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Abstract—In this paper, an automatic clustering algorithm
applied to self-organizing map (SOM) neurons is presented.
The connections of the SOM grid are pruned according to
a weighted sum of a set of measures of connection strength
between adjacent neurons. The coefficients of the weighted sum
are obtained through particle swarm optimization (PSO) search
in the multidimensional problem space, where the fitness function
is the composed density between and within clusters (CDbw)
validity index of strongly connected groups of neurons, while
scanning through different values of the minimum cluster size so
as to find stable regions with a reasonable trade-off between
their length and their mean CDbw value. Simulation results
are further presented to show the performance of the proposed
method applied to synthetic and real world datasets.

I. INTRODUCTION

Nowadays, technological advances have enabled the acqui-
sition and storage of a plethora of data from sources such as in-
dustrial processes, medical data, costumer behaviour, financial
data, market segmentation, social networking profiles, among
others [1][2]. This increasing amount of data produced in the
modern world maximizes, for both scientific and commercial
applications, the need to understand the existing information
and extract valuable knowledge, as well as simultaneously
overcome the problems related to outliers, scalability, dimen-
sionality and heterogeneity.

In this context, clustering in the computational intelligence
field can be broadly defined as the search for natural groups
existent in datasets. Traditionally, a clustering method is used
to partition the data so that the intra-cluster and inter-cluster
similarities are maximized and minimized, respectively [3]. A
wide variety of methods to accomplish this task have been
proposed in the literature [4], and the self-organizing map
(SOM)[5] is one of the most used artificial neural network
for this purpose. Among the reasons, it may be cited the
mapping from an input space of higher dimension (data space)
to an output space of lower dimension (grid of neurons),
while preserving the topology information and compressing
data [6]. In this sense, the SOM network can be seen as a
non-linear generalization of principal component analysis [7].
Along with those characteristics, there is also the reduced
computational cost when dealing with SOM neurons instead
of the entire dataset (vector quantization); the readily usage of
classic clustering algorithms applied directly to it [8], as well
as its associated visualization techniques, what transforms the
self-organizing maps into a powerful tool for exploratory data
analysis. Since it has been proposed, the SOM has been used

in a wide range of applications [9], such as pattern recogni-
tion, image processing (remote sensing, image compression),
control and monitoring systems processes (including detection
and fault tolerance).

Recently, a swarm-intelligence-based clustering algorithm
has been proposed to perform the clustering task [10], by
using validity indices as fitness functions in a combination
of particle swarm optimization (PSO) [11][12] and differential
evolution (DE) [13][14] to avoid local minima. The proposed
approach consists of a series of steps that intercalates PSO
and DE sequentially, where each particle carries the position
of cluster centroids and its activation threshold as a part of
the solution. The use of several validity indices in order to
evaluate a clustering solution, given their bias towards specific
structures, is advised.

This paper focuses on partitioning the SOM through the
application of an algorithm that prunes the SOM grid based on
coefficients obtained by the PSO to weight different measures
of pairwise connection strength between neurons. The paper
is organized as follows. The section II provides a brief review
of the SOM network while section III discusses the basics of
particle swarm optimization. In section IV, a few clustering
validity indices are concisely described. The proposed method
is defined in section V. In the section VI, the experiments
carried out are described. The discussions and conclusions are
presented in sections VII and VIII, respectively.

II. SELF-ORGANIZING MAPS

Self-organizing maps consist of a set of topologically
ordered neurons arranged in a grid. The grid is usually referred
to as the output space, whereas the data space is known as the
input space (ℝ𝑛 space of the patterns x). Each neuron has
an associated weight vector (w) in the input space, so that
a mapping from a continuous higher dimensional space to a
lower dimensional discrete space (the grid) is performed. This
grid of neurons can have rectangular or hexagonal topology,
differing in the number of immediate neighbours. In principle,
there is no advantage nor drawback in using the rectangular
(4 neighbours) over the hexagonal (6 neighbours) topology
[15]. Despite the fact that networks of large dimensionality
are possible, due to visualization issues, typically the ones with
one-dimensional or two-dimensional output grids are used.

The learning in the SOM network is unsupervised. During
the training process, each input pattern is assigned a winner
neuron, which is the one with the smallest Euclidean distance
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between its weight vector and that input pattern. The winner
is denoted as the best matching unit (BMU), being designated
with the index 𝑐 as follows:

∣∣x𝑖 −w𝑐∣∣ = min
𝑙
∣∣x𝑖 −w𝑙∣∣ , 𝑙 = (1, 2, ...,𝑚) (1)

where ∣∣ ⋅ ∣∣ is the Euclidean distance, x𝑖 is a pattern from the
data set, w is a weight vector and 𝑚 is the total number of
neurons.

The SOM networks include three principles [16]: compe-
tition, cooperation and adaptation. The winner neurons move
toward patterns carrying with them their neighbouring neurons.
By training a neural network adjustments are made to the
neurons’ weights. For each pattern presented to the network,
the neurons compete with each other so that the winner is the
closest according to a given similarity metric, in this case, the
Euclidean distance. Regarding the characteristics of learning
in SOM networks, assume the 𝑖𝑡ℎ input vector

x𝑖 = [𝑥1 𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛]
𝑇 (2)

and the weight vector of neuron 𝑗

w𝑗 = [𝑤1 𝑤2 ⋅ ⋅ ⋅ 𝑤𝑛]
𝑇
. (3)

In the batch training algorithm, which is the one used in
this work, the whole data set is presented at once. At each
epoch, the BMUs for all patterns are calculated, and the weight
vectors are concurrently updated according to:

w𝑗(𝑡+ 1) =

∑𝑁
𝑖=1 ℎ𝑗,𝑐(𝑡)x𝑖∑𝑁
𝑖=1 ℎ𝑗,𝑐(𝑡)

(4)

where 𝑁 is the dataset cardinality and ℎ𝑗,𝑐(𝑡) is the value of the
𝑗𝑡ℎ neurons neighborhood kernel at the location of the BMU
of the pattern x𝑖. The latter monotonically decreases during
the training process, and is a function of the distance between
neurons 𝑗 and 𝑐 in the SOM neuron grid, usually being defined
as a Gaussian function:

ℎ (∣∣r𝑐 − r𝑗 ∣∣, 𝑡) = 𝑒

(
− ∣∣r𝑐−r𝑗 ∣∣2

2𝜎2(𝑡)

)
(5)

where r𝑗 and r𝑐 are the positions of neuron 𝑗 and the winner
neuron 𝑐 in the grid, and 𝜎 is the neighborhood radius that
monotonically decreases as the learning progresses.

During the training period, the SOM behaves like an elastic
network which conforms to the intrinsic shape of the data. Due
to the magnification factor, the arrangement of neurons in the
input space reflects the density distribution of the data set, so
that there is a larger population of neurons in areas where there
is a greater amount of patterns, and vice-versa for low density
regions.

In general, the SOM size is chosen so that its dimensions
𝑎 and 𝑏 (number of rows and columns of the SOM grid)
are proportional to the two largest eigenvalues of the data
covariance matrix (𝜆1 and 𝜆2) [17]:

𝑎

𝑏
≈
√

𝜆1

𝜆2
(6)

Additionally, the total number of neurons in a SOM network
is typically set to 𝑚 ≈ 5

√
𝑁 [8]. The initialization of the

neurons’ positions in the data space is usually linear, that is,

the neurons are allocated across the hyperplane spanned by the
eigenvectors related to 𝜆1 and 𝜆2.

The characteristics of the data combined with the topolog-
ically ordered grid of neurons from the self-organizing maps
originate visualization techniques that provide an initial idea
of the data distribution [18], which is a key resource for
understanding the structure of the data used in knowledge dis-
covery and data mining. Generally, they consist of matrix plots
of pairwise similarity measures between neurons and pattern
density, both calculated in the input space and transferred to
the ordered grid of the output space.

The U-matrix [19] is one of the most well-known visu-
alization techniques. It depicts the Euclidean distances be-
tween neurons that are adjacent in the SOM grid. One of its
drawbacks concerns its resolution when applied to decreasing
map sizes, i.e., on small maps the visualization is generally
compromised, while on large maps the definition of clusters
becomes increasingly clear in data sets where distance metrics
are relevant figures of merit.

Another property commonly depicted is the pattern density,
which is taken into account by the P-matrix [20] visualization
technique. The latter aims to estimate the data probability
density by estimating the Pareto density. The value at each
position of the P-matrix represents the number of patterns
inside a hypersphere centered in the neuron that occupies that
respective position. The radius is a constant given a particular
dataset and SOM set-up, being regarded as the Pareto radius.

The pattern to neuron ratio (PNR), which can be defined
as

𝑃𝑁𝑅 =
𝑁

𝑚
(7)

and therefore the size of the map, influence directly the quality
of some visualization techniques and clustering algorithms.
The PNR is closely related to the figure of merit neurons’
utilization 𝑁𝑢 [21]:

𝑁𝑢 =
1

𝑚

𝑚∑

𝑘=1

𝑢𝑘 (8)

where 𝑢𝑘 is equal to one if neuron 𝑘 has an associated pattern,
and zero otherwise.

III. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is a swarm intelligence
algorithm that aims to search in the multidimensional problem
space so as to maximize or minimize a given multiple input
single output (MISO) cost function. Each particle 𝑖 updates
its own position z𝑖 according to its own best position p𝑖
(cognitive component), the whole swarm best position p𝑔
(social component) and a momentum component:

z𝑖 = [𝑧1 𝑧2 ⋅ ⋅ ⋅ 𝑧𝑐]
𝑇 (9)

v𝑖(𝑡+ 1) = 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚(𝑡) + 𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒(𝑡) + 𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) (10)

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚(𝑡) = 𝑊 (𝑡)× v𝑖(𝑡) (11)

𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒(𝑡) = 𝑐1 × 𝜙1 × (p𝑖 − z𝑖(𝑡)) (12)

𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) = 𝑐2 × 𝜙2 × (p𝑔 − z𝑖(𝑡)) (13)

z𝑖(𝑡+ 1) = z𝑖(𝑡) + v𝑖(𝑡+ 1) (14)
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where 𝑡 denotes the iteration, 𝑊 (𝑡) is the inertia function, v𝑖(𝑡)
is the velocity of particle 𝑖 at time 𝑡. The parameters 𝑐1 and 𝑐2
are the acceleration constants, 𝜙1 and 𝜙2 are values drawn from
an uniform distribution in the range [0; 1]. Typically, the inertia
function is set as a constant or as a function monotonically
decreasing with time.

The PSO algorithm takes into account local and global
information in the evolution process due to the cognitive and
social components, which represent the movement towards p𝑖
and p𝑔 respectively, what also prevents loss of information
(memory containing good solutions found during the search).

IV. VALIDITY INDICES

There is no clustering algorithm suitable for all possible
datasets’ structures [22]. In this context, validity indices are
concerned with the quantitative evaluation of the results ob-
tained by clustering algorithms: geometry, size, density, and
number of clusters. Typically, different clustering algorithms
favour different types of data structures. Similarly, the validity
indices themselves also tend to favour specific types of data
distribution, while considering factors such as clusters’ com-
pactness, homogeneity, separation, and so on. In this work,
the Composed Density between and within clusters (CDbw)
relative validity index [23][24] is used as the fitness function
for the PSO algorithm, and the external validity indices Rand
and Adjusted Rand Indices [25], which use the groundtruth
labels (classes) of the data, in order to evaluate the final
partitions of the data obtained with the proposed clustering
algorithm.

A. CDbw Index

Given a dataset partition resulting from the application of
a clustering algorithm, the CDbw index defines, for each one
of the 𝑁𝑐𝑙 clusters found, subsets containing 𝑟 representative
patterns 𝒱𝑖 = {v𝑖1,v𝑖2, ⋅ ⋅ ⋅ ,v𝑖𝑟}, where (1 ≤ 𝑖 ≤ 𝑁𝑐𝑙). The
clustering validity is assessed by evaluating the intra-cluster
density (𝐼𝑛𝑡𝑟𝑎) and clusters’ separation (𝑆𝑒𝑝):

𝐶𝐷𝑏𝑤 = 𝐼𝑛𝑡𝑟𝑎× 𝑆𝑒𝑝 (15)

The intra-cluster density is defined as

𝐼𝑛𝑡𝑟𝑎 =
1

𝑁𝑐𝑙

𝑁𝑐𝑙∑

𝑖=1

1

𝑟

𝑟∑

𝑗=1

𝑑𝑒𝑛𝑠𝑖𝑡𝑦1(v
′
𝑖𝑗)

𝜎̄
(16)

where 𝜎̄ is the mean of the standard deviation of the clusters,
v′𝑖𝑗 is the 𝑗𝑡ℎ representative pattern of cluster 𝑖 shifted towards
v𝑖𝑗 by a user defined parameter, and

𝑑𝑒𝑛𝑠𝑖𝑡𝑦1(v
′
𝑖𝑗) =

𝑛𝑖∑

𝑙=1

𝑓1(x𝑙,v
′
𝑖𝑗) (17)

where 𝑛𝑖 is the number of patterns of the 𝑖𝑡ℎ cluster, to which
x𝑙 belongs. The function 𝑓1 (⋅) is given by

𝑓1(x,v
′
𝑖𝑗) =

{
1, if

∥
∥x− v′𝑖𝑗

∥
∥ ≤ 𝜎̄

0, otherwise
(18)

Finally, the inter-cluster separation defined as:

𝑆𝑒𝑝 =

𝑁𝑐𝑙∑

𝑖=1

𝑁𝑐𝑙∑

𝑗=1
𝑗 ∕=𝑖

∥𝑟𝑒𝑝𝑖 − 𝑟𝑒𝑝𝑗∥

1 + 𝐼𝑛𝑡𝑒𝑟
(19)

where the inter-cluster density is given by

𝐼𝑛𝑡𝑒𝑟 =

𝑁𝑐𝑙∑

𝑖=1

𝑁𝑐𝑙∑

𝑗=1
𝑗 ∕=𝑖

∥𝑟𝑒𝑝𝑖 − 𝑟𝑒𝑝𝑗∥
𝜎(𝑖) + 𝜎(𝑗)

× 𝑑𝑒𝑛𝑠𝑖𝑡𝑦2(u𝑖𝑗) (20)

where the parameters 𝑟𝑒𝑝𝑖 and 𝑟𝑒𝑝𝑗 represent the closest pair
of representative patterns of clusters 𝑖 and 𝑗, u𝑖𝑗 is the mean
point between these patterns. The parameters 𝜎(𝑖) and 𝜎(𝑗)
are the standard deviation of clusters 𝑖 and 𝑗 respectively, and

𝑑𝑒𝑛𝑠𝑖𝑡𝑦2(u𝑖𝑗) =

𝑛𝑖+𝑛𝑗∑

𝑘=1

𝑓2(x𝑘,u𝑖𝑗)

𝑛𝑖 + 𝑛𝑗
(21)

where 𝑛𝑖 and 𝑛𝑗 are the number of patterns of the clusters 𝑖
and 𝑗 respectively, x𝑘 is a pattern that belongs to cluster 𝑖 or
𝑗, and the function 𝑓2 (⋅) is defined as

𝑓2(x,u𝑖𝑗) =

{
1, if ∥x− u𝑖𝑗∥ ≤ 𝜎(𝑖)+𝜎(𝑗)

2

0, otherwise
(22)

The CDbw validity index is defined for 1 < 𝑁𝑐𝑙 < 𝑁 .

B. Rand and Adjusted Rand Indices

Considering the partition returned by a clustering algorithm
and a given groundtruth partition of the data, the Rand Index
(𝑅) and Adjusted Rand Index (𝐴𝑅) are given by:

𝑅 =
𝑡𝑝+ 𝑡𝑛

𝑡𝑝+ 𝑓𝑝+ 𝑓𝑛+ 𝑡𝑛
(23)

𝐴𝑅 =
(𝑁2 )(𝑡𝑝+𝑡𝑛)−[(𝑡𝑝+𝑓𝑝)(𝑡𝑝+𝑓𝑛)+(𝑓𝑛+𝑡𝑛)(𝑓𝑝+𝑡𝑛)]

(𝑁2 )
2−[(𝑡𝑝+𝑓𝑝)(𝑡𝑝+𝑓𝑛)+(𝑓𝑛+𝑡𝑛)(𝑓𝑝+𝑡𝑛)]

(24)

where 𝑁 is the dataset cardinality, 𝑡𝑝, 𝑡𝑛, 𝑓𝑛 and 𝑡𝑛 stand for
true positive, true negative, false negative and true negative,
respectively, based on whether a pair of data objects are within
the same partition or not considering both the output of the
clustering algorithm and the groundtruth.

V. METHOD DESCRIPTION

Before introducing the proposed method, it is important
to first define the heuristics used to measure how strong is a
given connection between two adjacent neurons 𝑖 and 𝑗 of the
SOM. Specifically, regarding the evaluation of the connection
strengths between the neuron units of the SOM in the matrix
output space, the dissimilarities may be based on distances
between neurons, and conversely, the similarities may be based
on the cardinality of the data subsets they share (pattern
density), such as the CONNvis [26] [27] [28], which is based
on receptive fields (𝑅𝐹 ) and is closely related to the pattern
to neuron ratio (𝑃𝑁𝑅).

In the context regarding the number of neurons, there are
strands of thought that promote the use of small SOM network
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sizes, whereas others promote the use large networks, such as
ViSOM (Visualization-Induced Self-Organizing Maps) [29] and
ESOM (Emergent SOM) [30], stating that the true properties
of the data emerge when a large number of neurons is used,
and small network sizes approximate the behaviour of classical
k-means [31].

When the neuron utilization starts to decrease giving in-
creasing sizes of the SOM, i.e., when the pattern to neuron ratio
starts to decrease significantly (hits dissolution phenomenon),
the approach considering Voronoi regions to form subsets of
data starts to generate increasingly sparse connection matrices,
which translates into the existence of many small connected
regions within each data cluster, as there is not enough
patterns available for every neuron of the (competitive before
cooperative) SOM network [32].

Thus, in this work we consider the hypershere approach
instead of Voronoi regions, in order to create the subsets
associated with each neuron, as this approach is reasonable in
both sides of the spectrum, viz. small and large maps: for small
maps with large 𝑃𝑁𝑅, the difference of the two approaches is
not relevant (Number of non-null connections). However, when
increasing the size of the map, the number of connections with
the hypersphere approach is perceptibly greater than the one
with Voronoi regions.

A. Connection strength between neurons

Let ℋ𝑖 and ℋ𝑗 be the subsets of patterns from the data
set 𝒰 associated with the neurons 𝑖 and 𝑗. The hypersphere
approach [33] is inspired by the P-matrix generation. However,
the radius 𝑟 is defined so that every neuron have at least one
pattern inside the hypersphere centered at that neuron (ℋ𝑖 ⊂
𝒰∣ℋ𝑖 ∕= ∅,∀𝑖):

ℋ𝑖 = {x𝑙 ∈ 𝒰 ∣ ∥x𝑙 −w𝑖∥ ≤ 𝑟} (25)

and

𝑟 = max
𝑗

[
min
𝑙

(∥x𝑙 −w𝑗∥)
]

(26)

where 𝑙 = (1, 2, ..., 𝑁), 𝑗 = (1, 2, ...,𝑚), 𝑁 is the total
number of patterns of the dataset and 𝑚 is the total number
of neurons. Therefore, the intersection (shared patterns set),
exclusive disjunction (complement set) and union sets ℐ𝑖,𝑗 ,
ℳ𝑖,𝑗 and ℋ′𝑖,𝑗 are defined as:

ℐ𝑖,𝑗 = ℋ𝑖 ∩ℋ𝑗 (27)

ℳ𝑖,𝑗 = ℋ𝑖 ⊕ℋ𝑗 (28)

ℋ′𝑖,𝑗 = ℋ𝑖 ∪ℋ𝑗 (29)

The subsets ℐ𝑖, ℐ𝑗 , ℳ𝑖, ℳ𝑗 , ℋ′𝑖 and ℋ′𝑗 are obtained by
computing whether neuron 𝑖 or 𝑗 is the BMU of the patterns
belonging to the sets ℐ𝑖,𝑗 , ℳ𝑖,𝑗 and ℋ′𝑖,𝑗 , respectively.

Thus, the connection strength (or weakness) 𝑠(𝑖, 𝑗) between
two neighbouring neurons 𝑖 and 𝑗 may be measured as:

1) The Euclidean distance between neurons 𝑖 and 𝑗:

𝑠1(𝑖, 𝑗) = ∣∣w𝑖 −w𝑗 ∣∣ (30)

2) The Euclidean distance between the centroids 𝑐 of
the subsets ℐ𝑖 and ℐ𝑗 :

𝑠2(𝑖, 𝑗) = ∣∣𝑐ℐ𝑖 − 𝑐ℐ𝑗 ∣∣ (31)

3) The Euclidean distance between the centroids 𝑐 of
the subsets ℋ′𝑖 e ℋ′𝑗 :

𝑠3(𝑖, 𝑗) = ∣∣𝑐ℋ′𝑖 − 𝑐ℋ′𝑗 ∣∣ (32)

4) The Euclidean distance between the centroids 𝑐 of
the subsets ℋ𝑖 and ℋ𝑗 :

𝑠4(𝑖, 𝑗) = ∣∣𝑐ℋ𝑖 − 𝑐ℋ𝑗 ∣∣ (33)

5) The Jaccard coefficient [34]:

𝑠5(𝑖, 𝑗) =
∣ℐ𝑖,𝑗 ∣

∣ℋ𝑖 ∪ℋ𝑗 ∣ (34)

6) The cardinality of the subset ℐ𝑖,𝑗 :
𝑠6(𝑖, 𝑗) = ∣ℐ𝑖,𝑗 ∣ (35)

7) The Euclidean distance between the centroids 𝑐 of
the subsets ℳ𝑖 and ℳ𝑗 :

𝑠7(𝑖, 𝑗) = ∣∣𝑐ℳ𝑖
− 𝑐ℳ𝑗

∣∣ (36)

Most of the measures described here were used in a
committee machine and discounted-reward with minimum path
search algorithm, both in order to partition the self-organizing
map [35] [32].

B. Proposed Approach

The proposed method is an automatic clustering algorithm
that aims to partition the self-organizing map, and subsequently
the dataset by relating the patterns to the BMUs in each SOM
partition. In order to achieve this objective, the PSO is used
to search the coefficients 𝑎𝑟 that reflect the importance of
each type of connection strength 𝑠𝑟 described in the previous
subsection, where (𝑟 = 1, 2, ..., 7). The PSO fitness function
used consists of the validity index CDbw. Therefore, the PSO
algorithm attempts to search in the multidimensional problem
space, the values of 𝑎𝑟 that generates strong connected neuron
regions that remains in the undirected SOM graph, while weak
connections are pruned.

In the first phase of the proposed approach, a SOM network
is trained using its standard batch algorithm. In a second phase,
for each pair of neurons 𝑖 and 𝑗 that share patterns in a 8-
neighborhood, their connection strength is measured according
to (30)-(36) so as to generate a new dataset 𝑆:

𝑆 =

⎡

⎢
⎢
⎢
⎢
⎣

—
(
s(1)
)𝑇

—

—
(
s(2)
)𝑇

—
...

—
(
s(𝑞)
)𝑇

—

⎤

⎥
⎥
⎥
⎥
⎦

(37)

where

s(𝑘) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑠1(𝑖, 𝑗)
𝑠2(𝑖, 𝑗)
𝑠3(𝑖, 𝑗)
𝑠4(𝑖, 𝑗)
𝑠5(𝑖, 𝑗)
𝑠6(𝑖, 𝑗)
𝑠7(𝑖, 𝑗)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝑖 ∕= 𝑗 ∀𝑘 (38)
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The constraint of the second phase is used to enforce that all
s(𝑘) has its components 𝑠

(𝑘)
𝑟 (𝑖, 𝑗) ∕= 0, ∀𝑟. The data set 𝑆

is normalized using z-score so as each feature 𝑠𝑟 has mean
zero and variance equal to one. The third phase consists of
the search performed by the PSO that maximizes the CDbw
index. Each particle z𝑖 of the PSO algorithm is a solution to
the logistic regression:

𝜐(𝑘) =

7∑

𝑖=0

𝑎𝑖 × 𝑠
(𝑘)
𝑖 (39)

𝑦(𝑘) = 𝜙(𝜐(𝑘)) (40)

𝜙(𝜐) =
2

1 + 𝑒−2𝜐
− 1 (41)

and
z𝑖 = [𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7]

𝑇 (42)

where 𝜙(⋅) is the tan-sigmoid transfer function ∈ [−1; 1], 𝑠0 =
1 and 𝑎0 are the bias term and bias coefficient, respectively.
The experiments were carried out with and without the bias
term and coefficient.

For each PSO particle 𝑖, the feedforward propagation is
applied by calculating 𝑌 = 𝜙(𝑆 × 𝑧𝑇𝑖 ), where the entry 𝑦(𝑘)

of the vector 𝑌𝑞×1 is the value of 𝜙(⋅) for the sum of the 𝑘𝑡ℎ

row of 𝑆𝑞×7 weighted by that PSO solution. Next, it is assumed
the hypothesis that all connections for which 𝑦(𝑘) > 0 should
remain in the SOM graph, otherwise pruned. Next, Considering
the remaining connections, connected groups of neurons in the
graph are extracted [36]. Finally, a filtering phase that removes
groups of neurons smaller than a user defined parameter 𝛼 are
discarded (used to remove interpolating neurons). The same
filter is applied to groups of neurons that represents a fraction
smaller than 𝛼 of the data set (minimum cluster size). The
following phase consists of calculating the CDbw index of
the strongly connected groups of neurons that remained. This
process is repeated by each particle at each iteration of the
PSO algorithm.

As the CDbw tends to return higher scores for a great
quantity of small connected regions, the process described is
very dependant of the parameter 𝛼. That is why, the value
of 𝛼 is scanned from 5% to 50%, where it is reasonable to
admit a minimum size of cluster equal to 5% of the data.
The minimum number of clusters equal to 2 is obtained by
setting the maximum value of a 𝛼 equal to 50%. Therefore,
the existence of at least two clusters is enforced. This is in
fact another stopping criteria: if the algorithm finds only one
big cluster left, it stops, even if 𝛼 has not yet reached 50%.
Overall this is an hierarchical approach to clustering via the 𝛼
parameter.

In order to determine the final partition, the function of
the number of clusters versus the value of 𝛼 is analysed, so
as to search for regions of stability, which are the ones that
remain with the same number of clusters while varying 𝛼. An
approach regarding the inspection of constant intervals of the
number of clusters found taken as a function of a clustering
algorithm parameter can be found in [37]. As mentioned
previously, the CDbw value of a large number of small clusters
is, in general, higher than the one with few large clusters. Thus,
in order to obtain a trade-off between the value of the CDbw

and the length of the stable region, where the latter tends to
be larger for large clusters, the following score function was
analysed for each stability interval:

𝐹𝑗 = 𝜇𝑗𝐿
𝛽
𝑗 (43)

where 𝜇𝑗 is the mean value of the CDbw within a given
stability region 𝑗 and 𝐿𝑗 is its length. Only regions that are at
least half the length of the largest region are considered. The
values of 𝜇 and 𝐿 are normalized in the range [1; 2] and [0; 1],
respectively. The parameter 𝛽 implies the importance given to
the CDbw index or to the length of the stability region.

The interval 𝑗 with the largest score 𝐹𝑗 is selected as
the appropriate region, and the output of the PSO for the
largest 𝛼 within that regions is selected, because it implies
the same number of clusters with more connected neurons,
so that there is lesser neurons to be assigned to the clusters
found, process which is susceptible to the assigning algorithm
implicit assumptions and metrics. In this work, the remaining
neurons were assigned to the clusters by flooding, using
Single and Ward linkages [38] [39] constrained to the SOM
neighbourhood.

VI. EXPERIMENTS

In this work, the following toolboxes were used in the
experiments:

∙ SOM Toolbox [40];

∙ Particle Swarm Optimization Toolbox (PSOt) [41];

∙ Cluster Validity Analysis Platform (CVAP) [42].

A. Datasets

The proposed method was applied to synthetic and real
world data sets from the Fundamental Clustering Problem
Suite (FCPS) [30], the UCI Machine Learning Repository [43],
as well as artificially generated and inspired from [44]. The
Fig. 1 depicts the data sets used in the experiments. As a
preprocessing step, linear normalization was applied to the
datasets in order to normalize their attributes in the range [0; 1]
and to prevent problems related to different scales.

B. Parameters Setting

In this work, the experiments were carried out using the
following parameters: the map sizes were defined according to
(6), linear initialization of the SOM was made in the subspace
spanned by the eigenvectors corresponding to the two largest
eigenvalues of the covariance matrix of the data (𝜆1 and 𝜆2

of (6)). The maps were trained using the batch mode, as
this setting requires the adjustment of less parameters and
leads to a faster convergence [9]. The Tables I and II sum
up the characteristics of the data sets used in the experiments
and depict the summary of the parameters held in common
throughout the training of all SOM networks.

The number of particles in the swarm depends on whether
the logistic regression includes the bias term or not. If the
bias term is included, there are 16 particles in the swarm, or
14 otherwise. The initial positions of particles are set inspired
by the superposition theorem: if a component of particle 𝑟 is
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Fig. 1. Illustration of datasets used in the experiments: (a) Iris, (b) Wine, (c) Chainlink, (d) Engytime, (e) Target, (f) Tetra, (g) Twodiamonds, (h) Wingnut, (i)
D1, (j) D2, and (k) D3. The datasets Iris, Wine and D2 are depicted using principal component analysis (PCA) projection.

TABLE I. DATASETS’ CHARACTERISTICS AND SOM SIZES.

Dataset Dim. N # clusters Type Map Size

Iris1 4 150 3 Real World 16× 4

Wine1 13 178 3 Real World 8× 8

Chainlink2 3 1000 2 Synthetic 18× 9

Engytime2 2 4096 2 Synthetic 21× 15

Target2 2 770 2 Synthetic 13× 11

Tetra2 3 400 4 Synthetic 11× 9

Twodiamonds2 2 800 2 Synthetic 20× 7

Wingnut2 2 1016 2 Synthetic 16× 10

D13 2 500 2 Synthetic 16× 7

D23 4 600 4 Synthetic 18× 7

D33 2 1500 5 Synthetic 16× 12

1UCI
2FCPS
3Artificially generated

TABLE II. SOM PARAMETER SUMMARY

Parameter Description

Initialization of neurons Linear
Training mode Batch
Neighborhood function Gaussian
Number of epochs 103

Final Radius (𝜎𝑓 ) 1

TABLE III. PSO PARAMETER SUMMARY

Parameter Description

Maximum Particle Velocity 4
Range of each input variable [−100; 100]
Acceleration Constant 1 (𝑐1) 2
Acceleration Constant 2 (𝑐2) 2

Minimum Error 10−3

Number of epochs 500
Inertia Function Linearly Decreasing from 0.9 to 0.4

set to 100 or −100 for a coefficient 𝑎𝑖, it simultaneously set
to zero all the other coefficients 𝑎𝑗 (𝑗 ∕= 𝑖), so as only the
output of measure 𝑠𝑖 is observed, and then the swarm moves
toward the most influential measure 𝑠𝑖 according to the CDbw
index. The inertia function decreases linearly from 0.9 to 0.4.
until iteration 400. As a stopping criteria, if the error does not
change over 50 epochs, the search ends.

C. Results

The results obtained with the proposed method while using
the parameters illustrated on Tables I to III are presented in
detail for the Tetra dataset through the Figs. 2 and 3. For the
remaining datasets only the performance is depicted in Tables
IV and V. After the strongly connected groups (Fig. 3a) are
found within the graph for the largest 𝛼 of the stable region
(Fig. 2), the remaining neurons are assigned to the clusters
found by flooding with Single (CDbw S) and Ward linkages
(CDbw W) in Figs. 3b and 3c, respectively. Next, their labels
are carried back to data set.

The results obtained with the proposed system were com-
pared to the ones obtained by the watershed [45] algorithm.
The watershed algorithm was applied to the U-matrices gen-
erated by each trained SOM after an image processing (mor-
phological opening and closing) [46], in which the area size
was set to half the maximum dimension of the map [47].

The Tables IV and V present the simulation results. The
number of clusters found (𝑁𝑐𝑙) using the proposed method
is depicted in Table IV, as well as the targeted external
validity indices Rand Index (𝑅) and Adjusted Rand (𝐴𝑅):
given the vector quantization provided by the SOM, patterns
are associated with a given class according to the majority
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Fig. 2. (a) Number of clusters versus 𝛼 and (b) CDbw versus 𝛼. The stable
region is depicted in red for the number of clusters and also in red for the
associated values of the CDbw index.
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Fig. 3. (a) Output of the proposed algorithm for the largest 𝛼 of the selected stable region (Tetra dataset), representing the strongly connected neurons of each
cluster. Output of the flooding algorithm using (b) Single Link and (c) Ward Link for the same dataset. The label obtained by simple voting is also depicted for
all three matrix plots.

TABLE IV. RESULTS

Dataset
CDbw

Target Solution With Bias Without Bias Watershed

R AR 𝛽 𝑃 𝑁𝑐𝑙 𝛽 𝑃 𝑁𝑐𝑙 𝑁𝑐𝑙

Iris 0.9656 0.9222 [0.2; 1.0] 0.7031 2 [0.3; 1.0] 0.7813 3 2
Wine 0.9691 0.9310 [0.1; 1.0] 0.9219 3 [0.1; 1.0] 0.8594 3 3
Chainlink 1.0000 1.0000 [0.3; 1.0] 0.9938 2 — — — 2
Engytime 0.9358 0.8716 [0.3; 1.0] 0.7111 2 [0.4; 1.0] 0.6540 2 2
Target 1.0000 1.0000 [0.1; 1.0] 0.9790 2 [0.2; 1.0] 0.5385 2 2
Tetra 0.9950 0.9867 [0.1; 0.4] 0.6970 4 [0.1; 1.0] 0.6566 4 4
Twodiamonds 1.0000 1.0000 [0.2; 1.0] 1.0000 2 [0.1; 1.0] 0.8286 2 2
Wingnut 0.9961 0.9921 [0.1; 1.0] 0.6750 2 [0.1; 1.0] 0.4375 2 4
D1 1.0000 1.0000 [0.1; 1.0] 0.9196 2 [0.1; 1.0] 0.7589 2 2
D2 0.9961 0.9904 [0.1; 0.2] 0.7778 4 [0.1; 1.0] 0.8571 4 4
D3 0.9900 0.9686 [0.1; 0.9] 0.7917 5 [0.1; 1.0] 0.7917 5 5

TABLE V. RESULTS

Dataset
With Bias Without Bias

CDbw S CDbw W CDbw S CDbw W Watershed

R AR R AR R AR R AR R AR

Iris 0.7763 0.5681 0.7763 0.5681 0.9267 0.8340 0.9124 0.8017 0.7763 0.5681
Wine 0.9349 0.8538 0.9349 0.8537 0.9220 0.8248 0.9349 0.8537 0.9220 0.8249
Chainlink 1.0000 1.0000 1.0000 1.0000 0.7175 0.4349 0.6756 0.3510 1.0000 1.0000
Engytime 0.8182 0.6365 0.9120 0.8239 0.8572 0.7143 0.9053 0.8107 0.9173 0.8346
Target 0.9851 0.9702 0.9851 0.9702 0.6292 0.2643 0.5005 0.0011 0.9851 0.9702
Tetra 0.9603 0.8938 0.9803 0.9473 0.9603 0.8938 0.9803 0.9473 0.9776 0.9401
Twodiamonds 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6076 0.2155
Wingnut 0.9882 0.9765 0.8006 0.6011 0.9882 0.9765 0.7481 0.4961 0.7271 0.4539
D1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
D2 0.9928 0.9820 0.9895 0.9738 0.9928 0.9820 0.9895 0.9738 0.8544 0.6652
D3 0.9757 0.9240 0.9879 0.9879 0.9757 0.9240 0.9879 0.9620 0.9889 0.9654

of the classes to which its BMU is associated. By voting, all
patterns associated with a neuron are therefore taken as the
same class. The parameter 𝛽 was varied between 0.1 and 1, and
the values to which the correct number of clusters was found
are also depicted. The parameter 𝑃 is the ratio of neurons
belonging to the clusters found to the total number of neurons
𝑚, conversely, (1 − 𝑃 ) consists of the proportion of neurons
not assigned to any cluster. The 𝑅 and 𝐴𝑅 were used in order
to evaluate the results obtained in the experiments, which are

summed up in Table V.

The performance achieved by the proposed method and the
watershed algorithm were comparable considering the Chain-
link, Target and D1 datasets. Considering the dataset Chainlink,
the parameter 𝛽 was set to 0.3 for the simulation without bias.
For the datasets Wine, Tetra and D2, the proposed method
performed slightly better. Moreover, for the Iris, Twodiamonds
and Wingnut the results obtained with the proposed method
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were significantly better. The Watershed algorithm achieved
slightly better results for the Engytime and D3 datasets. The
poor performance considering the Twodiamonds and Wingnut
datasets may be due to the fact that solely the Euclidean
distances between neurons may be not enough to accurately
partition the data with bridges and varying density within the
clusters’ separation frontier. It must be noted that enhanced
results using the watershed algorithm may be achieved by
carefully fine tuning the area size used in the morphological
image processing.

Although the compared methods have shown a good overall
performance in terms of 𝑅 and 𝐴𝑅, the proposed method
demonstrated itself more consistent due to the fact that the
correct number of clusters was identified in more simulations
than the other method, and considering that the best results
(with and without bias and both types of flooding) were above
0.92 for the Rand Index and 0.83 for the Adjusted Rand Index.

VII. ANALYSIS AND DISCUSSION

As expected, the logistic regression that includes the bias
term has a majority of negative coefficients for the measures
based on distances (𝑎1, 𝑎2, 𝑎3 and 𝑎7) and a majority of
positive coefficients for the measures based on density (𝑎5 and
𝑎6). This conforms with the fact that clusters have high density
and small distances between its patterns (Fig 4). Surprisingly
the majority of the coefficients 𝑎4 are positive. On the other
hand, for the logistic regression that does not include the bias
term, the previous statement hold true only for the coefficients
𝑎2, 𝑎4, 𝑎5 and 𝑎6, which also conforms with the fact that
the coefficients have to find an adjustment to compensate the
absence of the bias term in the best possible way while being
subjected to the constraint of having to pass through the origin
(Fig. 5).
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Fig. 4. Histogram of the values of 𝑎𝑖 divided between positive and negative
for the range [−100; 100] when the bias term was used.

Although no generalization can be made, values of 𝛽
between [0.2; 0.3] were suitable to the majority of the datasets.
It is noticeable that the flooding algorithm, that is, the al-
gorithm that assigns the non-labelled neurons to the clusters
found, plays an important role in the performance of the
proposed method, mainly when the parameter 𝑃 is low: even
if the strongly connected groups of neurons are correctly
found as the core of the clusters (with high 𝑅 and 𝐴𝑅),
the process of assigning the remaining neurons, when they
are a non negligible part of the SOM, leads to very different
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Fig. 5. Histogram of the values of 𝑎𝑖 divided between positive and negative
for the range [−100; 100] when the bias term was removed.

performances, as can be observed for the datasets Engytime
and Wingnut in Table IV, that although have found the two
clusters cores reasonably accurately, flooding with Single link
and Ward has led to different performances, as each of which
has approximately 30% of the map as non assigned neurons.

VIII. CONCLUSIONS AND FUTURE WORK

A clustering of the self-organizing map using particle
swarm optimization with fitness function set as the CDbw va-
lidity index was presented. The particles of the PSO algorithm
contain the coefficients to which each type of measure 𝑠𝑟 is
multiplied in a linear combination of all the seven measures de-
fined with the subsets of patterns inside hyperspheres centered
in each neuron. The system aims to find a stable partition of the
map by analysing the trade-off between the length of regions
of stability defined by varying the minimum size of the clusters
(parameter 𝛼) and the mean value of the CDbw in that region,
which is done by tuning the parameter 𝛽. The final result of
the proposed method is dependent on flooding algorithm used
to assign unlabeled neurons to the clusters found when the
parameter 𝑃 is low.

Future works will focus on examining other validity indices
as the fitness function. As the method aims to find global
coefficients 𝑎𝑟 that multiplies all connections 𝑠𝑟, current focus
consists of examining local coefficients, so that each pair of
neurons has its own set of coefficients. The influence of a
feedforward neural network with hidden layers so as to form
more complex functions is also being considered, as well as
the analysis of the influence of the map size in the performance
of the method.
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