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Abstract— Although Nonnegative Matrix Factorization 

(NMF) has been widely known as an effective feature 

extraction method, which provides part-based 

representation and good reconstruction, there were 

relatively few researches using NMF for color image 

processing. Particularly, many studies are now using 

Convolutional Neural Network (CNN) in combined with 

Auto-Encoder (AE) or Restricted Boltzmann Machine 

(RBM) for learning features of color images. In this paper, 

we explore the ability of NMF to handle color images.  

Especially, a new method using NMF to learn features in 

CNN is proposed. In our experiments conducted on CIFAR-

10, NMF shows the feasibility for reconstruction and 

classification of color images. Furthermore, unlike edge- or 

curve- shaped features learned by AE and RBM in CNN, our 

method provides dot- shaped features. These new types of 

features could be considered as basic building blocks in the 

lowest level of constructing images. Our results demonstrate 

that NMF is capable of being a supporting tool for CNN in 

learning features. 

Keywords—Nonnegative Matrix Factorization; 

Convolutional Neural Network; color image processing; 

CIFAR-10 

I.  INTRODUCTION 

Numerous techniques have been developed for various 
applications of image processing. In the field of image 
reconstruction and classification, neural network is one of 
the most effective methods. Particularly, convolutional 
neural network (CNN), inspired by biological visual 
model [1], has shown groundbreaking results on popular 

image dataset such as MNIST [2] – [4] or CIFAR-10 [4], 
[5]. Many previous researches utilized auto-encoder (AE) 
and restricted Boltzmann machine (RBM) to learn 

features [6]–[8]. Using these feature extractors, optimal 
latent feature representation could be achieved by 
minimizing reconstruction error and modeling the 
probabilistic distribution of given data. The features 
learned by AE or RBM usually have edge- or curve- 
shapes in CNN. Motivated by the assumption that features 
in the lowest level for constructing image would be 
helpful for reconstruction, we combined CNN approach 
with nonnegative matrix factorization (NMF), which is a 
strong tool for extracting features in the context of 

machine learning. 

NMF has been broadly used for processing gray 
images. Nonetheless, not many researches exploit this tool 
to treat color images [9], [10]. Since colors can deliver 
important information for understanding images and 
recognizing objects, we focus on study of color images 
using NMF in this work. In [9], a color histogram was 
defined and analyzed by NMF to classify color images. 
However, applying NMF to color images themselves 
could provide intuitive representation for analysis and 
reconstruction. In [10], NMF was directly used to encode 
color channels for face recognition. In this work, although 
the authors handled 3 colors independently and separately, 
processing all color channels simultaneously maybe more 
reasonable based on the generation of images. 

In our paper, standard NMF and non-smooth NMF 
(nsNMF), a variant algorithm with sparseness constraint, 
are explored to handle color images. In difference from 
[9] and [10], we consider the efficiency of using 2 
different methods: processing color channels separately 
and simultaneously. Moreover, to deal with scale and 
rotation variant images, CNN is applied and combined 
with NMF in learning features. To show advantages of 
NMF as a feature extractor of color images, features and 
reconstruction errors from NMF are compared to those 
from AE. 

The outline of this paper is as follows. In Section II, the 
background knowledge about nsNMF and CNN is 
introduced. Then, Section III explains the detailed methods 
of our work. The experimental result and analysis are 
presented in section IV. Finally, Section V delivers 
conclusion and future work. 

II. BACKGROUND 

A. Non-Smooth Nonnegative Matrix Factorization 

The standard NMF algorithm factorizes a non-negative 

M N  data matrix X  into two non-negative matrices, a 

M R  basis matrix W  and a R N  feature coefficient 
matrix H  [11]. Here, M, N, and R are the input dimension, 
the number of samples, and the feature dimension to be 
reduced by NMF, respectively. The columns in basis 
matrix and feature matrix denote part-based building 
blocks and coefficients to explain how these blocks are 
linearly added to represent original data samples, 
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respectively. Cost function of NMF is set as the square of 
Euclidean distance between original matrix X and 
reconstructed matrix WH in equation (1). 
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The basic update rule is derived from the gradient 
descent to minimize cost function defined above. 
Assigning learning rate, which updates the basis matrix 
and feature coefficient matrix non-negatively, we come up 
with multiplicative update rule as in (2) and (3) 
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In the field of feature learning, imposing sparsity 
constraints has been largely used [3], [12], [13]. The 
efficiency of exploiting sparsity is justified by the fact that 
natural images represent only a small part of the image 
space. Thus, sparsity allows us to effectively extract 
necessary information in terms of features. 

To introduce sparse characteristic to the basis matrix, 
we used nsNMF in [14]. The nsNMF was designed to 
force smoothness on the feature matrix H  and thus 
provide non-sparseness or sparsity on the basis matrix. 
The multiplicative update rule is slightly modified by 
adding (4) before (2) and (3). 

         H SH                     (4) 

Here, (1 ) (R) (R)S eye ones
R


   is the smoothing 

matrix and parameter  , which is ranged from 0 to 1, 

determines degree of smoothing. As   is closed to 1, H is 

smooth, andW becomes sparse to compensate the loss of 
sparseness in H . 

B. Convolutional Neural Network 

For realistic input images with huge size, CNN could 
be introduced for preventing a redundancy in parameters 
by forcing each extracted feature to be global, i.e. to span 
the whole field of vision [15], [16]. CNN assumes a 
stationary property in the images. It means the statistics of 
each small part or sub-patch in image stay similar also for 
other regions. Based on the stationary assumption, 
features are learned from the sub-patches that are 
randomly extracted from input samples. In previous 
researches, single layer perceptron, AE, or RBM are 

usually used for learning features, as shown in [17] – 
[19]. 

After learning features, CNN mainly consists of 2 
steps: convolution and pooling. We firstly learn the 
features over small patches randomly sampled from the 
original image set. This learning process gives a k-

dimensional feature vectors (x)f . Then, convolution is 

done to detect local features, resulting in a feature map. 
As illustrated in Fig. 1 a, given an n-by-n image with 3 
color channels RGB, we extract sub-images of size w-by-
w and convolve them with k learned features to form a k-
by-(n-w+1)-by-(n-w+1) representation of images. 

One could utilize feature maps themselves from 
convolution step for classification. However, the 
convolution brings about a dramatically increased 
dimension of convolved features with a computational 
challenge. For example, let consider an instance image of 
size 32x32 pixels, convolution results in a map of size  
(32-8+1).(32-8+1) = 625, which is again multiplied with 
100-dimensional features to form convolutive 
representation. Consequently, for 1 image sample, we need 
a classifier with about six-hundred dimensional input, 
which is practically expensive. To overcome this problem, 
aggregation operation called pooling is used. Pooling 
implies calculating maximum or average value over a 
range of neighbor sub-patches. Fig. 1 b shows pooling 
scheme over 4 non-overlapping regions. Here, a1, a2, a3 
and a4 are feature vectors after pooling over 4 quadrants of 
image [17]. After aggregation, these vectors are 
concatenated to form features of reduced size. 

III. METHODS 

A. Datasets: CIFAR-10 

The CIFAR-10 dataset [20] consists of 32x32 color 
images in 10 classes (airplane, automobile, bird, cat, deer, 
dog, frog, horse, ship, and truck), with 6000 images per 
class. There are 50000 training images and 10000 test 
images in total.  

The preprocessing is done by rescaling pixel values to 
the range from 0 to 1 and concatenating all columns for 
each color channel. Thus a single image can be represented 

as 3 vectors 
1024c

j
X  where c{red, green, blue} 

denotes a corresponding color channel and j {1, …, N} 

denotes the sample index. Notice that whitening methods 
are not capable to be applied in our experiment due to 
nonnegative nature of NMF. 

B. nsNMF without CNN architecture 

To treat color images, we construct 3 data 

matrices 1

1024[ ... ]N

c c c N
X X X

  . Without CNN, 2 

types of architectures are considered to explore the effect 
of dealing information from 3 color channels separately 

 
 

Fig. 1.  Flow chart of CNN 

a) convolution operation and b) pooing operation 
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(called ‘RGB EACH’) or simultaneously (called ‘RGB 
ALL’). 

As shown in Fig. 2, the RGB EACH method has 3 
encoding models for red, green, and blue color channels. 
It supposes that 3 colors may have an independent 
relationship to form complete image. For each color 

channel c ,
cX is decomposed to 

1024c R
W

 and 
c R N

H
 via nsNMF. After that, by concatenating 3 

feature coefficient matrices in column-wise 

direction,
3

[ ]; ;red green blue R N
H H H H


   is formed. 

The RGB ALL uses a stacked data matrix from 3 color 

channels, 
3072

[ ]; ;red green blue N
X X X X


   as 

illustrated in Fig. 2. Then nsNMF learns 
3072 R

W
  

and 
R N

H
 . For both RGB EACH and RGB ALL, 

each column of H is used as an input vector of classifier. 
Notice that the dimension of columns of H  is 3 R for 
RGB EACH and R for RGB ALL. To achieve a fair 
comparison, we set the feature dimension of RGB ALL to 
be 3 times bigger than RGB EACH. For example, if 20 is 
used as the feature dimension in RGB EACH, then 60 is 
used in RGB ALL. For compactness, the denoted feature 
dimensions in following experimental results are regarded 
to the case of RGB EACH. 

In our experiment, the parameter   in nsNMF is set to 
be 0.8 after trying several values. For classification, we 
used k-Nearest Neighbor (k-NN) and soft-max classifier. 
In k-NN classifier, the Euclidean distance is used as a 
measure, and optimal number of neighbors is selected 

from the set [1,3,5,...,15]k  . To train soft-max classifier, 

weight decaying cost is added to original cost using 
maximum likelihood. 

C. nsNMF with CNN architecture 

In order to learn R features, we applied nsNMF to 
200,000 sub-patches of size 8x8 that are randomly 
sampled from 50,000 training images. All 3 color 
channels are exploited simultaneously to reach the highest 
efficiency in the same fashion of RGB ALL as in Fig. 3. 

After that, the learned features are convolved with each 

input image to make R feature maps of size 25x25. Then 

mean-pooling is done over 5x5 region without overlapping 

to construct R pooled maps of size 5x5. For classification 

using soft-max classifier, 25 R -dimensional vector is 
formed for each image by concatenating the pooled maps. 
For this experiment, we desire to visualize the change of 
extracted features and classification error by varying the 

number of features R  and the degree of sparseness . 

IV. RESULTS 

In order to measure performance of nsNMF for color 
image processing, we compare it to AE, which is one of 
popular feature extractors, in terms of reconstruction. The 
first experiment tests nsNMF to process color channels 
separately and simultaneously. The second experiment 
shows development of features and advantages of nsNMF 
combined with CNN architecture. 

A. nsNMF without CNN architecture 

1) Reconstruction 
The reconstruction error of one sample image is 

calculated in (5) for RGB EACH and in (6) for RGB 
ALL. 

      2 2

_

1

3

c c c c

RGB EACH c
E x W h x       (5) 

                
2 2

_RGB ALLE x Wh x         (6) 

An example of reconstruction for sample “horse” is 
depicted in Table I. For each feature dimension, the 
reconstructed image and error are shown. Fig. 4 shows 
mean reconstruction error over whole samples in CIFAR-
10. 

As expected, the reconstruction error decreases as we 
enlarge feature dimension. The overall performance is 
better for the case of RGB ALL compared to RGB EACH. 
It demonstrates extracting information of 3 color channels 
simultaneously is useful in reconstruction of color images. 

 
 
   Fig. 2.  Method using nsNMF without CNN 

 
 

Fig. 3.  Method using nsNMF with CNN 
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More importantly, reconstruction results of NMF are 
better than AE for all feature dimensions. Both AE and 
NMF are similar in that they learn features to minimize 
reconstruction cost, whereas the difference comes out 
from non-negative constraints in NMF. Our results show 
non-negativity in NMF is beneficial to development of 
meaningful features for reconstruction. 

2) Classification 
The classification performance as a function of feature 

dimension is illustrated in Fig. 5. Although our results are 
better than the chance level of 10-class problem, they are 
still lower than other researches [17].  Here, we note that 

there is a tendency depending on the type of classifier. 
When feature dimension becomes larger, the error rate 
increases with k-NN classifier. In contrast, the 
classification performance is improved with soft-max 
classifier. To refine this classification outcome, in the next 
experiment we combine our feature extractors with CNN, 
an efficient architecture for dealing with realistic and 
complex image sets such as CIFAR-10. 

B. nsNMF with CNN architecture 

1) Learned features 
The features are learned from 200,000 sub-patches by 

standard NMF with = 0 and nsNMF with  = 0.8. These 
features are illustrated in Table II. For comparison, in the 
left-sided column, we show features learned by standard 
AE. Except for the case of 20 learned features, randomly 
selected 49 features are plotted.  

Table II shows that color variety is integrated in each 
extracted feature. In CNN-AE, edge-shaped features are 
observed. Meanwhile, both NMF and nsNMF provide dot-
shaped features because non-negative constraint forces to 
extract basic building blocks in the lowest level for 
images. Also, as increasing the number of features, the 
dots become small and positioned in different locations. 
Furthermore, higher sparseness of nsNMF results in the 
strongly localized features. In contrary, features with low 
sparseness show blurred dots with relatively large size. 

2) Classification 
The classification results using standard NMF and 

nsNMF with CNN are shown in Fig. 6. Compared to Fig. 
5 without CNN, better recognition performances are 
achieved. It implies the advantage of using CNN approach 
for CIFAR-10, which contains scale and rotation variant 
images. 

The error of standard NMF keeps going down as 
increasing the number of features. However, when using 
nsNMF with  = 0.8, there is an optimal number of 
features with that architecture reaches its best performance. 

V. CONCLUSION 

A framework for features extraction and image 
classification has been designed using nsNMF and CNN 
architecture. Our work was conducted on a CIFAR-10, a 
challenging dataset of color images. The experimental 

TABLE I 

EXAMPLE OF RECONSTRUCTION FOR A SINGLE SAMPLE IN CIFAR-10 

Original 

Sample 

 

Feature 

Dim. 

RGB EACH RGB ALL 

AE NMF AE NMF 

20 

    

0.0917 0.0632 0.0766 0.0662 

50 

    

0.0623 0.0436 0.0491 0.0350 

100 

    

0.0364 0.0270 0.0468 0.0257 

200 

    

0.0263 0.0174 0.0338 0.0159 

500 

    

0.0155 0.0051 0.0237 0.0048 
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Fig. 4.  Mean reconstruction error of CIFAR-10 using auto-encoder 
and nsNMF without CNN 
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Fig. 5.  Classification performance of CIFAR-10 using nsNMF 
without CNN 
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results have been shown in the aspect of features, 
reconstruction, and classification performance. 

In the first experiment, two approaches to work with 
color images are compared. We observed that 
simultaneous processing of 3 color channels provides 
better reconstruction and recognition results.  This 
experiment also shows the major advantage of nsNMF 
over AE for reconstruction of original color images. 
However, without CNN architecture, it has been hard to 
handle scale and rotation variant image in CIFAR-10 for 
classification. In the second experiment, we used CNN 
where nsNMF learned features from lots of sub-patches. 
Features are then visualized along with the ones learned 
by AE. In contrast to features learned by AE, NMF 
features are dot-shaped and highly-localized due to its 
non-negative nature. The classification accuracy is 
improved with CNN compared to the model without 
CNN. 

In conclusion, our results demonstrate that NMF and 
nsNMF are capable of being a supporting tool for CNN in 
learning the features and classifying image data. Though 
edge- or curve-shaped features have been shown in 
previous works using AE or RBM, new type of dot-
shaped features are drawn in our work. 

Within the range of this paper, our proposed model is 
applied to one dataset with limited numbers of features. 
However, there is a room for improving classification 
performance in future works by applying a better NMF 
model, such as stacked NMF, to CNN or multi-layer 
CNN. 
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