pressure in each
tube is controlled using internal PID-control. The range of
each pressure is [0; 1.5]bars. By using a step size of 0.5, each
tube can be controlled by one of these values (0; 0.5; 1; 1.5).

Fig. 5. CBHA workspace

Fig. 6. Inverse Neural Network learning

With 6 controlled inputs, we get a learning base of 46 = 4096
samples. Regardless of the type of exploration that is used to
generate the learning base, two examples with the exact same
effector pose will rarely be found. Resolving inconsistencies
solely based on the samples are therefore hardly possible.
The better way to resolve inconsistencies is to consider the
example generation method itself or the learning algorithm,
instead of considering isolated examples. In this work, we
assure that samples with ambiguous solutions to the inverse
kinematic mapping are included in the learning data base in
order to evaluate the capacity of the DSL scheme to deal
with redundancies. The resulting workspace of the CBHA is
represented in Fig. 5.

B. Distal learning approach for CBHA inverse kinematic

The DSL approach is used for the approximation of the
inverse kinematics model of the CBHA. In DSL approach,
the Forward Neural Network (FNN) is first learned to approx-
imate the forward kinematic model of the CBHA (For more
details about the forward kinematic model of the CBHA, we
refer the reader to [28]). In the second phase, a particular
inverse solution is obtained by placing the Inverse Neural
Network (INN) and FNN in series, and by replacing the
(Voltage-Pressure system + CBHA) by the forward kinematic
model that had been trained previously (Fig. 6). At this
stage, the composite learning system can be trained by any
supervised learning algorithm (back-propagation algorithm
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in this work). As we have stated in the introduction, for
a reliable CBHA positioning, it is not sufficient to control
the pressure alone, because friction and hysteresis related to
CBHA structure can cause largely different postures when
applying the same pressure several times. Hence, the kinetics
model (a mapping between the CBHA’s tip position and the
corresponding pressures) cannot be predicted with accuracy.
In this paper, an inverse kinematics model (a mapping
between the CBHA’s tip position and the corresponding
voltages) is developed. Yd = [Xd, Yd, Zd]

T denotes the
desired CBHA’s tip position, and Y = [X,Y, Z]

T is the
real CBHA’s tip position. U = [U1, U2, ..., U6]

T is the

predicted wire potentiometer voltage, and Ŷ =
[
X̂, Ŷ , Ẑ

]T
is the predicted CBHA’s tip position. The FNN is consisted
of 6 inputs (U ), and 3 outputs (Ŷ ), while the INN is
consisted of 3 inputs (Yd), and 6 outputs (U ). The both neural
networks regressors (MLP and RBF) were trained on their
corresponding training set. The learning data base is divided
as follows; 70% for training set, 15% for validation, and
15% test sets. The training set is used during learning phase
and the test set is only used to evaluate the performances
of the neuronal models. The validation set is used during
the learning phase to avoid the over-fitting. By observing
the CBHA’s workspace, the latter can be reconstructed by
setting more sigmoid (or Gaussian) functions (with variable
parameters: centres and widths...) in series. Such that, each
point in the CBHA’s workspace can be computed using a
linear combination of CBHA’s length-sensor values, activated
by a sigmoid (or Gaussian) function. Hence, the sigmoid
function and the Gaussian function are used respectively
for MLP activation function and RBF kernel function. In
order to minimize the mean square error calculated in the
training set, the weight matrices are adjusted by using the
back-propagation descent method including the momentum
term. In order to empirically select the best model for
each regressor, the value of each parameter is varied in a
given predefined range according to a grid search over the
validation set. We tested the MLP with 2 up to 80 neurons
in the hidden layers. Concerning the RBF model, we varied
the number of neurons in the hidden layer from 2 to 90 and
the width of the Gaussian kernel from 0.01 to 2. A step size
of 2 is used for the number of neurons, while it is 0.01 for
the width of the Gaussian kernel. For a good generalization
of neural network models and to avoid over-fitting, the early-
stopping method for training is implemented. The latter
requires that after a period of training (epochs) using the
training set, the weight matrices of the neural network are
fixed, and the neural network is operated in the forward mode
using the validation set. The process is repeated until the
MSE on the validation set reaches its minimum value. The
prediction error (Y − Ŷ ) and the performance error (Yd−Y )
are respectively used for forward and inverse neural networks
learning.

To select a particular inverse kinematic function, a squared
penalty term is added to the objective function of the inverse

TABLE I
RESULTS ACHIEVED BY EACH NEURAL NETWORK MODEL ON THE TEST

SAMPLES

NN topologies MSE (Validation set) MSE (Test set)
MLP (2, 16 neurons) 2.6e−5 3.7e−5

FKM
RBF (σ = 0.98,82) 3.2e−5 5.2e−5

MLP (2, 16 ) 7.6e−5 1.1e−4
IKM

RBF (σ = 0.22,74) 2.1e−4 4.1e−4

neural network. The cost functional yields:

J =
1

2
(Yd − Y )

T
(Yd − Y ) + λ

1

2
‖U‖2 (5)

With ‖.‖ the Euclidean norm. It has shown that ([29]), the
larger the coefficient λ is, the smaller U becomes. The
penalty term λ provides a possibility to effectively control
the magnitude of U . Thus, a particular inverse solution
can be easily selected. In this work, an inverse function
which minimizes the Euclidean norm of wire-potentiometer
voltages is selected (λ = 0.001 in the results presented).
The assessment of the trained regressors in terms of MSE
(Mean Square Error) on the test samples yielded the values
reported in Table. I. The first column presents the neural
network topologies, while the second column shows MSE
obtained in the validation set. The third column depicts the
MSE obtained in test set, and the last column presents the
different models approximated.

In the whole, the results obtained on the test set are
satisfying. The MSE is of the order of 10−5 for forward
model and 10−4 for inverse kinematic model.

C. Real time implementation

In addition to the offline validation (test samples), an
implementation in real-time has been conducted. In fact, the
Robotino XT (mobile platform +CBHA arm) has to move
autonomously in dynamic and unstructured environments,
while grasping objects. Hence, developed IKM models have
to be performed in real-time. However, due to physical
limitations of the pneumatic actuators, the CBHA arm needs
a certain time to get to mechanical equilibrium (about 5
seconds). Thank to easily implementation (simple matrices
manipulating), the neural networks become a suitable tool in
such case rather than interactive methods [17], [16]. Thus,
by following the control architecture depicted in Fig. 9, we
have conducted several real-time experiments, but, due to
the limitation of the number of pages, only one experiment
is presented in this paper. By using the Robotino XT Matlab
toolbox, the set of grasping object trajectories is recorded
using the robotino XT set pressure function. The step size
is reduced to (0.1) in order to evaluate once more the
generalization capacity of the neural network models. The
voltages of the length-sensors are recorded. The task is to
control the bionic arm with the same recorded length-sensors
voltage and compare each time the current robot posture
with the recorded postures (vector of potentiometer voltages).
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Fig. 7. Prediction voltages provide by neuronal models (MLP, RBF)

Note that, the length-sensors are given in volt, because
they are provided by the potentiometer cables. By simple
transformation, these voltages are transformed into lengths.
As it is depicted in Fig. 9, the set of recorded voltages are
used as inputs of the forward kinematic model. The positions
generated by the forward kinematic model are used as inputs
of the inverse kinematic model. The voltages generated by
the inverse kinematic model are transformed into pressures.
The set of pressures is applied to bionic arm. Finally, length-
sensors provide the corresponding voltages. To transform the
voltage to pressure, we use another MLP neural network
with 2 hidden layers of 36 neurons. This neural network
is not developed in this paper, because the present paper
develops the inverse kinematic model. Fig. 7 and Fig. 8
depict respectively the prediction voltages provided by each
neuronal model and the associated Euclidean error. From this
architecture, we evaluate the performances of the forward
model and the inverse model. Note that, the performances of
the forward and inverse model in the present control scheme
(Fig. 8) are related to those of the transformation Voltage-to-
pressure. The implementation is conducted by using a Intel R©
Core

TM
i7-2670QM CPU at 2.20GHz.

D. Discussions

This subsection presents the results with discussions. Table
1 shows the performances achieved by neuronal model on
the validation and test sets. The results on the test set are
satisfying; the MSE is of the order of 10−5 for forward
model and 10−4 for inverse kinematic model. We notice
that the estimated and desired potentiometer voltages are
close. However, we observe some peaks which are due to
undesired and perturbing actuator venting. During a change
of the trajectory, the bionic trunk tries to return to its
initial configuration. This leads a slight venting of pressure
contained in each tube. We obtain an average error of 0.02V
corresponding to an elongation of about 4mm. One of the
downsides of continuum manipulators morphology is that
even minimal changes in the actuated lengths can lead to
large changes in the effector position. However, this error
remains negligible, because the robot runs in open loop
scheme without a controller. The control of the CBHA’s
effector require the design of an adaptive controller.

The actual work provides two contributions. In the first
one, we show that without the assumptions like the con-
stant curvature, the toroidal deformations, the MLP and
RBF neural networks can approximate in real-time, the tool
centre position with a good degree of accuracy (on the
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Fig. 8. Imprecisions observed in each neuronal model

Fig. 9. Real-time implementation control scheme

test set, MSE(MLP)=3.7e-5 and MSE(RBF)=5.2e-5) while
dealing with geometry singularities and stretched positions.
Thereby, our approach compared to those developed in [3],
[5] gives an improvement in the forward model estimation,
with consideration of the undesired non-linearities of the
bionic trunk. The second contribution is the development of
the inverse kinematic model. From a Cartesian coordinates
of the centre of the tool, with consideration of the bionic
trunk non-linearities (shape memory effect, sensor noises,...),
the inverse kinematic neural network model can capture
in real-time, the bionic trunk pure elongations with good
degree of accuracy (on the test set: MSE(MLP)=1.1e-4 and

MSE(RBF)=4.1e-4) while dealing with geometry singular-
ities and stretched positions. In the view of the results
obtained, we notice that, the MLPNNs outperform their
RBFNNs counterparts in term of performances achieved.
However, we do not notice a significant difference in the
results obtained in real-time.

If many researchers have attempted to find a solution to the
inverse kinematic problem of continuum robots such the case
in [3], [4], [5], few contributions have used neural network
in distal learning scheme [20], [19]. Where they have used
the DSL scheme to control biped robots movements [19],
and to build a system that can learn to mimic speech using
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its own vocal tract [20]. Knowing that in [14], [5], [7]
developed computational architectures, involving interactive
loops. For our approach, this latter is outperformed using
a computational real-time based on neural network weight
matrices obtained from a DSL scheme.

V. CONCLUSION

In this paper, MLP and RBF neural networks with distal
learning approach are used to solve the inverse kinematic
problem of a CBHA manipulator. In this approach, MLP and
RBF neural networks are trained to approximate the forward
kinematic model. This model is incorporated into the distal
learning scheme to obtain the inverse kinematic suitable
model. Numerous experiments have been performed using
the CBHA trunk to validate the effectiveness of the proposed
neuronal models. It is demonstrated that by using an inverse
neural network, it is possible for a given desired target point
to track in real-time, a potentiometer voltage vector of the
tubes elongation in the presence of uncertainties.

In future work, it is planned to estimate the whole inverse
kinematic model of the trunk and its mobile-omnidrive
platform, with considering the TCP orientation.
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