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Abstract— The clustering problem has been considered as
one of the most important problems among those existing
in the research area of unsupervised learning (a Machine
Learning subarea). Although the development and improvement
of algorithms that deal with this problem has been focused
by many researchers, the main goal remains undefined: the
understanding of generated clusters. As important as identi-
fying clusters is to understand its meaning. A good cluster
definition means a relevant understanding and can help the
specialist to study or interpret data. Facing the problem of
comprehend clusters – in other words, create labels – this paper
presents a methodology to automatic labeling clusters based
on techniques involving supervised and unsupervised learning
plus a discretization model. Considering the problem from its
inception, the problem of understanding clusters is dealt similar
to a real problem, being initialized from clustering data. For
this, an unsupervised learning technique is applied and then a
supervised learning algorithm will detect which are the relevant
attributes in order to define a specific cluster. Additionally, some
strategies are used to create a methodology that presents a
label (based on attributes and their values) for each cluster
provided. Finally, this methodology is applied in four distinct
databases presenting good results with an average above 88.79%
of elements correctly labeled.

I. INTRODUCTION

THE clustering problem can be considered as one of

the most important among those involving unsupervised

machine learning algorithms. The goal is to break a data

collection in smaller structures (groups or clusters) which

contain, somehow, similar elements under a particular per-

spective. In addition, the elements that belong to the same

cluster must possess enough dissimilarity to be distinguished

from other groups. This subject is well studied in the

literature and discusses several problems and techniques as

Genetics Algorithms [1], heterogeneous data sets [2] and

many others [3][4] showing several strategies for the problem

of clustering.

Nevertheless, another not very widespread aspect of this

subject deals with the task of cluster labeling. The problem

consists on naming the clusters according to their main

features, which means to present a clear group identification.

A good definition of each cluster could make it more

understandable for a specialist while studying or interpreting

data.

In the literature this issue is handled differently. However,

a very similar problem is the need to label new elements

based on groups previously defined, having already been

presented in some works as [5], [6], [7]. The main difference

between these works and the one proposed here is that in

the first one a new element can be classified on a predefined
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cluster according to the technique used and in the second one

an effective definition (or in other words, a label) of each

cluster will be given to help the specialist. The generated

labels also can be used to classify new elements although

this is not the main point here.

The unsupervised learning techniques are applied to a col-

lection of data (database) and, as a result, several groupings

with similar elements are created. However, the conventional

methods used for clustering often do not give the clusters a

proper meaning. The purpose of this work is to detect which

are the key features (relevant attributes) in each group as well

as their possible values, in order to clarify, steer and help the

analysis and labeling of groups held by experts. For this, a

supervised and unsupervised learning techniques combined

with a discretization method are used.

This paper is organized as follows. Section II presents two

techniques related to supervised and unsupervised learning.

In Section III, we present a mechanism to label clusters. Sec-

tion IV reports some results and analysis from our proposed

model applied on four data sets. The paper concludes with

Section V.

II. THEORETICAL FRAMEWORK

In our proposal, it is necessary to use an unsupervised

learning algorithm to deal with the clustering problem. It

does not make sense to use a supervised learning algorithm

since there is the need to discover to which cluster each

element belongs.

The technique chosen among several algorithms was K-

means [8], due to its compact structure and efficiency. How-

ever, any other clustering algorithm can be used. In addition,

in each database used here it is known, a priori, the number

K of clusters to be generated – a parameter required by K-

means. These numbers can be found in the original works of

each database. If this parameter is not supplied, some tests

ranging this value should be done. Alternatively, any other

clustering technique can be used for this task: Cobweb [9],

Self Organizing Maps (SOM) [10], Fuzzy Clustering [11], in

addition to hybrid techniques [12], [13], among others.

The K-means is one of unsupervised learning algorithms

which deals with the task of clustering. A priori, a number K
of clusters must be reported indicating how many centroids

can be generated. A centroid is a point that represents

the center of a cluster. The main idea is to determine K
centroids, one for each cluster. The value of K is a very

important parameter here: if it is too high similar elements

will not be grouped together whereas if it is too low different

elements will belong to the same cluster.

Another step of this proposal will require the use of a su-

pervised learning algorithm to detect a possible relationship



among the features present on the problem. For this task the

use of Artificial Neural Networks (ANNs) was chosen mainly

for its capability of learning, ability of generalization, fault-

tolerance and data organization – grouping patterns which

have the same particularities – beyond being much used.

ANNs are known for dealing with non-linear and/or dynamic

problems. They are computational models inspired in the

nervous system of living being and are known for their ability

to detect patterns and their strong fault-tolerance [14].

The most basic neural network is the Perceptron [15]. The

Perceptron is composed of an artificial neuron that receives

incoming signals. These signals are multiplied by numerical

weights – which represents its knowledge – and processed

by a function offering a way out.

There are several types of ANNs but we focus on Mul-

tilayer Perceptron network (MLP) [16]. The MLP is a

feedforward network where there are at least two layers (a

hidden one and an output one). Typically, the output values

of a neurons layer serve as input only for the neurons of

the next layer. In this work, a MLP network will be used to

find a possible relationship between attributes so that all the

others (input) will try to predict one (output).

III. PROPOSED MODEL

Our proposal, facing the labeling problem presented in

Section I, is to define a model to labeling clusters. An

algorithm with unsupervised learning is initially applied with

the aim of forming various groups among the elements

concerned. For each formed group a second algorithm will

be assigned but this time with a supervised learning process

that will allow the identification of relevant features.

The schema of Fig. 1 demonstrates the steps.
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Fig. 1. Steps from proposed model.

Initially, there is a database as entry. This database may

have different types of data (discrete/continuous) and some-

times a discretization model (I) may be applied. In summary,

it is necessary apply this process when there is the need to

estimate a range of values and not a specific one. In order to

obtain a better performance and, mainly, make it possible to

infer a range of values towards some attributes we conducted

a discretization process where the different possible values

boil down to intervals or ranges.

The second step (II) is performed by a unsupervised

algorithm which performs the task of clustering. In this work,

the discretization model is not related on clusters generation

– only on steps III and IV. Once the clusters are generated a

supervised algorithm is applied (III) in each group in order

to detect which are the relevant attributes to the definition of

each cluster. Finally, the labeling (IV) is performed in each

cluster. Each step is detailed hereafter.

A. Discretization (I)

The step I consists in data discretization: for the attributes

that can take on different values among a specific domain,

new discrete values will be established. Thus, the supervised

learning algorithm will be able to more easily identify a pos-

sible relationship between attributes showing better results

in their classification in exchange of information loss. Also,

the discretization process makes possible to infer a range of

values in the final step, converting back the value discretized.

It is important to remember that this step is only necessary

for some attributes. When it is not necessary, then a skip to

step II might be done.

In the literature ([17], [18]) there are several discretiza-

tion methods. The two methods most commonly used are

Equal Width Discretization (EWD) and Equal Frequency

Discretization (EFD).

The EWD discretization model uses some means to dis-

cretize data. For example, to discretize the data in four ranges

of values there will be necessary three means. The first mean

(m) is the simple arithmetic mean between the lowest and

the highest value of the attribute concerned. The second

(leftM ) and the third (rightM ), both simple arithmetics,

can be calculated using the first mean (m) with the lowest

or highest value, respectively. Thus, for each attribute there

will be 4 ranges of values (Fig. 2).
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Fig. 2. 4 ranges in a EWD model.

• Range 1: value less than or equal to the second mean

(leftM );

• Range 2: value greater than the second mean (leftM )

and less than or equal to the first mean (m);

• Range 3: value greater than the first mean (m) and less

than or equal to the third mean (rightM );

• Range 4: value greater than the third mean (rightM ).

The other model is the EFD which deals with ranges

of values that contain the same quantity of distinct values

among the provided elements. Given a number E of distinct
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elements and a number R of ranges we can define each range

containing D = E/R (rounded on down) distinct elements.

Observe that E must be equal or greater than R and both

values must be greater than 0.

Before defining the minimum and the maximum value of

each range, it is still necessary to sort the values of the

distinct elements. After that, the first range has its minimum

as the lowest value sorted and its maximum as the value

indicated by the Dth value sorted creating an interval that

can be represented as [min,Dth]. A next range, rising from

r = 2 to R, will start with values greater than the maximum

of the previous range, ((r − 1) ∗D)-th, and go on until the

value presented by the (r ∗D)-th sorted value. The interval

created can be represented as ]((r − 1) ∗ D)-th, (r ∗ D)-th]
and all this process can be presented as follow, in Fig. 3.
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Fig. 3. Ranges in a EFD model.

The use of a discretization model allows the unsupervised

algorithm to work with ranges of values facilitating the

detection of relevant attributes and also making possible infer

a set of values for the generated label.

How the discretization model – and its amount of ranges –

will be applied is something to be discussed according to the

circumstances of each problem. The discretized values are

stored and will be used later during the steps III (training)

as input to the supervised algorithm and IV (labeling) as the

bounds of the intervals – ranges of values.

B. Clustering (II)

After discretization, the generation of clusters occurs (step

II). The problem of grouping is quite studied and there are

some strategies already mentioned in Section II, where K-

means was the algorithm applied here. In this step we have

a database as input and its elements grouped in K clusters

as output.

C. Supervised Learning (III)

A supervised algorithm will be applied in each generated

cluster. In this step, the idea is to detect which attributes

are relevant – detecting a relationship among the attributes

– to the group. For this, an ANN with supervised learning

is applied for each attribute where it is considered as an

attribute class (output) and the others as network inputs in

order to find out which attributes may classify the group

correctly. Fig. 4 illustrates this step, taking as an example a

cluster in which its elements have three attributes.

For each attribute of the elements from a given cluster will

be created an ANN. These ANNs will present as output the

estimated value for the attribute concerned and will have as

input the other attributes. Each ANN of a same cluster works
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Fig. 4. ANNs as supervised algorithm.

with the same elements varying only on the way that their

attribute values are used in the network – input or output.

Considering any cluster, the database will be divided

into two sets (randomly for each network): training and

testing. These sets will be used in a process known as

cross-validation [19] – holdout method – and used by the

network to its own learning. The testing process will be used

to measure the efficiency of the network in relation to its

learning obtained during the training process. After learning,

during the testing phase, if the output value of the network

is equal to the value corresponding to the attribute range for

its value concerned then there is a hit. Otherwise, there is

the occurrence of an error.

Therefore, each ANN is created to represent and evaluate

the importance of its output (which is an attribute). In a

wider way, each cluster will have a hit rate for each ANN –

a hit rate for each evaluated attribute. Thus, we can know

which attribute is relevant in relation to the others for a

given cluster: is the one that got higher hit rate in the testing

phase. This attribute is relevant because it can summarize

a combination of other attributes. For greater confidence

regarding the attribute there is an average of M performances

in this step. In each performance, an ANN is created for each

attribute and the final value used for is the mean of all M
performances.

D. Labeling (IV)

The last step (IV) is to appoint the clusters according to

its attributes. After the training stage each cluster will have

the attributes average hit in M performances. The ANN(s)

having the highest hit rate average indicates the most relevant

attribute(s).

Another parameter, variation V , will select the others

attributes that have a hit rate with variation of at most V
(given in percentage) in relation to the main attribute. Thus,

we will have a set of attributes that can be seen as relevant

to the definition of such cluster.

After setting the group of relevant attributes we confirm

which of the values (defined in the discretization step)

dominates the group. In other words, we detect what each
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attribute value range features more frequently in any cluster

in that attribute taken as relevant. Therefore, we have the

precision of each attribute importance (hit rate) as well as

their likely values (ranges). Those two pieces of information

are very important to labeling and they will be used to

name the clusters. The Algorithm 1 demonstrates in a natural

language all the proposed model in this section.

Algorithm 1 Labeling

Require: Database

Ensure: Labeled clusters

1: Load database;

2: Discretize each continuous attribute (if necessary);

3: Perform clustering algorithm (unsupervised);

4: for each cluster do

5: for each performance m = 1 to M do

6: Define training and test sets;

7: for each attribute do

8: Perform training (supervised learning);

9: Calculate the hit rate;

10: end for

11: end for

12: Calculate the average of hit rates;

13: Choose the relevant attributes (bests average of hit

rates) included in a variance V ;

14: Count the majority values presented;

15: Convert the values discretized in ranges (if necessary);

16: end for

17: Show labels;

At the end of the process the label of each cluster will be

the set of relevant attributes selected in a variation V , with

their respective values or range of values.

IV. RESULTS

For the implementation of the proposed model we used the

tool MATLAB1, which provides the use of some supervised

and unsupervised algorithms presented in Section II among

others2.

The K-means was used with the command kmeans (X, k),

where X is a matrix containing all elements (database) and

k is the number of clusters to be generated. All parameters

used are the default3 by MATLAB. In the databases used here

(Glass [20], Scientia.Net [21], Iris [22] and Seeds [23]) we

know a priori the amount k of clusters that must be created,

as suggested on these same works.

To perform a MLP network we used the command feedfor-

wardnet (). In this algorithm we also used the default settings,

10 neurons and 1 hidden layer, for the neural network4.

Also, preliminary tests were done by changing the network

architecture (amount of neurons and layers) without major

1http://www.mathworks.com/products/matlab/
2Version used: R2012a (7.14.0.739), 64 bits (maci64).
3http://www.mathworks.com/help/stats/kmeans.html
4http://www.mathworks.com/help/nnet/ref/feedforwardnet.html

differences in the results. In relation to learning method, 60%

of the data was used for training and 40% for testing.

The parameters and the topology of the algorithms used

(K-means and MLP), plus a discretization model and its

parameters, a mean of the amount of ANNs by attribute (M )

and a variation in relation to the higher hit rate by cluster

(V ), all presented in Section III, result in a large number of

possible combinations, although the results presented here

represent only a small fraction of them. The values5 used

were M = 10, V = 15 and the discretization model was

the EWD and the EFD, varying in 3 to 6 ranges of values.

The parameters used on MLP network (such as topology and

architecture) and K-means (distance and centroids position)

are the default by the MATLAB tool.

Then, the application of the proposed model will be shown

in four databases.

A. Glasses Identification

Database regarding the identification of glasses (Identifi-

cation Data Set Glass) can be found in the data store UCI

Machine Learning [24]. The context of its application is the

forensic area, where the analysis of the glass components

can help to solve crimes [20].

Database has 214 elements, each containing nine continu-

ous attributes6: the refractive index (IR) and the composition

of its chemical elements given in percentage (Na, Mg, Al, Si,

K, Ca, Ba and Fe), divided into 7 types of different groups

that contain samples of glasses:

1) 70 elements of construction windows (processed);

2) 76 elements of construction windows (non-processed);

3) 17 elements of vehicles windows (processed);

4) 0 elements of vehicles windows (non-processed)7;

5) 13 elements of containers;

6) 9 elements of kitchen utensils;

7) 29 elements of headlamps.

The results obtained are shown in Table I. It is observed

that the labeling task is done according to the clusters

generated by K-means and that, as shown in Table I, they

differ from the form suggested of the work presented in

[20]. Therefore, the labels presented here are specific and

may differ at each performance according to the groups

performed.

The relevance column (Rel.) represents the average hit rate

of learning algorithm for the attribute concerned estimated

by the ANN. In other words, it represents the relevance of

such attribute to its cluster, showing only those ones held in

a variation V .

As seen in Table I, for each cluster a set of attributes was

suggested as well as their respective value ranges. At this

point, it is necessary an analysis to verify if the elements

of a given cluster obey the labeling suggested or, putting

5Values chosen by preliminary tests.
6The attribute class (corresponding to a tenth attribute that identifies the

type glass) has been removed from the base for the accomplishment of this
work.

7No element of this type is present in database.



TABLE I

LABELING ANALYSIS FOR GLASS DATABASE.

Result (Labels) Analysis

Cluster # Elem. Attr. Rel. (%) Range # Errors Hit (%)

1 74

Ba 100 0 ∼ 0.7875 0 100

K 100 0 ∼ 1.5525 0 100

Si 93.33 72.61 ∼ 74.01 2 97.29

Na 90.33 12.3925 ∼ 14.055 3 95.94

2 5
Fe 100 0 ∼ 0.1275 0 100

Ca 100 5.43 ∼ 8.12 0 100

3 19
K 100 0 ∼ 1.5525 0 100

Ba 90 0 ∼ 0.7875 1 94.73

4 32

K 100 0 ∼ 1.5525 0 100

Ba 93.07 0 ∼ 0.7875 1 96.87

Ca 89.23 8.12 ∼ 10.81 1 96.87

5 56

Ba 100 0 ∼ 0.7875 0 100

K 100 0 ∼ 1.5525 0 100

Na 93.47 12.3925 ∼ 14.055 2 96.42

Al 88.69 1.0925 ∼ 1.895 4 92.85

Mg 85.65 3.3675 ∼ 4.49 6 89.28

6 28
Fe 100 0 ∼ 0.1275 0 100

K 93.33 0 ∼ 1.5525 1 96.42

differently, if the values of its attributes belong to the range

shown. The Table I also shows this analysis.

Assuming that only the main attributes define the labeling

– the attributes that were 100% relevant on Table I – we can

observe that there is no error. On the other hand, if only these

attributes are considered, there is a possibility of ambiguity

occurrence between labels (same relevant attributes with the

same value ranges) as occurs between the pairs of clusters

1-5, 3-4 and 6-2.

It is necessary, then, to observe whether the other sug-

gested attributes within a variation V are enough to distin-

guish all the labels. Thus, as seen previously in two examples,

the cost to avoid the ambiguity is the reliance on less relevant

attributes. This parameter should be adjusted if the amount of

relevant attributes is not enough to distinguish all the clusters.

For example, to differentiate the clusters 3 and 4 we could

follow all the suggested labeling. Thus, the label of the

cluster 3 is represented by K (0 ∼ 1.5525) and Ba (0 ∼

0.7875); and cluster 4 by K (0 ∼ 1.5525), Ba (0 ∼ 0.7875)

and Ca (8.12 ∼ 10.81).

An alternative, that could solve the problem of ambiguity,

would be to use more precise value ranges or a different

discretization model.

Even with the alternative used the hit rate remains high. In

the example showed the use of the attribute Ca in the cluster

4 showed that only 1 element (of 32) does not match the

label, resulting in a hit rate of 96.87%.

Following this reasoning and analyzing the others clusters

we have that the lowest hit rate is present on cluster 5

(attribute Mg) and corresponds to 89.28%. Generally, the

result was quite satisfactory reaching an average of 95.54%

hit of the elements as suggested labels.

B. Scientia.Net

The Scientia.Net [21] is a social network prototype aimed

at scientists who wish to share research with other re-

searchers. In addition, its machine learning algorithms au-

tomatically classify content and members.

Database of Scientia.Net has 2000 users of 20 (distinct)

knowledge areas and its elements characterized by 7 discrete

attributes8 that define their academic area:

1) Graduation;

2) Masters;

3) Master’s Sub Area;

4) Doctorate;

5) Doctorate’s Sub Area;

6) Postdoctoral;

7) Postdoctoral Sub Area.

The different areas are represented by numbers. The area

of Geography, for example, is represented by number 27

in the attributes postdoctoral, doctorate and masters and

number 20 in the attribute graduation. The process of dis-

cretization was not applied here since all the attributes used

here are are discrete/categoric.

The results obtained are shown in Table II9. Therefore,

as in the previous case, the labeling is done on the basis of

clusters generated by the unsupervised algorithm (K-means)

and that, as shown in Table II, resembles – mostly – the

results obtained in [21]. Even tough, the labels presented

here are also specific and may differ at each performance

according to the grouping performed.

As in the first database, the relevance column (Rel.)

represents the average hit rate of learning algorithm for

the attribute concerned estimated by the ANN. Again, it

represents the relevance of such attribute to its cluster,

showing only those ones held in a variation V .

After the results presented by the program the analysis was

done. As in Table II, for each cluster a set of attributes was

suggested as well as their corresponding values. The analysis

consists of observing whether the elements of a given cluster

obey the labeling suggested. The Table II shows this analysis

too.

By having discrete values and not continuous value ranges

the groups are best defined by the unsupervised algorithm.

Comparing to the previous case (glass database), there were

no labels alike, except for the clusters 3 and 20.

This is due to the grouping stage once the hit rate was

100% in both clusters. In some cases a grouping can separate

similar elements in different groups as well as order different

elements in the same group cluster. However, in general, the

grouping performed was satisfactory because most clusters

were well defined, close to the suggested by the authors.

The cluster 2 was the only one presenting one of the

attributes of a sub area. These attributes contain more specific

8The attribute class (corresponding to an eighth attribute that identifies
the user area) has been removed from the base for the accomplishment of
this work.

9For limitations of space only the most interesting clusters results were
chosen to show here.



TABLE II

LABELING ANALYSIS FOR SCIENTIA.NET DATABASE.

Result (Labels) Analysis

Cluster # Elem. Attr. Rel. (%) Value # Errors Hit (%)

1 100

Postdr. 100 27 0 100

Graduation 100 20 0 100

MSc. 100 27 0 100

Dr. 100 27 0 100

2 12

Postdr. 100 17 0 100

MSc. 100 17 0 100

Dr. 100 17 0 100

Sub Dr. 100 13 0 100

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

4 160

Postdr. 100 18 60 62.5

MSc. 100 18 60 62.5

Dr. 100 18 60 62.5

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

7 103

MSc. 98.0952 14 3 97.0874

Dr 97.619 14 3 97.0874

Postdr. 97.8571 14 3 97.0874

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

15 172

Postdr. 100 9 80 53.4884

Graduation 100 5 80 53.4884

MSc. 100 9 80 53.4884

Dr. 100 9 80 53.4884

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

information and therefore do not tend to be a high relevant

attribute. However, it was suggested in the cluster 2 and, as

we can observe, it was a correct classification since the group

only contains 12 elements, being a very specific group.

According to the analysis of the results the worst hit rate

were obtained in 53.4884% and 62.5%. Not coincidentally

this rate refers to the largest clusters with 172 and 160

elements, respectively. Indeed, the label is not wrong: it

represents the majority of the group. However, the low hit

rate is due to the poor definition of groups that contain 72%

and 60% elements more than it was presented in the original

work [21].

Observing the other groups we have that the majority

(55%) of the clusters presented a hit rate of 100%. Generally,

the result was quite satisfactory reaching an average of

93.357% hit of the elements as suggested labels.

C. Iris Identification

Database regarding the identification of iris (Iris Data Set)

also can be found in the data store UCI Machine Learning

[24]. The data set contains 3 classes of 50 instances each,

where each class refers to a type of an iris plant.

The database has 150 elements, each containing four

continuous attributes10: the sepal length (SL), the sepal width

10The attribute class (corresponding to a fifth attribute that identifies the
type iris) has been removed from the base for the accomplishment of this
work.

(SW), the petal length (PL) and the petal width (PW), given

in cm, divided into 3 types of different groups that contain

samples of iris:

1) 50 elements from Iris Setosa;

2) 50 elements from Iris Versicolor;

3) 50 elements from Iris Virginica.

The results obtained are shown in Table III.

TABLE III

LABELING ANALYSIS FOR IRIS DATABASE.

Result (Labels) Analysis

Cluster # Elem. Attr. Rel. (%) Range # Errors Hit (%)

1 62
PL 83.6 3.7 ∼ 5.1 6 90.32

SL 79.6 5.3 ∼ 6.4 13 79.03

2 38

PW 84.37 1.7 ∼ 2.5 3 92.10

SW 82.5 2.7 ∼ 3.4 6 84.21

PL 82.5 5.1 ∼ 6.9 2 94.73

3 50
PW 100 0.1 ∼ 1 0 100

PL 100 1 ∼ 1.37 0 100

The labeling is done according to the clusters generated

by K-means and that, as shown in Table III, they can differ

from the form suggested of the work presented in [22] (50

elements in each cluster). Therefore, the labels presented here

are specific and may differ at each performance according to

the groups performed.

The relevance column (Rel.) represents the average hit rate

of learning algorithm for the attribute concerned estimated

by the ANN. In other words, it represents the relevance of

such attribute to its cluster.

As seen in Table III, for each cluster a set of attributes

was suggested as well as their respective value ranges. As in

the previous example, it is necessary an analysis to verify if

the elements of a given cluster obey the labeling suggested,

or in another words, if the values of its attributes belong to

the range shown. The Table III also shows this analysis.

Only the main attributes define the labeling: the attributes

that have the best percentage of relevancy (as shown in

Table III). However, it would be possible that there were

similar groups. To avoid a possibility of ambiguity occur-

rence between labels on groups (same relevant attributes with

the same value ranges), a variance V is used to select more

attributes (more relevant as possible) to distinguish these

clusters.

It is necessary, then, to note the other suggested attributes

within a variation V that is enough to distinguish all the

labels. That way, as seen in the previous example, the cost to

avoid the ambiguity is the reliance on less relevant attributes.

In this case, the groups have distinct values for the same

attributes.

As we can observe in Table III, the amount of elements

clustered was different from the original work. One group

(cluster 3) was easily separated but the other two were mixed.

This was expected once one class is linearly separable from

the other two and the latter are not linearly separable from

each other [22].



As shown in Table III, the cluster 3 was rated 100%

correctly using the attributes PW and PL to label it. The

other two groups has a minor rate of 84.21% and 79.03%.

All the attributes and their respective values are different

showing no ambiguity between the clusters.

Finally, the labels suggested by the proposal are: PL

ranging from 3.7 to 5.1 and SL ranging from 5.3 to 6.4 for

Cluster 1; PW ranging from 1.7 to 2.5, SW ranging from 2.7

to 3.4 and PL ranging from 5.1 to 6.9 for Cluster 2; and PW

ranging from 0.1 to 1 and PL ranging from 1 to 1.37 for

Cluster 3.

Observing the groups as a whole, we have an average of

87.74% of the elements classified correctly by all attributes

presented in a variance V which is a result quite satisfactory.

D. Seeds Identification

Database regarding the identification of seeds (Seeds Data

Set) also can be found in the data store UCI Machine

Learning [24]. The data set contains 3 classes of 70 instances

where each class refers to a different type of wheat.

The database has 210 elements characterized by 7 geomet-

ric features11: area, perimeter, compactness, length of kernel

(LK), width of kernel (WK), asymmetry coefficient (AC)

and length of kernel groove (LKG), divided into 3 types of

different groups that contain samples of kernels belonging to

three different varieties of wheat:

1) 70 elements from Kama;

2) 70 elements from Rosa;

3) 70 elements from Canadian.

The results obtained are shown in Table IV.

TABLE IV

LABELING ANALYSIS FOR SEEDS DATABASE.

Result (Labels) Analysis

Cluster # Elem. Attr. Rel. (%) Range # Errors Hit (%)

1 72
Perim. 81.6 13.62 ∼ 14.83 28 61.11

Area 78.16 13.23 ∼ 15.88 20 72.22

2 77
Perim. 88.17 12.41 ∼ 13.62 15 80.51

Area 91.39 10.59 ∼ 13.23 5 93.50

3 61

WK 100 3.33 ∼ 4.033 0 100

Compac. 97.33 0.86 ∼ 0.91 4 93.44

LKG 98.66 5.53 ∼ 6.55 1 98.36

Area 100 15.88 ∼ 21.18 0 100

Perim. 100 14.83 ∼ 17.25 0 100

LK 100 5.78 ∼ 6.67 0 100

Again, it is observed that the labeling task is done ac-

cording to the clusters generated by K-means and therefore,

as shown in Table IV, they will be specific to them and

not to the form suggested of the work presented in [23] (70

elements in each cluster). Thus, the labels presented here are

specific and may differ at each performance according to the

groups generated.

11The attribute class (corresponding to a eighth attribute that identifies
the type wheat) has been removed from the base for the accomplishment of
this work.

As in the previous cases, the relevance column (Rel.)

represents the average hit rate of learning algorithm for the

attribute concerned estimated by the ANN: it represents the

relevance of such attribute to its cluster.

As seen in Table IV, for each cluster a set of attributes

was suggested as well as their respective value ranges. Also,

in order to verify if the elements of a given cluster obey the

labeling suggested, or in another words, if the values of its

attributes belong to the range shown, an analysis process was

done. The Table IV shows this analysis too.

Only the main attributes define the labeling: the attributes

that have the best percentage of relevancy (as shown in

Table IV). However, it would be possible that there were

similar groups. To avoid a possibility of ambiguity occur-

rence between labels on groups (same relevant attributes with

the same value ranges), a variance V is used to select more

attributes (more relevant as possible) to distinguish these

clusters.

As shown in Table IV, the Cluster 3 has the highest

rate of correct label with 93.44% of its elements labeled

correctly. The Cluster 2 also presented a good percentage

of correctly labeled elements: 80.51%. A low hit rate was

presented for Cluster 1 with 61.11% only. Also, the clusters

have not ambiguity presenting their values different from

each other even when the labels have the same attributes.

We can observe (Table IV) that the clusters are well defined

since the values of their main attributes are different.

Finally, the labels suggested by the proposal are: perimeter

(13.62 ∼ 14.83) and area (13.23 ∼ 15.88) for Cluster 1;

perimeter (12.41 ∼ 13.62) and area (10.59 ∼ 13.23) for

Cluster 2; and WK (3.33 ∼ 4.033), compactness (0.86 ∼

0.91), LKG (5.53 ∼ 6.55), area (15.88 ∼21.18), perimeter

(14.83 ∼ 17.25) and LK (5.78 ∼ 6.67).

Observing all the groups we have an average of 78.53%

of the elements classified correctly by all labels suggested.

V. CONCLUSIONS

Facing the problem presented on Section I, an unsuper-

vised algorithm was used for defining clusters and then an

supervised learning algorithm was applied into each group

to detect which attributes – and values – can define them. It

is important to highlight that the discretization process has a

significant purpose on this method, making possible to infer

a range of values for the relevant attributes besides improving

the performance of the ANNs.

It is also important to highlight that the labeling process

is done in a cluster and that therefore it depends essentially

on its elements. Thus, a poorly defined group will have an

imprecise labeling. Therefore the unsupervised algorithm still

has strong influence on the labeling result.

In face of the diversity of existing techniques for super-

vised and unsupervised techniques, discretization models and

its parameters a significant improvement still can be reached.

The expensive cost of using ANNs still needs to be

compared with other techniques – principal component anal-

ysis (PCA) or support vector machine (SVM), for example.



Although we have not done tests in big data the ANNs can

easily work in parallel, making this approach scalable.

Finally, the results shown are quite satisfactory: most of the

clusters evaluated in the databases shown in this article were

labeled with high hit rates in an average above of 88.79% of

elements labeled correctly.
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[17] J. Cerquides and R. L. de Màntaras, “Proposal and empirical com-
parison of a parallelizable distance-based discretization method,” in
In Proceedings of the 3rd International Conference on Knowledge

Discovery and Data Mining, 1997.
[18] H. Wang, “Cmp: A fast decision tree classifier using multivariate

predictions,” in In Proceedings of the 16th International Conference

on Data Engineering, 2000, pp. 449–460.
[19] F. Leisch, L. Jain, and K. Hornik, “Cross-validation with active

pattern selection for neural-network classifiers,” Neural Networks,

IEEE Transactions on, vol. 9, no. 1, pp. 35–41, 1998.
[20] I. W. Evett and E. J. Spiehler, “Knowledge based systems,” P. H.

Duffin, Ed. New York, NY, USA: Halsted Press, 1988, ch. Rule
induction in forensic science, pp. 152–160.

[21] B. V. A. de Lima and V. P. Machado, “Machine learning algorithms
applied in automatic classification of social network users,” 4th Inter-

national Conference on Computational Aspects of Social Networks -

CASoN, 2012.
[22] R. A. Fisher, “The use of multiple measurements in taxonomic

problems,” Annals of Eugenics, vol. 7, no. 7, pp. 179–188, 1936.
[23] P. Kulczycki and M. Charytanowicz, “A complete gradient clustering

algorithm,” in Proceedings of the Third International Conference on

Artificial Intelligence and Computational Intelligence - Volume Part

III, ser. AICI’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 497–
504.

[24] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.
[Online]. Available: http://archive.ics.uci.edu/ml/


