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Abstract—Neuroscience has made impressive advances, but
there is a lack of an overall computational brain theory. I
would like to present a simplified computational theory in an
intuitive language about how the brain wires itself as a multi-
interchange bridge that bi-directionally connects many islands
where each island is a sensor or effector. The wiring process
of the brain is highly self-supervised while a baby lives and
acts in his physical environment, e.g., sucking a milk bottle. I
use a new precise framework of emergent finite automata to
explain how the brain develops its numeric circuits that can
be clearly understood in terms of logic. I also explain how
the self-wired basic circuits become motivated through four
additional neural transmitters beyond glutamate and GABA —
serotonin, dopamine, acetylcholine, and norepinephrine. I use
finite automata for precise and rigorous analysis and optimality.

I. INTRODUCTION

Let us borrow a well-known tale originated from the Indian
subcontinent, known as Blind Men and an Elephant. The blind
men cannot visually see an elephant so each of them touches
a body part of the elephant, but only one body part. None of
them can tell correctly what an elephant is like. The brain is
like an elephant; and each expert in one of the six disciplines
— biology, neuroscience, cognitive science, computer science,
electrical engineering, and mathematics — is like a blind man,
as far as the brain is concerned. The existing partition of
scientific disciplines is a major reason for this discipline-wide
lack of necessary knowledge of other disciplines. E.g., it is well
known that neuroscience is data rich and theory poor but many
computer scientists were not motivated by brain challenges.

The term brain here is used as an intuitive term for the
Central Nervous System (CNS), which includes both the spinal
cord and the brain proper. Thus, we intuitively assume that the
skull encloses the CNS. Anything inside the skull is internal;
anything outside it is external.

A. Symbolic school

Two types of models have been used to model cognitive
architectures, symbolic and emergent. The term “emergent” as
proposed in Weng 2012 [31] is related to, but stricter than,
a commonly used term “connectionist”. Many connectionist
representations are not fully emergent — do not emerge au-
tonomously inside the skull-closed brain through development.
They fall into the symbolic category, since many symbolic

models also use connections. Except for trivial cases, there
are no systems that do not need any representations.

To use a symbolic type, one assumes that there is a one-
to-one correspondence between every hand-selected symbol
and its meanings in a specified domain — each symbol has
only a fixed set of meanings and each meaning has only one
or a fixed set of symbols (e.g., Minsky 1991 [19], Anderson
1993 [3], Rosenbloom, Laird & Newell 1993 [20], Yuille &
coworkers 2005 [26]), including some that are meant to model
cortex: Albus 1991 [1], Lee & Mumford 2003 [17], George
& Hawkins 2009 [9], Taylor et al. 2009 [24], Grossberg and
coworkers 2009 [7], Albus 2010 [2], and Tenenbaum et al.
2011 [25]. Because of the symbol use, the modelers use “open-
skull” approaches:

An open-skull approach requires that the skull is open
during (manual) development of a mind. The holistically-aware
central controller is the human designer outside the open skull.
He defines each internal entity (e.g., a neuron or a module)
using a symbolic meaning but its abstraction is an illusion, only
in his mind and probably also in other people who hear his
explanation. Each internal entity itself does not have a power
of autonomous abstraction from real-world instances because
of human manually and internally administrated symbolic
training (e.g., using Bayesian framework).

As discussed below, such a symbolic model does not do
task-nonspecific autonomous development.

B. Emergent school

To use an emergent type, one draws inspiration from brain-
like emergent internal representations. As we will see later,
our definition for emergent representations does not allow a
human programmer to handcraft the contents or boundaries of
extra-body concepts, since representations in this category use
a “closed-skull” approach:

A closed-skull approach requires that the skull is closed
during (autonomous) development of a mind, from the incep-
tion time throughout the life. Only the brain’s sensory ends S
and the motor ends M are open to the external environment).

Many artificial neural networks satisfy this “closed-skull”
definition. Examples include the unsupervised Self-Organizing
Maps by Kohonen 1982 [15], feed-forward computation net-
works with error back-propagation learning [38], [6], [16],
[22] (which can incrementally learn but either do not have
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a long-term memory or have a rigidly frozen old memory
which does not share resource with new experience); Hopfield
network [13] (which converges into a local attractor from an
initial guess); ARTMAP by Carpenter et al. 1991 [4] (which
finds the nearest bottom-up match using top-down consecutive
selection); Cresceptron by Weng et al. 1992 [33], [34] (which
incrementally develops a feed-forward network which learns
local-to-global features with increasing location tolerance from
early to later layers); Elman network 1993 [5] (which has a
local recurrent layer, for temporal context, using error back-
propagation learning); the recurrent LISSOM network by Sit
& Miikkulainen 2006 [23]; the feedforward networks by Serre
et al. 2007 [21]; the Deep Learning Networks by Hinton
2007 [11]; and the MILN network by Weng et al. 2008 [35].
An emergent representation for extra-body concepts emerges
autonomously from interactions with the internal environment
and the external environment.

This characterization of emergent model is a refined,
stricter definition compared with the traditional type called
connectionist models, which traditionally means distributed
representations in a network. However, the term “connection-
ist” is misleading and imprecise. For example, the symbolic
base network of Hidden Markov Models (HMM) is also a
network. A probability distribution inside a symbolic base
network could be mistaken as a connectionist model. I will
use the term “emergent model” below instead.

An agent is anything that senses and acts. “Emergent”
in “emergent model” means: (a) The internal representations,
inside the closed skull, emerge while the brain-like network
interacts with the external environment through its sensor ports
and effector ports that are the only input-and-output ports open
to the external environment. (b) The network adaptation and
operation is regulated by the Developmental Program (DP)
whose programmer could not precisely predict the contents of
the lifetime extra-body environments, such as the nature of
the tasks and the concepts required. For a natural agent (e.g.,
animal), the DP is the genome, whose programmer consists of
all the predecessors and the nature met by the predecessors. For
an artificial agent (e.g., robot), the DP is a computer program,
whose programmer is a human being, but he has left the agent
after the agent’s “birth”.

Because an emergent representation is only indirectly re-
lated to symbolic meanings (e.g., a 67◦ edge), the network
learning mechanisms are not specific to particular meanings
either. This important property is useful for understanding
development, as the set of learning mechanisms must work
through different ages, through which the agent (natural or
artificial) learns an open number of skills and performs an open
number of tasks. Often, we use some symbolic meanings as
examples (e.g., a neuron in V1 detects a 67◦ edge) to assist
understanding of the functions of emergent representations, but
such explanations are incorrect and misleading.

C. Take the best of the two schools

The brain model here takes the best of the above two
schools: an emergent model that can abstract logically, as
discussed in [29].

In the remainder of this paper, I first present an overview
of the brain architecture that is novel and very different from

the other models about the brain in that they all explicitly
model the Brodmann areas, instead of enabling them to emerge
by this model depending on the sensory and motor signals.
Such prior models are inconsistent to our understanding that
in the born blind, visual cortex is nonexistent and the cortical
resource is reassigned to audition and touch (Voss 2013 [27]).
Therefore, the model here seems to be the only work I am
aware of that is consistent with the above known cross-
modality plasticity of the brain.

II. THE BRIDGE-ISLANDS MODEL OF THE BRAIN

Through the course of evolution, the genome of each
species has evolved to better regulate the development of each
individual in order to survive and compete successfully in the
species’ own environment. For example, the environment of a
mouse is very different from that of a human.

The brain-mind of an adult mouse is very different from
that of an adult human, but the developmental mechanisms of
mammalian brains seem to be very similar. Let us consider
mainly humans here.

The development of each individual starts from a single
cell — a fertilized egg called a zygote. The zygote gradually
develops into a newborn and further into an adult. This process
involves two parallel and inter-dependent processes, the body
development and the brain-and-mind development.

Cells split into more and more cells. The cells migrate,
differentiate, and connect, through interactions with other cells
in each cell’s environment. When cells turn into different types
and contact, they form body parts, such as tissues, organs, and
circuits. The way the brain wires itself depends on the activities
of the sensors and effectors. This is true not only after birth,
but also before birth.

The brain is not only a signal processor, but first and more
importantly also the developer of the signal processor. A static
diagram of the brain circuit, no matter how complete it is, is far
from enabling us to understand how the brain works. Without
feeling the current “traffic”, the brain “roads” cannot expand.

A human has mainly five senses — sight, hearing, taste,
smell, and touch. Each sense has a sensor, e.g., eye for sight
and ear for hearing. A human has many effectors for carrying
out actions. There are two types of effectors — muscles and
glands.

From a fetus to infancy to adulthood, the brain constantly
wires and rewires itself to handle two-way joint communica-
tions among all the sensors and all the effectors.

Let us use an analogy: Suppose that each sensor is an
island. Each effector, such as (the muscles in) a body part
or a gland, is also an island. Then, the body has many
sensory islands and many effector islands. The brain is a multi-
exchange bridge that autonomously builds itself to connect
from and to all the islands, as illustrated in Fig. 1

Before birth, all the sensors and effectors already have
spontaneous signals that guide the brain’s prenatal wiring. The
retina has spontaneous waves of signals although the baby’s
eyes are still closed. The baby’s legs kick in the mother’s
womb.
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Fig. 1. An illustration of the bridge-islands brain model. The brain is a
multi-exchange super bridge that bi-directionally connects with all islands. The
bridge produces winner neurons that form an ever-changing committee that
collectively vote to report the combined configuration of the firing patterns of
all the current islands. Each island uses the votes from the committee to predict
the next firing pattern in the island. There are two types of islands, sensory and
effector. Each sensory island is supervised by the external environment and,
therefore, its firing pattern is always concrete and cluttered with many objects’
signals. Each effector island is either supervised by the external environments
or self-emerging and, therefore, its firing patterns can be abstract, representing
values of an abstract concept. Each effector island is a hub of attention. Its
firing pattern enables only the voting members that correspond to the attended
sensory part to win, fire and vote. Then, the brain attends that sensory part at
that time instant.

Such spontaneous activities allow the prenatal brain to form
coarse wiring for estimating coarse statistics across all of its
sensory islands and effector islands, as well as generating
inborn reflexes. The heart beats well before birth and the baby
cries right after birth.

Reported by many neural anatomy studies [8], the brain cir-
cuits use more than local recurrence (e.g., Hopfield networks),
do not use random connections (called reservoir networks), and
have more than a cascade of processors (called deep learning
networks) between any pair of sensor and effector.

The brain does not seem to find errors in the effector ends
and then do error back-propagation. The baby does not “know”
the error. Asking all the connected neurons to change their
weights to reduce the current errors causes a loss of long-term
memory.

The brain’s self-organization does not have an internal
“government” — a central controller. When a brain seems
to autonomously control its actions, it only responds to the
environments, inside and outside the skull.

There exists no standard symbol for a concept. When I act
(e.g., say “apple”) every time the muscle signals are different. I
may use a slightly different tone, volume, or speed. Our model
allows variation in each action.

The brain needs to attend to individual objects in a cluttered
scene. When you pick an apple from an apple tree, your action
depends on only the “pixels” of that apple but not many other
“pixels” from other parts of the tree. Thus, each neuron for
vision must have a limited receptive field in the retina. It
responds to only some area in the retina, not the entire retina.

Further, each brain neuron responds to not only sensors but
also effectors. Effectors too? Yes, patterns of effector firing are

concept states, as we see below.

What does the brain do? Each of its feature neurons
represents a set of similar joint firing patterns of all the islands
so that each island can use the firing feature neurons to predict
its own next firing pattern. Intuitively, all the feature neurons
inside the brain are like tiles of different sizes and shapes called
Voronoi regions that together seamlessly tile the “floor” of all
the islands.

Suppose that only the best matched neuron, or “winner
neuron” in the bridge fires. All neurons in each island that fire
next are linked from this firing bridge neuron. Thus, a single
bridge neuron is able to trigger the correct next firing pattern in
every island. In general, more winner bridge neurons fire, they
correspond to a dynamic committee that “votes” for, through
links, all the next firing neurons in every island.

Each bridge neuron has a sensory receptive field (e.g.,
from the apple pixels), an effective receptive field (e.g., from
the muscles for saying “apple” and for the arm reaching for
the apple), and a lateral receptive field (from other bridge
neurons).

Since there is no central controller, each neuron does not
“know” its brain’s role when it is generated from mitosis.

The brain has two large categories of neurons [14] —
projection neurons and interneurons. Projection neurons are
feature detectors (for all the above three input sources) that can
connect far. Interneurons connect only near. Each interneuron
turns input signal from “positive” (excitatory via Glutamate
transmitters) to “negative” (inhibitory via GABA transmitters).
All projection neurons inhibit other projection neurons through
the help of many interneurons.

The net effect of the mutual inhibitive competition is that
far fewer winner neurons can fire at any time. In the remainder
of this paper, by “neuron”, we mean a projection neuron helped
by interneurons.

Each neuron gets its pre-action membrane potential to fire
from three sources of input — bottom-up from sensors, lateral
from other neurons, and top-down from effectors. It has a set of
synaptic weights (vector, i.e., many signal lines), as its long-
term memory, to match each source of input (vector). The
better the match between the synaptic weights with the input
source, the more pre-action potential the neuron gets.

Through lateral competition, only the top-winner neurons
that have a high pre-action potential can win to fire. Thus, for a
neuron to consistently win in competition within a short time
window, it must match well not only the bottom-up source
(e.g., an “apple” image patch at a retinal location), but also
top-down source (e.g., muscles saying “apple” or muscles for
the arm holding the “apple”, or best both sources). Thus, the
firing of each neuron is also affected by your actions (i.e., your
intentions in general).

A neuron updates its weights only when it wins and fires,
which means that the current sensory input and effect input
is its “business”. Firing neurons at any time are the current
working memory, while all other neurons that do not match
well and do not fire are the current long-term memory.

When a neuron fires, all its synapses (bottom-up, lateral,
and top-down) update their conductance (weights) incremen-

2610



tally so that every conductance statistically matches the input
better in the future. This is qualitatively known as the Hebb’s
rule — neurons that fire together wire together [14]. The
theoretical quantitative Hebb’s rule is statistically optimal [29].

From early embryo through adulthood, proteins and other
molecules called morphogens released from other cells guide
the migration and connection of every new cell in a coarse-to-
fine manner [14] . Because of this manner, every two mature
neurons, if their firings are statistically strongly correlated or
anti-correlated, tend to connect with each other, excitatorily
or inhibitorily. Otherwise, their connections retract, if their
connections existed previously.

How does a baby constantly self-supervise during his daily
activities?

Suppose that he is sucking milk from a milk bottle. When
he was born, he did not know what milk bottles were. His
sucking effector “tells” the type of the object — milk bottle,
since he cannot say “milk” yet. His arm that holds the milk
bottle “tells” the relative location of the object on the retina.

Statistically, only those bridge neurons that match well
for both bottom-up input and top-down input can survive
the competition to consistently fire. The bottom-up energy
corresponds to the match of the milk-bottle image patch in
correct location and pattern, but not other locations or another
pattern at this location. The top-down energy corresponds to
the match of the sucking effector and the arm effectors, but
not non-sucking effectors and other arm positions.

Thus, the “suck” neurons in the “vocal effector island”
co-fire with, and then link with, all the bridge neurons for
different locations and appearances of the milk bottle. They
become specific concept neurons for type milk bottle, invariant
to locations and appearances [28].

Likewise, the “location” neurons in the “location effector
island” co-fires with, and then links with, all the bridge neurons
for different object types and appearances at that location. They
become specific concept neurons for that particular location,
invariant to object types and appearances, milk bottle, his palm,
or any other objects [28].

Many modelers thought that the state of a brain must be
totally inside the skull. It is interesting to note that firing
patterns of all effector neurons become the brain’s concept
states. Every learnable action (e.g., muscles, not glands) of
the brain is observable, teachable, and calibratable by the
self and teachers. When you think, you “tacitly” do muscle
concept rehearsal. Such concept states become more adult-
like knowledge while the child grows up, beyond “type” and
“location”, to include any concept a human can be taught.
Namely, muscle states are intentions learned from experience.

As the Developmental Network (DN) theory [29], [30] has
formally proved, the brain is an emergent finite automaton.
A symbolic finite automaton can only be handcrafted but the
brain’s finite automaton autonomously emerges.

The set of next firing bridge neurons depends on not only
the sensory image (e.g., many apples on an apple tree) but
also effector state (e.g., apple in the type effector instead of
leaves; this location in the location effector instead of other
locations.)

Although such emergent networks learn invariances, they
do not have any motivation. The brain uses different types of
neural transmitters to modulate its network.

The serotonin transmitters released by a pain signal sup-
press the firing of effecter neurons since they are likely re-
sponsible for the punishment [37]. The dopamine transmitters
arising from a candy reward excite the firing of the effecter
neurons because they are likely responsible for the reward
[37]. Both serotonin and dopamine increase the learning rate
of the firing bridge neurons so that such important events are
learned faster and harder to forget [40]. The serotonin and
dopamine systems give rise to pain-avoidance and pleasure-
seeking motivation.

Some researchers argued that acetylcholine and nore-
pinephrine transmitters signal expected and unexpected un-
certainties, respectively [39]. The acetylcholine transmitters
from each neuron signal the deviation between inputs and
the synaptic weights across the neuron. The norepinephrine
transmitters released from each synapse indicate the deviation
between the pre-synaptic input and the synaptic conductance.
The ratio of norepinephrine over acetylcholine indicates the
novelty at each synapse. This novelty dynamically regulates
the growth or retraction of each synapse, to enable each neuron
to dynamically search for the domain of most common input
patterns. Therefore, each neuron can detect the shape of the
object it was assigned to detect by competition [28].

The glutamate and GABA transmitters for the basic brain
circuits, plus the above four types of neural transmitter, seem
to form a minimum set of neural transmitters necessary for
motivating the brain. All the brain areas emerge autonomously,
including the networked internal hierarchy [8], as a conse-
quence of statistics from the activities of life, instead of being
fully specified by the genome or statically handcrafted by a
human programmer. This developmental model of the brain is
also consistent with why, in the brains of the blind at birth, the
visual areas are assigned to audition and touch. In contrast, a
static brain pathway model cannot explain such assignments.

Next, I will use the well known automata theory to explain
that the above theory is not only intuitive, but is also built on
precise and clearly understandable mathematical logic. First,
we must discuss the types of representation.

III. ANALYSIS

In this section, I analyze how the above bridge-islands
model can perform both types of skills, declarative and non-
declarative skills. They are all performed by muscles, where
each action in an island corresponds to a sequence of firing
patterns in each island.

The internal representations of an agent refers to the ways
in which information is organized inside the “brain” of the
agent, natural or artificial.

The architecture of an agent does not necessarily specify
actual representation inside the agent’s brain, although the
agent architecture may affect the representations. Therefore,
we will use well defined representation types as a central issue
in our discussion. All the internal representations fall into two
large categories, symbolic and emergent, illustrated in Fig. 2
and defined as follows:
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Fig. 2. Agents using (a) symbolic representation and (b) emergent repre-
sentation where a brain-bridge bi-directionally connects with two types of
islands, sensory islands and effector islands. In (a) the skull is open during
manual development. This is an external model as the human programmer
only represents brain’s external behaviors. The human programmer hand-
picks a set of task-specific concepts using human-understood symbols and
he handcrafts the boundaries that separate concepts. In (b) the skull is closed
during autonomous development. The human programmers only design task-
nonspecific mechanisms for autonomous development. The internal represen-
tations autonomously emerge from experience. Many neural networks do not
use the feedbacks connections in (b).

Definition 1 (Symbolic and emergent): A symbolic repre-
sentation in the brain of an agent has human handcrafted
contents and boundaries where each zone represents a symbol
(e.g., text as label) about a concept of the extra-body environ-
ment (e.g., car). An emergent representation does not allow
such human handcrafted (or genome fully specified) contents
or boundaries.

There are always new extra-body concepts that the parents’
genome does not “know” about (e.g., Internet). A symbolic
representation cannot explain how the brain learns such new
concepts. There is no rigid boundary in the brain that prevents
the representation for an extra-body concept to penetrate into
that for another. For instance, an edge orientation to be detected
can be associated with any other sensory event and motor
event, depending on the task to be learned. Internally, the
representation of this edge orientation penetrates into the
representations for those associated events, and verse versa,
due to the two-way connections, direct or indirect, among the
co-firing neurons. For more discussion and evidence of brain
support, see Weng 2011 [31].

A. Finite automata

As Harnad [10] and many others argued, how does the
brain network do arbitrary re-combinations like a computer on
the fly? The FA theory is a model, although it is symbolic.

The classical definition of FA is for a language acceptor.
We must extend the definition to be useful for brain-mind:

Definition 2 (agent FA): An agent FA (AFA) M for a
finite symbolic world is a 4-tuple M = (Q,Σ, q0, δ), where Σ
is the set of input symbols (alphabet), Q is the set of states but
also output symbols, q0 is the starting state, δ : Q × Σ 7→ Q
is the state transition function.

The meanings of each σ ∈ Σ and each q ∈ Q are not part
of the AFA. Like all symbolic models, the meanings are in the

mind of human designers. Since human designers understand
human languages, the meanings are often explained in a human
language.

Fig. 3 gives an example of AFA. It has meanings expressed
in English, where we simply use natural language text to
replace every σ ∈ Σ. After reading the meanings, a human
understands that an AFA can be very general, simulating an
animal in a micro, symbolic world. It is important to note
that for each state in AFA, the cognition set can also be
considered part of the action set, as a cognitive state can always
correspond to a report action.

Let Σ∗ denote the set of all possible strings of any finite
number of symbols from Σ. It has been proved [12], [18] that
an FA with n states with alphabet Σ partitions all the strings in
Σ into n sets, each set corresponding to a particular state. The
set of all strings that lead to state q is denoted as [q]. Thus,
we have

Σ∗ = [q0] ∪ [q1] ∪ ... ∪ [qn].

with [qi] ∩ [qj ] = φ for all i 6= j,

From q0, strings in [q] all arrive at the same state q. That
is, all these strings are indistinguishable by the AFA from this
point on. We define a relation between any two strings. String
α and β are related denoted as αRβ if and only if all the
possible strings γ ∈ Σ∗, the two concatenated strings αγ and
αγ lead to the exactly the same symbolic output. Suppose α, β
and γ are any three strings in Σ∗. By definition, an equivalence
relation has three properties, reflexivity (αRα), symmetry (if
αRβ then βRα) and transitivity (if αRβ and βRγ then αRγ).
It has also been proved [12], [18] that this relation among
strings α ∈ Σ∗ as defined above is indeed an equivalence
relation on Σ∗, having the above three properties.

This equivalence relation might cause a potential problem
if we merge two strings into the same state but they should
not be treated exactly the same in the future. For example, in
Fig. 3 the set [z3] consists of all strings that end with “kitten” or
“young cat” and followed by any number of “well”. If “kitten”
and “young cat” needs to be treated differently in the future,
they should not arrive at the same state z3. Once they fall into
the same state, AFA no longer can distinguish their difference,
since it does not have internal representations. But, DN has
internal representations that can tell whether “kitten” or “young
cat” is actually received.

B. Symbolic networks: Probabilistic variants

An FA has many probabilistic variants (PVs), e.g., HMM,
POMDP, and Bayesian Nets. Like the FA, each node of a
PV is defined by the handcrafted meaning which determines
what data humans feed it during training. A pre-processor can
expand symbolic inputs to real vector inputs (e.g., images)
based on handcrafted features (e.g., Gabor filters). The PV
determines a typically better boundary between two ambiguous
symbolic nodes using probability estimates, e.g., better than the
straight nearest neighbor rule. However, this better boundary
does not change the symbolic nature of each node. The base
network of any PV is still the symbolic FA. Therefore, FA and
all its PVs are all called Symbolic Networks (SNs) here.

Since both input σ ∈ Σ and output q ∈ Q are external,
an AFA does not have internal representations. Likewise,
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Fig. 3. Agent Finite Automaton (AFA). Output: symbol representing the
current state (circle). Input: symbolic label for the arrow from the current
state. A label ‘other’ means any symbol in Σ other than the symbols marked
from the state. The AFA starts from state z1. The meanings of symbols are
not part of the AFA, only in the mind of human designers. An AFA does
not “know” the meanings. The meanings of input symbols are indicated by
an English word. The meanings of each state are expressed in English text
below the AFA, always represented as a set of actions. For example, state z4
means that the equivalent meaning of the attended last subsequence is “kitten
looks” or equivalent. The “other” transitions from the lower part are omitted
for graph clarity.

any SN does not have any internal representation either, as
its probability distributions are about external symbols. It is
the author’s view that all SNs only model brain’s external
behaviors. All the meanings of σ ∈ Σ and q ∈ Q are external,
only in the eyes of the human designers. The SN does not
“know” the meanings of each symbol.

C. Autonomous mental development

The paradigm of Autonomous Mental Development
(AMD) does not model a static adult brain directly. Instead, it
considers how the body and the brain develops from concep-
tion, through fetus, infancy, and adulthood. Probably the two
most striking hallmarks of AMD, different from traditional
machine learning and traditional models for a mind, are:

1) task nonspecificity [36],
2) the skull is closed throughout development, and
3) all representations emerge from interactions with the

external environment and the internal environment.

Task non-specificity of development means: (a) For natural
brain-mind, evolution cannot predict the exact task and the
exact task environment at any particular lifetime, nor can a
result of the evolution — the DP (genome). As part of the
phenotype, inborn behaviors are part of the body, mainly about
the intra-body concepts (e.g., reflexes), not much about the
extra-body concepts, due to very limited exposure to the extra-
body environment (e.g., outside the womb). (b) For artificial
brain-mind, no task is given during the DP programming
time. Because of the above three hallmarks, a developmental
agent should not use any symbolic representation. Even the
task is unknown, let alone extra-body concepts. Symbols that
represent a static set of handcrafted extra-body concepts seems
impossible for the developmental brain-mind.

D. Developmental Network (DN)

Let us consider a basic network, called Developmental
Network (DN). Because any model about the nature is always
an approximation, I hope that DN can explain basic principles
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Fig. 4. Relate a “skull-open” AFA with a “skull-closed” DN. (a) An AFA,
handcrafted and static, reasons in the symbolic world. (b) A corresponding
DN as a bridge-islands model of the brain that lives and learns autonomously
in the real physical world. The X area corresponds to all sensory islands.
the Z area corresponds to all effector islands. Only one (green) foreground
is shown, but the DN has many other Y neurons to deal with all possible
locations of the (green) foreground (not shown for graph clarity). That is, the
object images like “young”, “kitten”, can appear anywhere in the retina with
natural scales and appearances. The DN in (b) can be taught to produce the
same equivalent actions as the AFA in (a). An AFA does not have any internal
representation but a DN has (inside the skull). An AFA is not grounded —
inputting a symbol in Σ and outputting a symbol in Q at a time. However,
a DN is grounded — inputting-and-outputting x ∈ X and z ∈ Z at a time,
where x contains irrelevant components (e.g., other objects and backgrounds).
The DN does attention but the AFA does not. In (b) the “dashed” cells in Y
correspond to the “dashed” transitions in (a).

about the brain-mind of Eumetazoa — a clade within the an-
imal group excluding a few exceptions (e.g., sponges) that do
not have nerves. They are multicellular, eukaryotic organisms
in the kingdom animalia, including simple ones (e.g., a fruit
fly) and complex ones (e.g., a human). Of course, there are
many biological differences across these species, e.g., receptor
types and neuron types.

A DN has three areas X , Y , and Z. For notation simplicity,
we use such a letter (e.g., X) to denote the physical area as
well as the space of all possible response patterns of the area.

Exemplified in Fig. 4(b), a DN serves as a model of the
brain-mind which lives and learns autonomously in the open-
ended, dynamic, real physical world. In general a DN has three
areas, the internal area Y as a “bridge”, its sensory area X as
a “island” relative to the Y and its motor area Z as another
“island” relative to Y .

A DN can serve as a model for the entire brain. If the
island X consists of all sensors (e.g., retina, cochlea, skin)
of the brain and the island Z consists of all effectors (e.g.,
muscles and glands) of the brain, the DN is a model for the
entire brain-mind.

A DN can also serve as a model for any internal brain area
(e.g., a Brodmann area, a union of Brodmann areas, where the
internal area Y is a bridge and its two connected areas X and
Z are islands of the bridge, all inside the brain.
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For convenience of discussion, the default ascending order
of the three areas are X , Y , and Z. However, such an
ascending order is not always clear, e.g., LIP which links two
streams, the ventral and dorsal streams. In the DN algorithm,
the roles of X and Z are symmetrical. The world can supervise
both X and Z, directly or indirectly.

I predict that the most basic function of any brain area as
a bridge is to predict: Take the current input (x,y, z), where
x ∈ X , y ∈ Y , and z ∈ Z, and use the adaptive part N of
the DN, to predict what is next as (x′,y′, z′) and update the
adaptive part to N ′:

(x′,y′, z′, N ′) = fDN(x,y, z, N) (1)

where fDN denotes the predictive function of DN.

To accomplish that, each area A of X , Y , and Z learn and
computes using the same framework for the area function. The
area Y takes X and Z as input islands. Similarly, each island,
X and Z, takes Y as input. To simulate any given AFA, the
response of the Y area is sparse but that in X and Z can be
any practical. Each neuron in A is a feature cluster/detector.
The Y area uses the input data from (X,Z) to initialize its
neuronal clusters. Each time, only top-k (e.g., k = 4) neurons
that best match the current (X,Z) input win, fire and update.
The update rule is such that Y best represents (X,Z) space
in the sense of maximum likelihood. Consider k = 1 for
simplicity. Then, using Hebbian learning, all the firing neurons
in each island links from the firing Y neuron. Thus, the Y
neuron always predicts only the correct firing neurons in each
island. I have proved that for an FA with n transitions, a DN
with n Y neurons can perfectly learn the input-output pair of
FA incrementally, immediately, and error-free [32]. When the
input set is infinite, the DN is further optimal in the sense of
maximum likelihood [32]. For the detail of DN, the reader is
referred to [29].

The following gave two examples about how the GDN
learns an AFA.

Example 1 (AFA as a number tracker): GDN simulates
the AFA in Table I, which is a number tracker. The X area
has two possible inputs Σ = {σ1, σ2}, and the Z area has four
possible inputs Q = {q1, q2, q3, q4}. Each input σ2 makes the
GDN increment in a loop way through the four states. Each
input σ1 makes the GDN to round to the nearest extremum,
1 for q1 or 4 for q4. Starting state: q1.

The following table gives the state transition function q′ =
δ(q, σ), where the entry at row q and column σ, is the target
state q′:

TABLE I. STATE TRANSITION TABLE

δ σ1 σ2

q1 q1 q2
q2 q1 q3
q3 q4 q4
q4 q4 q1

Table II shows how the teacher picks up a particular
training sequence to run AFA while he teaches the GDN. For
clarity, the table uses the time unit of network update. The
row Y (t) indicates the meaning of y(t) = (x(t−1), z(t−1)).
The short sequence shown has not included all the AFA state

transitions. So, the learning of AFA has not been complete.
From the rows X(t):su and Y (t): su, the reader can see if he
can independently fill all the other rows based on the theory
above.

The following is another example, which shows how a
spatiotemporal GDN deals with pattern recognition where time
is not necessary for the task.

Example 2 (AFA for pattern recognition): The teacher
wants to teach a GDN to recognize two foreground objects α
and β. Since a GDN is a spatiotemporal, the teacher uses a
background image B to serve as a break between two objects
so that a supervised action corresponds to the object, not the
concatenation of two objects. The corresponding AFA let its
state q′ to classify the input σ. Although q′ = δ(q, σ), the δ
function is independent of q for this special AFA.

Table III shows how the teacher trains the spatiotemporal
GDN for a spatial problem only and how the GDN learns.
Although the task does not need time for a task-specific pattern
recognition machine, the GDN is not a special-purpose single-
frame based recognizer. As the task must be learned in real
time from the real dynamic physical world in a grounded way,
the GDN spends internal Y neurons to learn transitions that
are necessary for the GDN to be aware of dynamic aspects
beyond narrowly defined single-frame task. For example, the
Y area has neurons for detecting dynamic events like B to α,
α to α, and α to B.

IV. PRACTICAL SYSTEMS

Where-What Networks (WWN-1 through WWN-8) are
experimental embodiments of the bridge-islands model here.
Their Z area is taught with two or more categories of concepts
(e.g., where and what). For example, the type concept is
invariant to location and the location is invariant to type.

V. CONCLUSIONS

The bridge-island model treats the brain as a motivated
self-emergent numeric circuit that generates and updates from
experience. The effector islands are typically abstract or pur-
posive, as hubs of sensory attention for sensory islands which
are concrete and cluttered with many objects. Lower and
higher intelligences are all predictions for islands. With more
experience the sensor-effector skills become more complex.
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