

Abstract — Extreme Learning Machine (ELM) is a
single-hidden-layer feedforward neural network which has been
applied into many real world pattern classification problems.
Recently, ELMs have been built in an automatic way through
evolutionary algorithms. Most works, nonetheless, do not uses
all population obtained, but choose only one individual in the
last generation. In an attempt to improve performance, an
ensemble is a more promising choice because a pool of classifiers
might produce higher accuracy than merely using the
information from only one classifier among them. One of the
most important factors for optimum accuracy is the diversity of
the classifier pool. In this work, an enhanced Differential
Evolution incorporating sharing function method is used to
generate a pool of ELMs. Fitness Sharing that shares resources
if the distance between the individuals is smaller than the
sharing radius is a representative specification method, which
produces diverse results than standard evolutionary algorithms
that converge to only one solution. Experimental results on 14
well known benchmark classification tasks suggest that our
method can generate ensembles that are more effective than
ensembles solely through DE and traditional ensemble methods.

I. INTRODUCTION
achine learning has been developed and used in the past
decades. Among its methods, algorithms and
applications on Artificial Neural Networks (ANNs)

have been widely researched. In 2004, Extreme Learning
Machine (ELM) [1] was introduced as an efficient and
practical learning algorithm used for single-hidden layer
feedforward neural networks. ELM approach randomly
generates input weights and hidden biases rather than tuning
network parameters, making the learning speed thousands of
times faster than traditional learning algorithms (such as
back-propagation and its variants). On the other hand, ELM
tends to require more hidden neurons than traditional
tuning-based algorithms and lead to ill-condition problem due
to the random determination of the input weights and hidden
biases [2]. Thus, in [2], Zhu et al. used a hybrid learning
algorithm to overcome the drawbacks of ELM, which uses an
Evolutionary Algorithm (EA) to select the input weights and
hidden biases and the Moore-Penrose (MP) generalized
inverse is used to analytically calculate the output weights.
Using this technique, they were able to achieve much more
compact networks (with less hidden neurons) with good
generalization performance. Since then, ELMs have been
built in an automatic way through EAs [3-6].

Tiago. P. F. de Lima, and Teresa. B. Ludermir are with Centro de

Informática, Universidade Federal de Pernambuco; Recife; PE; Brazil;
50740-560 (e-mails: {tpfl2,tbl}@cin.ufpe.br). This work was supported by
FACEPE, CNPq, and CAPES (Brazilian Research Agencies).

Most works, nonetheless, do not uses all population
obtained, but choose only one individual in the last
generation. The selection of a single classifier can led to the
choice of the worst classifier for future data. Especially when
the data used to learn was not sufficiently representative in
order to classify properly new objects, the test set provides
just apparent errors ܧ෠ that differ from true errors ܧ , in a
generalization error: ܧ෠ ൌ ܧ േ ∆. In an attempt to improve
performance of single classifiers, a common approach is to
combine multiple classifiers, forming ensembles.

Ensemble of classifiers, also known as Multi-classifier
systems or committees, is a composite model, aggregating
learning machines into one predictive model. An ensemble
prediction, consequently, is a function of all included base
models. Many studies showed that classification problems are
often more accurate when using combination of classifiers
rather than an individual base learner. For instance “weak”
classifiers are capable of outperform a highly specific
classifier [7]. The main motivation for using an ensemble is
the fact that combining several models using averaging will
eliminate uncorrelated base classifier errors, see e. g., [8].
This reasoning, however, requires the base classifiers to
commit their errors on different instances - clearly there is no
point in combining identical models.

Enhanced EAs incorporating multimodal techniques
(which produce diverse results than standard EAs that
converge to only one solution) can creates diversity in
evolution of networks to produce ensembles with better
performance. One class of such mechanisms goes by the
name of Fitness Sharing. Sharing function method relies on a
distance metric to cluster population. Individuals which are
similar to each other are punished for this similarity by being
required to share their fitness, while isolated individuals
retain all the fitness value that they achieve.
 This paper presents a hybrid system which combines the
evolutionary algorithm Differential Evolution (DE) and the
multimodal technique Fitness Sharing. The multimodal
technique is inserted into the evolutionary algorithm to
increase its exploration capacity and to improve its efficiency.
The rest of this paper is organized as follows. Section II,
defines terms and provides the main concepts to ELMs;
Section III gives a brief review on the fundamentals of DE
algorithm; The DE incorporating fitness sharing is presented
in Section IV; Section V describes the hybrid learning system
for evolving ELMs; Section VI presents the experimental
results; Section VII concludes with a summary of the work.

Ensembles of Evolutionary Extreme Learning Machines Through
Differential Evolution and Fitness Sharing

Tiago. P. F. de Lima, and Teresa. B. Ludermir

M

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 2677

II. EXTREME LEARNING MACHINES
Unlike the most known learning algorithms for ANNs, the

main characteristic of ELMs is learning without iterative
training, as proposed in [1]. Let ࣮ ൌ ሼሺ݌௜, ௜݌|௜ሻݐ א ܴ௡, ௜ݐ ,௠ܴא ݅ ൌ 1,2, … , ܰሽ be the training set, where ݌௜ is an ݊-dimensional input pattern and ݐ௜ is a ݉-dimensional target.
The training process is briefly described as follows.

Step 1: Randomly assign values to the input weights and

the hidden neuron biases.

Step 2: The output weights are analytically determined

through the generalized inverse operation of the hidden-layer
matrices, as in (1), where ܽ௜ is the input weights, ܾ௜ is the
hidden layers biases, ߚ௜ is the output weight that connects the ݅௧௛ hidden node and output node, ݂ሺ. ሻ is the activation
function, ܮ is the number of hidden neurons, and ܰ is the
number of distinct input or output data.

 ∑ ,௜݂൫ܽ௜ߚ ܾ௜, ௝൯݌ ൌ ,௝ݐ ݆ ൌ 1,2, … , ܰ௅௜ୀଵ (1)

This is equivalent to ߚܪ ൌ ܶ, where

ܪ ൌ ൥݂ሺܽଵ, ܾଵ, ଵሻ݌ … ݂ሺܽ௅, ܾ௅, ڭ௅ሻ݌ ڰ ,ሺܽଵ݂ڭ ܾଵ, ேሻ݌ … ݂ሺܽ௅, ܾଵ, ,ேሻ൩݌
ߚ ൌ ൥ߚଵ்ߚڭ௅் ൩, and ܶ ൌ ൥ݐଵ்ݐڭ௅் ൩.

 Step 3: Calculate the output weights by ߚ ൌ .ܪ ା is the Moore-Penrose generalized inverse ofܪ ାܶ, whereܪ

 As analyzed by [1], ELM can reach good generalization
performance by ensuring two properties of learning: the
smallest norm of weights besides the smallest squared error
within the training samples, while the gradient-based
algorithms focus on the later property only. However, the
randomness of weights and biases may lead to non-optimal
performance. The search process of near-optimal ANNs is
widely explored, using EAs [9]. In this approach, EAs and
ANNs are combined to produce hybrid models with low error
and high generalization, yielding evolutionary ANNs.

III. DIFFERENTIAL EVOLUTION
 DE, proposed by [10], is a powerful, easy to use, fast,
reliable EA that is used for tackling difficult optimization
tasks. Since its inception, DE’s reputation as an effective
optimization algorithm has grown. One of the most important
advantages of DE is that it has a small number of control
parameters for adjustment, which adds to its simplicity.
Despite its simplicity, DE exhibits much better performance
in comparison with several other EAs on a wide variety of
tasks including single-objective, multi-objective, unimodal,
multimodal, separable, non-separable, and so on [11].

 The DE algorithm creates a population of candidate
solutions, chosen randomly in the search space, represented
by ܲீ ൌ ൛ ௜ܺ,ீ , ݅ ൌ 1,2, … , ܰܲൟ, where ܩ is the index of the
current generation, ݅ is the index of the individual and ܰܲ is
the population size. Each individual ݅ is a ܦ -dimensional
vector represented as follows: ௜ܺ,ீ ൌ ሺݔ௝,௜,ீ, ݆ ൌ 1,2, . . , ሻܦ ,
where ݔ௝,௜,ீ is the attribute ݆ of the individual ݅ in generation ܩ. All individuals are candidate solutions for the objective
function ݂ሺ. ሻ to be minimized. Algorithm 1 shows how DE
affects the population until achieve the stopping criterion.

Algorithm 1 - Differential Evolution

1: // Inicialization
2: Create a random initial population ܲ of ܰܲ individuals
3: // Evaluation
4: Evaluate each individual
5: while termination criterion not met do
6: for ݅ ൌ 1 to ܰܲ do
7: // Mutation
8: Select basis vector ܺ௥ଵ,ீ
9: Randomly choose ܺ௥ଶ,ீ ് ܺ௥ଵ,ீ
10: Randomly choose ܺ௥ଷ,ீ ് ܺ௥ଶ,ீ ് ܺ௥ଵ,ீ
11: Calculate the vector donor
12: ௜ܸ,ீ ൌ ܺ௥ଵ,ீ ൅ ீ,ሺܺ௥ଶܨ െ ܺ௥ଷ,ீሻ
13: // Crossover
14: Generate ݆௥௔௡ௗ ൌ ,ሺ1ݐ݊݅݀݊ܽݎ ሻܦ
15: for ݆ ൌ 1 to ܦ do
16: if ݆ ൌ ሺ0,1ሻ݀݊ܽݎ or ݀݊ܽݎ݆ ൑ then ݎܥ
17: ௝ܷ,௜,௚ ൌ ௝ܸ,௜,௚
18: else
19: ௝ܷ,௜,௚ ൌ ௝ܺ,௜,௚
20: end if
21: end for
22: // Evaluation
23: Evaluate the new individual ௜ܷ,ீ
24: // Selection
25: if ݂ሺ ௜ܷ,ீሻ ≤ ݂ሺ ௜ܺ,ீሻ
26: ௜ܺ,ீାଵ ൌ ௜ܷ,ீ
27: else
28: ௜ܺ,ீାଵ ൌ ௜ܺ,ீ
29: end if
30: end for
31: end while
32: return ܲ

In this work we use the classical DE algorithm

(DE/rand/1/BIN). The main operators of DE are:

 Mutation: for each individual ௜ܺ,ீ , a mutant vector is
defined by (2), where 1ݎ, ,are mutually different 3ݎ and ,2ݎ
randomly selected indices chosen from the range ሾ1, ܰܲሿ. ܨ
is the mutation factor, which provides the amplification to the
difference between two individuals so as to avoid search
stagnation and it is usually taken in the range of ሾ0,1ሿ.

 ௜ܸ,ீ ൌ ܺ௥ଵ,ீ ൅ ܨ ൈ ሺܺ௥ଶ,ீ െ ܺ௥ଷ,ீሻ (2)

Crossover: in this step, each member of the population ௜ܺ,ீ
is crossed with a mutant vector ௜ܸ,ீ. They exchange attributes
following the crossover probability ܥ௥ ߳ ሾ0,1ሿ, as shown in
(3), in order to form the trial vector ௜ܷ,ீ.

2678

ீ,௝,௜ݑ ൌ ൜ݒ௝,௜,ீ, ݂݅ ݊ܽݎ ௝݀ሺ0,1ሻ ൑ ൌ ݆ ݎ݋ ௥ܥ ݆௥௔௡ௗݔ௝,௜,ீ, ݁ݏ݅ݓݎ݄݁ݐ݋ (3)

Selection: then the trial vector ௜ܷ,ீ is evaluated and

compared to the current vector ௜ܺ,ீ. The member for the next
generation, at ܩ ൌ ൅ ܩ 1, is described in (4).

௜ܺ,ீାଵ ൌ ൜ ௜ܷ,ீ, ݂݅ ݂ሺ ௜ܷ,ீ ሻ ൑ ݂ሺ ௜ܺ,ீ ሻ௜ܺ,ீ , ݁ݏ݅ݓݎ݄݁ݐ݋ (4)

 In each generation ܩ , the parameters ܨ and ݎܥ were
updated as in (5) and (6), respectively, where ݀݊ܽݎሺ0,1ሻ is a
random number from the range ሾ0,1ሿ, ܩ௠௔௫ is the maximum
number of generations ܩ.
ܨ ൌ 0.5 ൈ ሺ1 ൅ ሺ0,1ሻሻ (5)݀݊ܽݎ
ݎܥ ൌ ሺܩ௠௔௫ െ ௠௔௫ (6)ܩ/ሻܩ

IV. FITNESS SHARING
The main goal of Fitness Sharing (FS) [12] is to distribute a

population of individuals along a set of resources. When an
individual ௜ܺ,ீ is sharing resources with other individuals, its
fitness ݂ሺ ௜ܺ,ீሻ is degraded in proportion to the number and
closeness to individuals that surround it. The shared fitness
for an individual ௜ܺ,ீ is simply calculated as in (7).

௜ݎ݄݂ܽܵ ൌ ௙ሺ௑೔,ಸሻ∑ ௦௛௔௥௜௡௚೔ೕಿುೕసబ (7)

 The similarity between individuals ௜ܺ,ீ and ௝ܺ,ீ is
measured by a distance function ݃݊݅ݎ݄ܽݏ௜௝ , as in (8).

௜௝݃݊݅ݎ݄ܽݏ ൌ ൞1 െ ሺ݀௜௝ ௦௛௔௥௘൘ߪ ሻఈ, ݂݅ ݀௜௝ ൏ ,௦௛௔௥௘0ߪ ݁ݏ݅ݓݎ݄݁ݐ݋ (8)

In (8), ߙ is a constant to determine the shape of the sharing

function, and ߪ௦௛௔௥௘ means the sharing radius. If the
difference of the individuals is large than ߪ௦௛௔௥௘ , they do not
share the fitness. Only the individuals who have smaller
distance values than ߪ௦௛௔௥௘ can share the fitness. The sharing
radius is determined by a threshold value derived from (9),
where ݀௜௝ is a measure of distance between individual ݅ and ݆.

௦௛௔௥௘ߪ ൌ ଵଶൈே௉మ ∑ ∑ ݀௜௝ே௉௝ୀଵே௉௜ୀଵ (9)

In DE, since the evolution process aims at searching for the

minimum value, therefore ݂݄ܵܽݎ௜ is modified as in (10).
௜ݎ݄݂ܽܵ ൌ ݂൫ ௜ܺ,ீ൯ ൈ ∑ ௜௝ே௉௝ୀ଴݃݊݅ݎ݄ܽݏ (10)

 The general flowchart of an enhanced DE algorithm
incorporating sharing function method is illustrated in Fig. 1.

Fig. 1. General flowchart of the modified DE algorithm with FS.

V. COMBINING CLASSIFIERS
 The research field of ensembles becomes very popular
after the half of the 1990 decade, with many papers published
on the creation of ensemble methods that provide some
theoretical insights of why combining classifiers could be
interesting. According to Dietterich [13], there are three main
motivations to combine multiple classifiers, the best case, the
worst case, and the computational motivations:

Representational (or best case) motivation: combination of
multiple classifiers may have a better performance than the
single best classifier among them. There are many
experimental evidences that it is possible if the classifiers in
an ensemble make different errors on a test set.

 Statistical (or worst case) motivation: it is possible to avoid
a wrong classifier by averaging several classifiers. It was
confirmed theoretically in [13]. There is no guarantee,
however, that the combination will perform better than from
only one classifier among them.

 Computational motivation: some algorithms perform an
optimization task in order to learn and suffer from local
minima. Algorithms such as the back-propagation are
initialized randomly in order to avoid locally optimum
solutions. In this case it is a difficult task to find the best
classifier, and it is often used several (hundreds or even
thousands) initializations in order to find a presumable
optimal classifier. Combination of such classifiers showed to
stabilize and improve the best single classifier result [13].

2679

 There are basically two principal approaches for
combining classifiers: static and dynamic selection [14]. In
the static approach, bagging [15], boosting [16], and random
subspace [17], generates a pool of classifiers ܥ ൌሼܥଵ, ,ଶܥ … , ,௟ሽ, while arithmetic rule (e.g. maximum, meanܥ
median, minimum, product), majority vote or another
different classifier are examples of techniques used to
combine their decisions. Given such a classifier pool, the
dynamic selection has focused on finding the most relevant
subset of classifiers ܦ, for each query pattern, rather than
combining all available ݈ classifiers, where |ܦ| ൑ .|ܥ|

VI. PROPOSED METHOD
The hybridization of DE and FS was performed to build an

automatic method capable of seeking a diverse and accurate
pool of ELMs. The DE was executed for ܩ௠௔௫ ൌ 1000
generations. We use many generations because we wanted to
provide enough time for a satisfactory fitness level to be
achieved for the population. The population size used was ܰܲ ൌ 20. A small number of individuals was used because
we wanted to observe the effect of shared fitness function. If
we use a very large number of individuals, the effect of shared
fitness function could be hidden. With the use of DE, an
encoding schema and objective function were defined. In
encoding schema, an individual contains the ELM
information organized in five parts, as illustrated in Fig. 2.

Inputs Hidden
Neurons

Activation
Function

Input
Weights

Hidden
Biases

Fig. 2. Composition of an individual.

The first part of the individual is responsible for the process

of selecting a subset of inputs extracted from the original set,
in order to reduce the dimensionality of the problem and
consequently the complexity of ELMs generated. The second
part contains information on the hidden neurons. We use the
minimum number of neurons ܰ௠௜௡ ൌ 10 and the maximum
number of neurons ܰ௠௔௫ ൌ 30 . Having too many hidden
neurons is analogous to a system of equations with more
equations than free variables: the system is over specified,
and incapable of generalization. The third part encodes the
activation function. We use the Gaussian radial basis
function, hyperbolic tangent function, sigmoid function, sine
function, and triangular basis function. The fourth and fifth
parts correspond to the input weights and hidden biases
(obtained in the range ሾെ1,1ሿ), respectively. The information
of each part is decoded to form an ELM. After the structure is
set, the MP generalized inverse is used to analytically
calculate the output weights.

A multi-objective learning algorithm can take into account
more than one objective (instead of using only the training
dataset to avoid overfitting [2]). Thus, we adopt the most
known error functions for the training and validation datasets,
i.e., the root mean square error (RMSE) and classification
error (CE), defined respectively in (11) and (12).
ൌ ܧܵܯܴ ට∑ ∑ ሺ௧೔ೕି௢೔ೕሻమ೘ೕసభ೙೔సభ ௡ൈ௠ (11)
ൌ ܧܥ ∑ ௜௖௜ୀଵܥ (12)

In (11), ݉ is the number of output units, ݐ௜௝ is the target to
pattern ݅ in the output ݆ ௜௝݋ , is the output obtained to the
pattern ݅ in the output ݆ and ݊ is the number of samples. In
(12), ܿ is the number of classes and ܥ௜ is the number of
patterns misclassified per class. The RMSE and CE are
rescaled using fitness sharing method, as in (10). To calculate
the distance between the networks used to determine the ߪ௦௛௔௥௘ and the value of ݃݊݅ݎ݄ܽݏ௜௝ , we use the method of
average output [18], as in (13) and (14), where ݊ is the
number of samples, ݉ is the number of outputs units, ݋௜௢ሺݔ௧ሻ
is the output of the ݋௧௛ output node for the ݐ௧௛ input data.
 ௜ܱ௢ ൌ ሺ∑ ௧ሻ௡௧ୀଵݔ௜௢ሺ݋ ሻ ݊ൗ (13)
 ௜ܱ ൌ ሺ ௜ܱଵ, ௜ܱଶ, … , ௜ܱ௠ሻ (14)

 The distance between the two ELMs is the Euclidean
distance of their average outputs. The similarity between
ELM ݅ and ݆ can be calculated as in (15).
 ݀௜௝ ൌ ඥ∑ ሺ ௜ܱ௢ െ ௝ܱ௢ሻଶ௠௢ୀଵ (15)

VII. EXPERIMENTS AND RESULTS
The experiments were conducted using 14 well-known

benchmarks classification tasks found in [19]. The
specifications of these tasks are summarized in Table I, which
shows diversity in the number of examples, attributes and
classes. All attributes have been normalized into the range
[0,1], while the targets have been normalized into [െ1,1].

TABLE I

SPECIFICATION OF THE TASKS USED IN THE EXPERIMENTS
Task Examples Attributes Classes

Abalone 4177 8 3
Cancer 699 9 2

Car 1728 6 4
Diabetes 694 8 2

Ecoli 336 7 8
Glass 214 9 6
Iris 150 4 3

Pendigits 10992 16 10
Sat 6435 36 6

Sonar 208 60 2
Vehicle 846 18 3
Vowel 528 10 11
Wine 178 13 3
Yeast 1484 8 10

Each task was randomly divided into 50% for training, 25% for validation and 25% for test. 30 executions were

done for each task. Tables II and III presents the accuracy rate
in % (the best results are emphasized in bold, according to the
empirical analysis) and the standard deviation in brackets,
comparing the initial pool, final pool using DE, and final pool
using DE+FS. In Table II, all ELMs were combined by mean
rule (static approach). In Table III, the KNORA (K Nearest
ORAcles) Eliminate [20] was used (dynamic approach).

2680

TABLE II
CLASSIFICATION ERROR OF STATIC APPROACH IN TEST SET

Task Initial Pool DE DE+FS
Abalone 0.3467 (0.0154) 0.3364 (0.0158) 0.3381 (0.0141)
Cancer 0.0297 (0.0127) 0.0326 (0.0115) 0.0295 (0.0114)

Car 0.2526 (0.0413) 0.0958 (0.0234) 0.0877 (0.0202)
Diabetes 0.2385 (0.0226) 0.2312 (0.0261) 0.2268 (0.0274)

Ecoli 0.1861 (0.0504) 0.1409 (0.0355) 0.1333 (0.0343)
Glass 0.3792 (0.0610) 0.3453 (0.0597) 0.3302 (0.0577)
Iris 0.0667 (0.0393) 0.0468 (0.0274) 0.0423 (0.0272)

Pendigits 0.1062 (0.0090) 0.0586 (0.0058) 0.0585 (0.0059)
Sat 0.1702 (0.0056) 0.1502 (0.0064) 0.1483 (0.0076)

Sonar 0.2167 (0.0527) 0.1801 (0.0506) 0.1744 (0.0468)
Vehicle 0.2520 (0.0247) 0.1954 (0.0189) 0.2058 (0.0231)
Vowel 0.3487 (0.0597) 0.2707 (0.0410) 0.2667 (0.0370)
Wine 0.0205 (0.0226) 0.0182 (0.0192) 0.0098 (0.0154)
Yeast 0.4451 (0.0239) 0.4084 (0.0218) 0.4067 (0.0194)

TABLE III

CLASSIFICATION ERROR OF DYNAMIC APPROACH IN TEST SET
Task Initial Pool DE DE+FS

Abalone 0.3725 (0.0175) 0.3380 (0.0152) 0.3449 (0.0130)
Cancer 0.0349 (0.0137) 0.0375 (0.0120) 0.0316 (0.0104)

Car 0.1350 (0.0287) 0.0722 (0.0208) 0.0630 (0.0151)
Diabetes 0.2738 (0.0312) 0.2331 (0.0232) 0.2385 (0.0240)

Ecoli 0.1786 (0.0504) 0.1425 (0.0350) 0.1353 (0.0352)
Glass 0.3447 (0.0718) 0.3371 (0.0620) 0.3396 (0.0720)
Iris 0.0495 (0.0276) 0.0505 (0.0299) 0.0441 (0.0261)

Pendigits 0.0370 (0.0067) 0.0299 (0.0048) 0.0286 (0.0046)
Sat 0.1542 (0.0059) 0.1340 (0.0100) 0.1288 (0.0077)

Sonar 0.2115 (0.0589) 0.1737 (0.0412) 0.1647 (0.0512)
Vehicle 0.2545 (0.0251) 0.1956 (0.0221) 0.2096 (0.0253)
Vowel 0.2525 (0.0507) 0.2063 (0.0406) 0.2086 (0.0361)
Wine 0.0212 (0.0223) 0.0174 (0.0195) 0.0098 (0.0176)
Yeast 0.4615 (0.0174) 0.4076 (0.0225) 0.4148 (0.0216)

Tables II and III show that, in an empirical analysis, the

accuracy rates obtained by DE+FS outperforms the final pool
using DE for most tasks, 12 against 2 tasks in static approach
and 8 against 6 tasks in dynamic approach. DE+FS achieved
better results than initial pool in all tasks. DE achieved better
results than initial pool, except in Cancer (both approaches)
and Iris (only in dynamic approach) tasks. However, it is
necessary to assess whether the performances are statistically
betters. Thus, we performed the paired ݐ-tests (ߙ ൌ 0.05). In
static approach, DE+FS was better than initial pool except in
two tasks (Cancer and Diabetes). In dynamic approach,
DE+FS was better than initial pool except in three tasks
(Cancer, Glass, and Iris) and better than final pool using DE
in three tasks (Cancer, Car, and Sat).

To access the accuracy of the proposed method, other
techniques were used for comparison. Table IV presents the
performance of some traditional ensemble methods, executed
in Weka 3.6.8: AdaBoost [16] (ADBO), Bagging [15]
(BAG), and Random Subspace Method [17] (RSM). The
parameters values were chosen as default from Weka 3.6.8.
The best results are emphasized in bold, according to the
empirical analysis, and the standard deviation in brackets.

TABLE IV
COMPARISONS BETWEEN TRADITIONAL ENSEMBLE METHODS

Task Proposed
Method ADBO BAG RSM

Abalone 0.3381
(0.0141)

0.4321
(0.0201)

0.3620
(0.0136)

0.3568
(0.0165)

Cancer 0.0295
(0.0114)

0.0477
(0.0144)

0.0396
(0.0141)

0.0381
(0.0131)

Car 0.0630
(0.0151)

0.2896
(0.0198)

0.0536
(0.0112)

0.2819
(0.0290)

Diabetes 0.2268
(0.0274)

0.2520
(0.0300)

0.2497
(0.0259)

0.2553
(0.0316)

Ecoli 0.1333
(0.0343)

0.3587
(0.0501)

0.1829
(0.0459)

0.1984
(0.0567)

Glass 0.3302
(0.0577)

0.5792
(0.0650)

0.3346
(0.0503)

0.3195
(0.0620)

Iris 0.0423
(0.0272)

0.0495
(0.0225)

0.0441
(0.0251)

0.0423
(0.0323)

Pendigits 0.0286
(0.0052)

0.8011
(0.0066)

0.0329
(0.0044)

0.0278
(0.0035)

Sat 0.1288
(0.0077)

0.5664
(0.0093)

0.1188
(0.0078)

0.1146
(0.0083)

Sonar 0.1647
(0.0077)

0.2609
(0.0622)

0.2519
(0.0655)

0.2526
(0.0062)

Vehicle 0.2058
(0.0231)

0.4608
(0.0427)

0.2572
(0.0246)

0.2535
(0.0210)

Vowel 0.2086
(0.0361)

0.8651
(0.0188)

0.3283
(0.0508)

0.2879
(0.0422)

Wine 0.0098
(0.0176)

0.1000
(0.0483)

0.0901
(0.0697)

0.0742
(0.0462)

Yeast 0.4067
(0.0194)

0.5979
(0.0227)

0.4178
(0.0225)

0.4472
(0.0330)

Table IV shows that, in an empirical analysis, the rates

obtained by the proposed method have the lowest error for
most of tasks, 10 against 4 tasks. The paired ݐ-tests (ߙ ൌ0.05) showed that the proposed method was better than
ADBO, except in Iris task (equivalent). BAG was better only
in one task (Car) and equivalent in two tasks (Glass and Iris).
RSM was better in only one task (Sat) and equivalent in three
tasks (Glass, Iris, and Pendigits). This results show the
potential of ensembles when EA are employed to optimize the
classifier generation.

TABLE V

COMPARISONS BETWEEN METHODS FROM LITERATURE

Task Proposed
Method [3] [4] [5] [6] [21]

Abalone 0.3381 - - - - -
Cancer 0.0295 0.0352 - 0.0360 0.0310 -

Car 0.0630 - - - - -
Diabetes 0.2268 0.2288 0.2278 0.2313 0.2284 0.2648

Ecoli 0.1333 0.1538 - - 0.1326 -
Glass 0.3302 0.3573 - 0.3133 0.3660 0.3130
Iris 0.0423 0.0358 0.0310 - 0.0280 -

Pendigits 0.0286 - - - - -
Sat 0.1288 - - - - -

Sonar 0.1647 0.2231 - - - 0.1343
Vehicle 0.2058 0.2182 - - - 0.3182
Vowel 0.2086 - - - - -
Wine 0.0098 - 0.0188 - - -
Yeast 0.4067 - - - - -

2681

Table V presents comparisons between some methods
from the literature. This type of comparison must be made
with caution, because the results are obtained with different
experimental model setups as well as with different learning
approaches. Thus the boldfaced values indicate the method
that has the lowest error for each problem. In most number of
tasks, the proposed method achieved better performance.

VIII. FINAL REMARKS
This work is concerned with the development of a method

that aims automatic construction of ensembles, based on an
enhanced DE incorporating a sharing function method. We
have considered two variants: static and dynamic approaches.
Both variants have achieved better-performing when
compared with the initial pool and final pool using only DE.
The proposed algorithm also outperforms some traditional
ensembles and methods from literature. The use of a shared
function method contributed for the diversity and accuracy in
the population of classifiers. For this work, we choose ELM
as our base classifier but, in principle, any other classifier can
be used. Furthermore, other optimization algorithms could be
applied as well multimodal techniques.

REFERENCES
[1] G. B. Huang, Q. Y. Zhu, C. K. Siew, Extreme Learning Machine:

Theory and Applications, Neurocomputing, vol. 70, no. 1-3, pp.
489-501, 2006.

[2] Q. Y. Zhu, A. Qin, P. Suganthan, G. B. Huang, Evolutionary Extreme
Learning Machine, Pattern Recognition vol. 38, no. 10, pp. 1759–1763,
2005.

[3] E. M. N. Figueiredo, and T. B. Ludermir, Investigating the use of
Alternative topologies on Performance of the PSO-ELM,
Neurocomputing, vol. 127, pp. 4-12, 2014.

[4] L. D. S. Pacífico, T. B. Ludermir, Evolutionary Extreme Learning
Machine Based on Particle Swarm Optimization and Clustering
Strategies, International Joint Conference on Neural Networks, 2013

[5] T. P. F. Lima, and T. B. Ludermir, Optimizing Dynamic Ensemble
Selection Procedure by Evolutionary Extreme Learning Machines and
a Noise Reduction Filter, IEEE International Conference on Tools with
Artificial Intelligence, pp. 546-552, 2013.

[6] D. N. G. Silva, L. D. S. Pacifico, and T. B. Ludermir, Na Evolutionary
Extreme Learning Machine Based on Group Search Optimization,
Congress on Evolutionary Computation, pp. 574-580, 2011.

[7] L. I. Kuncheva, J. Bezdek, and R. Duin, Decision Templates for
Multiple Classifier Fusion: an Experimental Comparison, Pattern
Recognition, vol 24, no. 2, pp. 299-314, 2001.

[8] M. P. Ponti-JR, Combining Classifiers: from the Creation of Ensembles
to the Decision Fusion, Conference on Graphics Pattern, and Images
Tutorials, pp. 1-10, 2011.

[9] L. M. Almeida, and T. B. Ludermir, A multi-objective memetic and
hybrid methodology for optimizing the parameters and performance of
artificial neural networks, Neurocomputing, vol. 73, no. 9, pp.
1438-1450, 2010.

[10] R. Storn, and K. Prince, Differential evolution: a Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces. Journal of
Global Optimization, vol. 11, no. 4, pp. 341-359, 1997.

[11] S. Das, and P. Suganthan, Differential Evolution – A Survey of the
State-of-the-art, IEEE Transactions on Evolutionary Computation, vol.
15, no. 1, pp. 4-31, 2011.

[12] D. E. Goldberg, J. Richardson, Genetic Algorithms with Sharing for
Multimodal Function Optimization, Proceedings of the Second
International Conference on Genetic Algorithms, pp. 41-49, 1987.

[13] T. G. Dietterich, Ensemble Methods in Machine Learning, 1st Int.
Work. on Multiple Classifier Systems, pp. 1-15, 2000.

[14] K. Woods, W. P. Kegelmeyer, and K. W. Bowyer, Combination of
Multiple Classifiers Using Local and Accuracy estimates, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 19,
no. 4, pp. 405-410, 1997.

[15] L. Breiman, Bagging predictors, Machine Learning, vol. 24, no. 2, pp
123-140, 1996.

[16] R. E. Schapire, The Strength of Weak Learn Ability, Machine
Learning, vol. 5, no. 2, pp. 197-227, 1990.

[17] T. K. Ho, The Random Subspace Method for Constructing Decision
Forests, IEEE Transactions Pattern Analysis and Machine Intelligence,
vol. 20, no. 8, pp. 832-844, 1998.

[18] K. J. Kim, S. B. Cho, Evolutionary Ensemble of Diverse Artificial
Neural Networks using Speciation, Neurocomputing, vol. 71, pp.
1604-1618, 2008.

[19] A. Frank, A. Asuncion.: UCI Machine Learning Repository (2010),
http://archive.ics.uci.edu/lm

[20] A. Ko, R. Sabourin, and A. Britto Jr., From Dynamic Classifier
Selection to Dynamic Ensemble Selection, Pattern Recognition, vol.
41, no.5, pp. 1718-1731, 2008.

[21] D. S. Severo, E. Veríssimo, G. D. C. Cavalvanti, and T. I. Ren, Hybrid
Feature Selection and Weighting Method Based on Binary Particle
Swarm Optimization, IEEE International Conference on Tools with
Artificial Intelligence, pp. 433-438, 2013.

2682

