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Abstract—A non-invasive Brain Computer Interface (BCI)
based on a Convolutional Neural Network (CNN) is presented
as a novel approach for navigation in Virtual Environment (VE).
The developed navigation control interface relies on Steady State
Visually Evoked Potentials (SSVEP), whose features are discrim-
inated in real time in the electroencephalographic (EEG) data by
means of the CNN. The proposed approach has been evaluated
through navigation by walking in an immersive and plausible
virtual environment (VE), thus enhancing the involvement of the
participant and his perception of the VE. Results show that the
BCI based on a CNN can be profitably applied for decoding
SSVEP features in navigation scenarios, where a reduced number
of commands needs to be reliably and rapidly selected. The
participant was able to accomplish a waypoint walking task
within the VE, by controlling navigation through of the only
brain activity.

I. INTRODUCTION

Brain Computer Interface (BCI) represents one of the few
Human-Machine Interaction (HMI) techniques usable by peo-
ple with severe disabilities (e.g., amyotrophic lateral sclerosis
or brainstem stroke) [1]. Through the use of non-invasive elec-
troencephalography (EEG) and processing of features extracted
from the EEG signal, it is possible to recognize the intention of
a user performing a selection task among different presented
options. Thus the method can be applied to several specific
tasks, such as the control of assistive devices (e.g. speller [2],
an electrical prosthesis [3] or even a robot [4]).

The existing EEG-based BCI designs rely on a variety
of EEG signal features including slow cortical potentials
[5], oscillatory activity [6], P300 potentials [7], motor-related
potentials [8] and visually evoked potentials (VEPs) [9]–[11].

One BCI solution, with successful performance in terms of
optimizing both speed and accuracy, relies on an involuntary
response known as the Steady-State Visual Evoked Potential
(SSVEP). This is a periodic response elicited by the repetitive
presentation of a visual stimulus, at a rate of 68 Hz or more
[12]. The available frequency range for the visual stimuli
affects the number of SSVEP features that, in general, can
be discriminated by a BCI, due to frequency dispersion and
superimposition of harmonics. According to Herrmann [13],
the range of frequencies capable of generating a brain response
is 6100 Hz. However, other works, such as the interesting

review by Zhu et al. [14], affirm that stronger responses can
be achieved for the lower frequencies (from 12 to 25 Hz) even
though this range can cause seizures in photosensitive epilepsy
subjects [15]. This conclusion is confirmed by the research
work conducted in [16] for higher frequency SSVEP experi-
ments. Higher frequencies, over 40 Hz, which are unnoticeable
to the human eye, implies weaker brain response of the subject,
resulting in a harder detection of the intention.

One of the interesting field where BCIs have been studied is
the control in navigation tasks. Such paradigms can be applied
for the control of physical devices, such as wheelchairs [17],
by people affected by severe disabilities.

Navigation paradigms controlled by BCI have been applied
also in Virtual Environments (VEs), with the final aim of
providing both a more direct control over navigation and
usability by inert participants. An interesting contribution in
SSVEP-controlled navigation tasks in VE is that by Legny et al
[18], where the authors target navigation in VEs using SSVEP
and Brain-Computer Interfaces. They studied the navigation
task in an outdoor environment evaluating the effect of the real-
time visual feedback of the mental activity. The VE scenario
was conveyed to the user through a 60 Hz LCD screen
and the classification of the signals acquired using SSVEP
techniques was performed using three Linear Discriminant
Analysis (LDA) classifiers, each for a specific navigation
command.

Neural networks are used in many field of research such
as on-line torque prediction and control of robot joints using
surface electromyography [19], compute kinematic and control
of a prosthesis [20], automatic heartbeat classification [21],
medical diagnosis [22], modelling injection system [23], breast
cancer classification problem [24] and much more.

In this paper, we present a novel BCI-SSVEP approach for
walking control in VEs. Our novel paradigm proposes the use
of a simplified (with respect to that proposed in [25]), but high
performance Convolutional Neural Network for classifying the
EEG signals, allowing an enhanced control of navigation. We
evaluate the performance and usability of the system in a
navigation task within a highly immersive VE, through the
use of an enriched virtual scenario representing a realistic
virtual city and a high definition stereoscopic 3D head mounted
display (HMD) with tracking of the rotation of the head. The
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Fig. 1. The Virtual Environment scenario and the flickering symbols
(rectangles) used for eliciting the SSVEP response. The flickering frequencies
are indicated: 12, 15 and 20 Hz.

level of immersivity and realism of the VE is one of the
novelties introduced by the proposed experiment. Immersivity
and realism are expected to better exploit the SSVEP approach
in navigation in presence of plausible factors related to the
participant, in particular the involvement and the focusing of
attention, as well as the perception of position and speed of
the virtual body within the VE.

II. SYSTEM DESCRIPTION

A. System overview

The proposed system allows to control the navigation
(walking) into an immersive virtual environment (VE) directly
by means of brain activity using a non-invasive EEG BCI
based on SSVEP elicitation and a CNN for the classification.
The virtual scenario, and the generation of visual stimuli
for evoking the SSVEP are managed by a dedicated XVR
(eXtreme Virtual Reality http://www.vrmedia.it/en.html [26],
[27]) software module, and provided to the user by an Oculus
Rift device (http://www.oculusvr.com/), obtaining a highly
immersive environment, conveyed to the participant by means
of the HMD.

The proposed SSVEP navigation paradigm is based on
a four classes selection of three navigation commands plus
a rest state, respectively for moving forward, turning left,
turning right and stopping the walking. The participant is
intended to select one of the navigation commands by focusing
attention on one of the three different symbols superposed
over the presented virtual scenario (see Fig. 1). The flashing
of the symbols at different frequencies evokes SSVEP, that
is detectable in the acquired EEG signals. The EEG signals
are processed in real time by a BCI classification algorithm.
The output of the BCI represents the navigation command
currently selected by the participant. The navigation command
is received by the virtual environment manager and is used for
properly moving the avatar into the virtual environment.

Thus, the proposed system can be divided in three modules:

• the EEG acquisition and pre-processing module;

• the CNN processing module;

• the Virtual environment manager module.

For sake of clarity, the flow diagram of the proposed system
is reported in Fig. 2. A detailed description of each module is
reported in the following subsections.

Fig. 2. The block diagram of the proposed BCI-SSVEP based approach.

1) The EEG acquisition and pre-processing module:
The EEG acquisition module is composed of an EEG headset
with five active electrodes and a g.tec amplifier and analog
to digital converter (g.USBamp, Guger Technologies, Schiedl-
berg, Austria - http://www.gtec.at/). The electrodes are placed
over the occipital area in proximity of the visual cortex as
shown in Fig. 3, according to the standard 10-20 positioning
(Cz, Pz, PO3, PO4, Oz). Channels are referenced to AFz [28]
and the amplifier is grounded to the earlobe.

A band-pass filter in the range 2-60 Hz and a notch-filter at
50 Hz were applied internally to the amplifier with the purpose
of limiting the presence of artifacts and noise in the EEG
signals. Then, signals were sampled and digitally converted
at a frequency of Fs = 256 Hz.

In order to pre-process the raw EEG signals as input to the
CNN classifier, we considered Nele = 4 signals given by the
Pz, PO3, PO4, Oz electrodes, configured in bipolar mode with
respect to Cz. Each signal was normalized for obtaining zero
mean and unitary variance on the basis of a moving window
(with window duration Ts = 2 s and 75 % overlapping).

It results that the input of the subsequent CNN classifier
is a matrix I of size Nele Nt (4 × 512 elements), where Nt
is the number of samples in a window that are used for the
analysis: Nt = Fs × Ts (256 Hz × 2 s).

2) The CNN module:
The classifier proposed in this paper, that allows to classify
the acquired SSVEP signals, is a simplification of the Con-
volutional Neural Network (CNN) classifier presented in [25].
The CNN topology in [25] has demonstrated to represent a
suitable solution for the classification of SSVEP responses.
In fact, in the same work, the authors reported a high mean
recognition rate of 95.61 % about the classification of five
different types of SSVEP responses. Besides the classification
features of the CNN, the main issue solved in [25] is the
ability of the CNN to perform the detection of SSVEP response
features directly in the frequency domain without requiring a
custom pre-processing of the data acquired in the time domain.

However, the CNN proposed in this paper simplified the
network presented in [25] avoiding the use of the time filter
hidden layer after layer L1.

Moreover, our FFT hidden layer (L2) analyzes only 12, 15
and 20 Hz frequencies, whereas in [25], the authors considered
also two multiple harmonics of the base frequencies, 6.66,
7.5, 8.57, 10 and 12 Hz (different from ours) to obtain the
classification.

Before introducing our CNN topology, it is necessary to
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Fig. 3. The pattern of electrodes represented in the standardized International
10-20 system for EEG that describes the location of the scalp positions used
for EEG applications.

Fig. 4. The proposed Convolutional Neural Network is shown. The network
acquires, as input, the EEG signals from the electrodes and computes the best
spatial filter to optimize the frequency response. The CNN provides as output
the classification of the signal that corresponds to the indication of which
symbol the user is focusing on.

point out the concepts of map and virtual electrode. A map is
a group of neurons belonging to the same layer and featuring
the same weights and biases. A map is defined as a layer entity
with a specific semantic. The first hidden layer is composed of
a set of maps, where each map represents a virtual electrode.

Therefore, a virtual electrode is a combination of Nele
electrodes, resulting in a spatial filtering. The goal of the
creation of a virtual electrode is to enhance a particular
information that is contained in the signal. Furthermore, some
electrodes may contain the same kind of noise. So, through
the combined analysis of the electrodes, some noise can be
suppressed.

Usually different spatial filters are created to perform the
classification, each of them corresponding to a different chan-
nel. We distinguish the electrode inputs, which are a specific
case of channel and channels that represent a combination of
the electrodes, i.e. virtual electrodes.

The CNN developed in this work is composed of four
layers (see Fig. 4):

• the input layer, Layer 0 (L0): it takes as input the
matrix I of size Nele×Nt;

• two hidden layers:
◦ Layer 1 (L1): the first hidden layer is used for

creating the different virtual electrodes and is
composed of Nele maps. Each map of L1 is
Nt sized. This layer corresponds to have Nele
virtual electrodes and can suppress the artifacts
mainly due to the phase difference between
the signals recorded by two relatively close
electrodes;

◦ Layer 2 (L2): the second hidden layer is
composed of Nele maps. Each map of L2
has Nf neurons, where Nf is the number of
frequencies to be detected;

• the output layer, Layer 3 (L3): this layer has only a
map of Nf neurons, which represents the Nf frequen-
cies to be detected. This map is fully connected to the
maps belonging to L2.

It is worth to notice that the weights used in the spatial filter
(that is the creation of the virtual electrodes) can be fixed
or adaptive. In this work, the weights are fixed during the
experiments, but adjusted within the CNN training routine. In
this way, it is possible to regulate the weights according to
the specific subject for a specific SSVEP frequency [29]. Next
sections are dedicated to introduce the formulas needed for the
CNN propagation of the input data and for the CNN error due
to backpropagation.

a) CNN propagation:
In this section, the formulas that allow to calculate the

propagation of the input data to the output of the CNN are
introduced.

Generally, in the following we will indicate with σ, f()
and x=f(σ) the weighted sum of the inputs plus the bias,
the activation function and the output of a single neuron,
respectively.

Layer 1:
The goal of the first hidden layer (L1) is to create Nele

virtual electrodes, so it is composed of M = Nele maps.
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Each map contains Nt neurons sharing the same weights and
biases.

Considering in the following equations the notation: σ1mt,
to indicate the weighted sum plus the bias of the inputs for
the neuron t of the map m; w1me for the weight of the map m
for the electrode e; Iet for the sample t of the signal coming
from the virtual electrode e; w1m0 for the bias for neurons of
the map m, we obtain:

σ1mt =
∑Nele
e=1 w1me · Iet + w1m0

x1mt = f1(σ1mt) = tanh(σ1mt)

Layer 2:
The goal of the second hidden layer (L2) is to transform

the domain of the input data: from time domain to frequency
domain. This layer is composed of M maps, where each map
contains Nf neurons.

We indicate with Xm(t) the M-th spatially filtered signal.
Each neuron of the same maps calculates the fast Fourier
transform (FFT) Ym(u) of Xm(t) at a specific frequency.
Ym(u) is based on Xm(t) with NFFT points by using zero
padding technique. In our case NFFT is set to 1024. The
values Ym(S(f)) are only computed for S(f) with 1 f Nf .
Indeed, the phase of the transformed signal (Θ2mf ) is kept
fixed to reconstruct the signal in the time domain during the
backpropagation, obtaining:

Ym(u) = 1
NFFT

∑Nt
t=1 x1mt · e

−i2π
NFFT

·u(t−1)

x2mf = |Ym(S(f))| Θ2mf = 6 Ym(S(f))

where X2mf is the output value of the neuron f in the map
m.

Neurons in the same position in different maps calculate
the FFT for a given frequency (one among the selected
frequencies; in our case they are three: 12, 15 and 20 Hz).

Layer 3:
The output layer (L3) has Nf neurons corresponding

to the number of frequencies to be detected (three in the
proposed case). It is fully connected with the M maps of the
second hidden layer L2. The output value of each neurons is
bounded in the range [0, 1]. Hence, the goal of this layer is to
recognize which navigation commands the user is focusing on
(or if the user is in the rest state). For this aim, the output of
this layer is a vector O of size Nf . Each element of the vector,
corresponding to a particular navigation command (indicated
with Ci), contributes to the final frequency selection of the
CNN according to this function:

O=


Ci if

{ max(Ok) =Oi 1 ≤ k ≤Nf

Oi > thCNN

rest state if max Oi ≤ thCNN

where 1 ≤ i ≤ Nf , and thCNN represents an experimentally
evaluated threshold used to classify stimulation classes from
the rest.

Considering the following equations, the notation σ3j is
used indicates the weighted sum plus the bias of the inputs for

the neuron j; w3mfj to indicate the weight between the neuron
f of the map m (in L2) and the neuron j of the layer L3 (output
layer); w3j0 is the bias of the neuron j of the output layer. It
is possible to obtain:

σ3j =
∑M
m=1

∑Nf
f=1 w3mfj · x2mf + w3j0

x3j = f3(σ3j) = 1
1+e−σ3j

b) CNN backpropagation:
In this section, the CNN backpropagation error routine is

described. The rules for weight updating of each layer are
shown. The weights are corrected through a gradient descend
by minimizing the least mean square error. The training
routine is stopped in case the limit of 1000 epochs is reached
or in case the error is increased over a span of 50 epochs.

Layer 3:
The updating of the weights (belonging to the neurons of

the output layer) follows the classical backpropagation rule.
For each neuron j in the output layer (L3) using the following
notation: δ3j is the error of the neuron j, f

′

3(σ) is the first
derivative of the activation function f3(σ) with respect to σ
evaluated in σ3j and γ3 is the learning rate, it is possible to
write:

δ3j = ej · f
′

3(σ3j) = (x3j − xtarget,j) · f
′

3(σ3j)

where Xtarget,j is the expected value for the neuron j, whereas
the other terms are equal to:

f3(σ3j) = 1
1+e−σ3j

= x3j

f
′

3(σ3j) = x3j · (1− x3j)

∆w3mfj = −γ3 · δ3j · x2mf

w3mfj(p+ 1) = w3mfj(p) + ∆w3mfj

where ∆w3mfj is the variation of the weight w3mfj and p
indicates the step number of the backpropagation routine.

Layer 2:
Indicating with δ2mf the error of the neuron f of the map

m, it is possible to write:

δ2mf =
∑N3

j=1 w3mfj · δ3j
Layer 1:

The error calculated for the layer 2 has to be transformed
back in the time domain (from the frequency domain). For
this aim, we use the Inverse Fast Fourier Transform (IFFT) in
order to calculate the weights of the first hidden layer.

Indicating with Z2mf the IFFT of the error committed for
the neuron f in map m and with γ3 the learning rate, we obtain:

Z2mf = δ2mf · eiθ2mf

δ1mt =
{
<
∑Nf
f=1 Z2mf · e

i2π
NFFT

·S(f)·(t−1)
}

∆w1met = −γ1 · δ1mt · Iet
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where w1met is the variation of the weight w1met. The weight
w1met is a candidate weight that links neuron t of the map m
to the sample t of the signal from the electrode e, considering
that the weights of a spatial filter are time independent. Hence,
we have to calculate the average ∆w1met in the time domain:

∆w1me = 1
Nt

∑Nt
t=1 ∆w1met

w1me(p+ 1) = w1met(p) + ∆w1me

where w1me is the variation of weight w1me and p is the step
number of the back propagation routine.

3) The virtual environment manager:
The virtual environment manager has two objectives:

1) providing the navigation interface, including the gen-
eration of visual stimuli for evoking the SSVEP;

2) applying the navigation commands selected by the
participant into the rendered VE.

The navigation interface is composed by three symbols,
each one related to one of the following navigation commands
“walking forward”, “turn left” and “turn right”. Each symbol
was represented by a 2D rectangle over impressed to the visual
representation of the 3D VE.

The flickering frequency for each symbol is selected
considering the constraint of the 60 Hz refresh rate of the
head mounted display. The frame frequency has to be an
integer multiple of each stimulation frequency, as shown in
the following equation:

ScreenFreq
StimFrames = StimFreq

where ScreenFreq is the frame rate of the screen, and Stim-
Frame is the number of frames required for the repetition of
a single flash. The resulting available frequencies are shown
in Table I. The selected stimulation frequencies for the three
symbols are respectively: 12, 15 and 20 Hz, and the flickering
is between solid white and solid black with a duty cycle of 50%
rounded to the nearest integer number of frames. A stationary
black dot was added in the middle of each symbol with the
purpose of easing the fixation by the participant.

In order to apply the navigation control in the VE, the
VE manager receives the current BCI output, corresponding
to one of the following classes: “walk forward”, “turn left”,
“turn right” and “rest”.

TABLE I.

StimFrames StimFreq

3 20 Hz
4 15 Hz
5 12 Hz
6 10 Hz
7 8.5714 Hz
8 7.5 Hz
9 6.6667 Hz

Available stimulus frequencies according to the constraint imposed by the
screen frame rate of 60Hz.

The avatar body in the VE is moved forward with a
linear velocity of 1.6 m/s (related to objects in the virtual
environments) as long as the walk forward command is se-
lected. Similarly, it is rotated with an angular velocity of

0.5 rad/s as long as the turn left or turn right command
are selected respectively. When the stop command is selected
(corresponding to no symbol focused by the participant), the
linear and angular velocities of the avatar body are set to zero.
In order to avoid abrupt movement and stopping of the avatar
body, a low pass filter (time constant 0.1 s) is applied to the
imposed linear and angular velocities.

Once the movement of the avatar body is computed on the
basis of the BCI output, the VE scenario is rendered from the
point of view of the virtual avatar. With the aim of reproducing
a plausible walking task, an immersive and realistic virtual
scenario was provided to the participant. The implemented 3D
model was a virtual reconstruction of a real city area (the main
square of Livorno, Italy) allowing for extended navigation
tasks in presence of detailed objects such as buildings, roads
and other urban components.

To convey immersion, the VE was provided by means of a
head mounted display, performing stereo vision, and tracking
of the orientation of the head (Oculus Rift, 640×800 resolution
for each eye, 90◦ horizontal FOV, frame rate 60Hz).

The whole virtual environment manager including the VE
rendering was developed using XVR software.

III. EXPERIMENTAL DESCRIPTION AND RESULTS

In order to validate the proposed approach, we conducted
two experiments: the first aimed to evaluate the offline per-
formance of the CNN, fed with EEG signals acquired during
a training and test session; the second aimed to evaluate the
whole proposed method applied to a navigation task in the
VE.

Both experiments were performed by four healthy male
participants aged between 20 and 28, with no previous expe-
rience in BCI systems. The two experimental sessions took
place in the same day.

A. CNN performance validation

The training and test experimental session for evaluating
the CNN performance was conducted as follows. The partici-
pant sat on a comfortable chair, wearing the HMD (Oculus rift)
and the cap with electrodes (see Fig. 5). The flashing SSVEP

Fig. 5. The experimental setup used to validate the proposed SSVEP-BCI
approach based on CNN classification.

navigation interface was presented, as well as the VE, in order
to keep the training and test sessions as close as possible to the
final experiment involving the whole navigation task. During
the training session, all the symbols were flashing, in order
to take in account any possible visual interference occurring
during the final system operation. However the participant was
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Fig. 6. The logical scheme of the training phase. Each trial is composed by
three phase of rest (in violet) and visual stimulation (in green).

asked to select only a particular symbol at time according to
a fixed sequence shown in Fig. 6.

During each “stimulus” period, the participant had to fix a
particular symbol, indicated to him by a visual cue (a red frame
appearing around the symbol to select). The “stimulus” periods
lasted 8 s each and were spaced by a “rest” period lasting 4
s. During the rest period, no visual cues were presented and
the participant was asked to look at the center of the screen.

The training session was composed by six repetitions of
the described sequence. Recorded EEG data were triggered by
the presented visual cues and used as a training and test dataset
for the CNN learning phase.

1) EEG data pre-processing:
After EEG data registration, the EEG signals were prepro-

cessed for CNN learning phase. We eliminated the first 2 s
of each stimuli phase and the first 0.5 s of each rest phase,
in order to overcome possible delays due to the attention of
the participant and initial instability of the VEP: in general, at
the beginning of the visual stimulation at a constant frequency
firstly an unstable VEP is measured; then, a steady state poten-
tial is elicited. This time depends by brain and nerve bundles
of the eyes and are different between subjects. Moreover, the
initial 2 s cut suppressed possible artifacts generated by muscle
activity due to eye movements (saccades) required for focusing
a different symbol.

EEG data corresponding to the presentation of the same
symbol (or during the rest period) are concatenated, obtaining
a time sequence of 36 s of stimulation for each symbol and
63 s for the rest state. Each sequence is, then, subdivided in 2
s time frames constituting an input element for the CNN.

Fig. 7. Trend of the Mean Squared Error (MSE) with respect to the number
of epochs for the training dataset of Subject 2.

2) NN learning:
For the CNN learning phase we used 10 and 8 frames of

the dataset respectively as training and validation sets. The
two used learning rates γ1 and γ3 are set to 0.7 chosen heuris-
tically with experimental methodology. The weights and the
thresholds of each neuron are initialized randomly a standard
distribution around a mean of 0.5. In Fig. 7, the trend of the

Mean Squared Error (MSE) is shown. A new learning phase
is initiated if the error does not converge.

The training time was about 20 min using a computer
equipped with a AMD A6-3400M processor (1.4 GHz), with
4GB RAM.

3) NN testing:
In the testing phase, we tested 8 frames for each of the

4 classes of the dataset, corresponding to the selection of the
symbol flashing at 12 Hz, 15 Hz, 20 Hz and to the “rest” state
respectively. The classification time (for each frame) is around
20 ms allowing for an on-line processing of the BCI algorithm.

The graph in Fig. 8 shows the correct rate for each class and
for each subject, obtained by averaging the binary classification
result of the 8 processed frames.

Fig. 8. Correct classification rate for each subject and each class, performed
by the CNN on the test dataset.

The classification results obtained on the test dataset show
that the CNN is able to classify the measured SSVEP with
relatively high accuracy: the total classification accuracy, aver-
aged over the subjects, is 0.875±0.076. Classification accuracy
appears lower for the stimulus with the highest frequency, 20
Hz, and for the “rest” class, that is actually related to the
absence of SSVEP in the EEG data.

The proposed method was compared to a classical method
based signal to noise ratio (SNR). The SNR method extracts
features as in [30] and compares them to a baseline feature’s
value extracted from the rest classes. As shown in Fig. 9,
the convolutional neural network outperform the classical
SNR based method. The CNN average classification accuracy
over all subject is 0.875 ± 0.076 while for SNR method is
0.695± 0.140.

B. The BCI-SSVEP approach for navigation task

The second experiment evaluates the usability of the system
within a navigation task in VE. The experiment involved three
of the participants already enrolled in the first experimental
session (S1, S3 and S4). The weights of the CNN were thus
the same obtained from the training datasets recorded by each
participant in the previous experimental session.

In the experiment, the participant is asked to control the
walking movement and direction in the VE using the proposed
SSVEP based navigation interface, in order to walk through
a given path. The path is composed by 8 waypoints, each
one marked by a flag in the VE. Only one flag is visible at
time, corresponding to the active waypoint, while the others are
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Fig. 9. Mean of the correct classification rate for all subject for each method
proposed.

TABLE II.

Subjects Time [s] CNN Classification Accuracy

S1 470 s 0.84
S3 483 s 0.78
S4 260 s 0.93

mean 333 s 0.875
std 178 s 0.076

JoyCtrl 120 s X

The first three rows indicate for each subject the elapsed time for
completing the task and the classification accuracy of the CNN obtained in
the first experimental session. Then we report the mean and the standard
deviation for the three subject. In the last row, ”‘JoyCtrl”’ represents the
elapsed time for completing the task controlling the navigation with a
joystick instead of the BCI.

hidden. When the subject is in close proximity to a waypoint,
the flag disappears and the next target flag appears. The
position of the waypoints is defined such to increase variability
in the path directions.

For comparison purposes, after the experimental session
one subject was asked to accomplish the same navigation task
using a joystick instead of the BCI for the navigation control.

All the participants were able to complete the given se-
quence of waypoints using the BCI. Table II shows the time
required by each subject to complete the task, while Fig. 10
shows the comparison between the trajectory of walking of
Subject 4, and the optimal one, obtained using a physical inter-
face. It appears that the BCI allowed a reasonable precision in
controlling the navigation trajectory. However, a considerable
difference in the time required for completing the task was
registered: 120 s for the physical interface, and 333 s in average
for the navigation with BCI. As expected, the time required
for completing the path seems related to the classification
accuracy of the CNN obtained during the training phase by
each participant.

IV. CONCLUSION AND FUTURE WORKS

A novel BCI system for navigation in VE has been
proposed and evaluated. The approach proposes the use of
a simplified convolutional neural network for detection of
SSVEP during a navigation task, and the implementation of the
system in a highly immersive VE for evaluating its usability
in a plausible navigation task.

The peculiarity of a navigation task in VE is that, unlike

Fig. 10. The given waypoints path, marked by stars, and the actual trajectory
(Black dotted line) travelled by one of the participant using the SSVEP-BCI
for control of navigation. Grey dotted line represents the trajectory travelled
using a physical keyboard interface in place of the BCI.

other BCI applications (such as spellers and other communi-
cation interfaces), they rely on a reduced number of control
commands, though, the selection requires to be reliable and
rapid in order to achieve usability of the interface itself.

Results of the first experiment on offline data show that
a CNN can be applied for identification of SSVEP features
in the EEG with considerably high accuracy and reliability.
The main advantage of an NN is given by its adaptability
to features that are subject and montage-dependent, such as
conformation of the skull, conductivity of the skin-electrode
interface, interference and artifacts due to brain and muscular
activity, and exact positioning of the electrodes. Moreover a
CNN allows to directly address the identification of features
that are defined in frequency, such us the SSVEP, though
obtained by combination of different channels in the space
domain.

The second experiment evaluates the performance of the
system through a walking navigation task within a VE sce-
nario. The high immersivity and the realism of the VE allow
to evaluate the overall usability of the proposed approach in
presence of plausible factors occurring during real navigation,
such as the involvement of the participant attention within the
navigation task, the perception of the space in terms of position
and relative velocity of obstacles and waypoints with respect
to the avatar body, as well as possible interferences of the
changing background scenario with VEP elicitation [31].

Taking into account the presence of those factors, results of
the final experiment are promising, as the participant was able
to successfully accomplish a waypoint walking task within the
VE, though with a considerable delay if compared to a physical
keyboard interface. It suggests that the proposed approach
can be profitably applied to navigation scenarios, allowing the
control of navigation task even to inert people by the use of
the only brain activity.
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