
 
 

 

  

Abstract — Extreme Learning Machine (ELM) is a 
single-hidden-layer feedforward neural network which has been 
applied into many real world pattern classification problems. 
Recently, ELMs have been built in an automatic way through 
evolutionary algorithms. Most works, nonetheless, do not uses 
all population obtained, but choose only one individual in the 
last generation. In an attempt to improve performance, an 
ensemble is a more promising choice because a pool of classifiers 
might produce higher accuracy than merely using the 
information from only one classifier among them. One of the 
most important factors for optimum accuracy is the diversity of 
the classifier pool. In this work, an enhanced Differential 
Evolution incorporating sharing function method is used to 
generate a pool of ELMs. Fitness Sharing that shares resources 
if the distance between the individuals is smaller than the 
sharing radius is a representative specification method, which 
produces diverse results than standard evolutionary algorithms 
that converge to only one solution. Experimental results on 14 
well known benchmark classification tasks suggest that our 
method can generate ensembles that are more effective than 
ensembles solely through DE and traditional ensemble methods. 

I. INTRODUCTION 
achine learning has been developed and used in the past 
decades. Among its methods, algorithms and 
applications on Artificial Neural Networks (ANNs) 

have been widely researched. In 2004, Extreme Learning 
Machine (ELM) [1] was introduced as an efficient and 
practical learning algorithm used for single-hidden layer 
feedforward neural networks. ELM approach randomly 
generates input weights and hidden biases rather than tuning 
network parameters, making the learning speed thousands of 
times faster than traditional learning algorithms (such as 
back-propagation and its variants). On the other hand, ELM 
tends to require more hidden neurons than traditional 
tuning-based algorithms and lead to ill-condition problem due 
to the random determination of the input weights and hidden 
biases [2]. Thus, in [2], Zhu et al. used a hybrid learning 
algorithm to overcome the drawbacks of ELM, which uses an 
Evolutionary Algorithm (EA) to select the input weights and 
hidden biases and the Moore-Penrose (MP) generalized 
inverse is used to analytically calculate the output weights. 
Using this technique, they were able to achieve much more 
compact networks (with less hidden neurons) with good 
generalization performance. Since then, ELMs have been 
built in an automatic way through EAs [3-6]. 
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Most works, nonetheless, do not uses all population 
obtained, but choose only one individual in the last 
generation. The selection of a single classifier can led to the 
choice of the worst classifier for future data. Especially when 
the data used to learn was not sufficiently representative in 
order to classify properly new objects, the test set provides 
just apparent errors ܧ  that differ from true errors ܧ , in a 
generalization error: ܧ ൌ ܧ േ ∆. In an attempt to improve 
performance of single classifiers, a common approach is to 
combine multiple classifiers, forming ensembles.  

Ensemble of classifiers, also known as Multi-classifier 
systems or committees, is a composite model, aggregating 
learning machines into one predictive model. An ensemble 
prediction, consequently, is a function of all included base 
models. Many studies showed that classification problems are 
often more accurate when using combination of classifiers 
rather than an individual base learner. For instance “weak” 
classifiers are capable of outperform a highly specific 
classifier [7]. The main motivation for using an ensemble is 
the fact that combining several models using averaging will 
eliminate uncorrelated base classifier errors, see e. g., [8]. 
This reasoning, however, requires the base classifiers to 
commit their errors on different instances - clearly there is no 
point in combining identical models.  

Enhanced EAs incorporating multimodal techniques 
(which produce diverse results than standard EAs that 
converge to only one solution) can creates diversity in 
evolution of networks to produce ensembles with better 
performance. One class of such mechanisms goes by the 
name of Fitness Sharing. Sharing function method relies on a 
distance metric to cluster population. Individuals which are 
similar to each other are punished for this similarity by being 
required to share their fitness, while isolated individuals 
retain all the fitness value that they achieve. 
 This paper presents a hybrid system which combines the 
evolutionary algorithm Differential Evolution (DE) and the 
multimodal technique Fitness Sharing. The multimodal 
technique is inserted into the evolutionary algorithm to 
increase its exploration capacity and to improve its efficiency. 
The rest of this paper is organized as follows. Section II, 
defines terms and provides the main concepts to ELMs; 
Section III gives a brief review on the fundamentals of DE 
algorithm; The DE incorporating fitness sharing is presented 
in Section IV; Section V describes the hybrid learning system 
for evolving ELMs; Section VI presents the experimental 
results; Section VII concludes with a summary of the work. 
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II. EXTREME LEARNING MACHINES 
Unlike the most known learning algorithms for ANNs, the 

main characteristic of ELMs is learning without iterative 
training, as proposed in [1]. Let ࣮ ൌ ሼሺ, |ሻݐ א ܴ, ݐ ,ܴא ݅ ൌ 1,2, … , ܰሽ  be the training set, where   is an ݊-dimensional input pattern and ݐ is a ݉-dimensional target. 
The training process is briefly described as follows.  

 
Step 1: Randomly assign values to the input weights and 

the hidden neuron biases. 
 
Step 2: The output weights are analytically determined 

through the generalized inverse operation of the hidden-layer 
matrices, as in (1), where ܽ  is the input weights, ܾ  is the 
hidden layers biases, ߚ is the output weight that connects the ݅௧  hidden node and output node, ݂ሺ. ሻ  is the activation 
function, ܮ is the number of hidden neurons, and ܰ is the 
number of distinct input or output data. 

 ∑ ,݂൫ܽߚ ܾ, ൯ ൌ ,ݐ ݆ ൌ 1,2, … , ܰୀଵ                                       (1) 
  
This is equivalent to ߚܪ ൌ ܶ, where 

ܪ  ൌ ݂ሺܽଵ, ܾଵ, ଵሻ … ݂ሺܽ, ܾ, ڭሻ ڰ ,ሺܽଵ݂ڭ ܾଵ, ேሻ … ݂ሺܽ, ܾଵ,  ,ேሻ൩
ߚ  ൌ  ߚଵ்ߚڭ் ൩, and ܶ ൌ ݐଵ்ݐڭ் ൩. 

 
 Step 3: Calculate the output weights by ߚ ൌ  .ܪ ା is the Moore-Penrose generalized inverse ofܪ ାܶ, whereܪ
  
 As analyzed by [1], ELM can reach good generalization 
performance by ensuring two properties of learning: the 
smallest norm of weights besides the smallest squared error 
within the training samples, while the gradient-based 
algorithms focus on the later property only. However, the 
randomness of weights and biases may lead to non-optimal 
performance. The search process of near-optimal ANNs is 
widely explored, using EAs [9]. In this approach, EAs and 
ANNs are combined to produce hybrid models with low error 
and high generalization, yielding evolutionary ANNs. 

III. DIFFERENTIAL EVOLUTION 
 DE, proposed by [10], is a powerful, easy to use, fast, 
reliable EA that is used for tackling difficult optimization 
tasks. Since its inception, DE’s reputation as an effective 
optimization algorithm has grown. One of the most important 
advantages of DE is that it has a small number of control 
parameters for adjustment, which adds to its simplicity. 
Despite its simplicity, DE exhibits much better performance 
in comparison with several other EAs on a wide variety of 
tasks including single-objective, multi-objective, unimodal, 
multimodal, separable, non-separable, and so on [11]. 
 

 The DE algorithm creates a population of candidate 
solutions, chosen randomly in the search space, represented 
by ܲீ ൌ ൛ ܺ,ீ , ݅ ൌ 1,2, … , ܰܲൟ, where ܩ  is the index of the 
current generation, ݅ is the index of the individual and ܰܲ is 
the population size. Each individual ݅  is a ܦ -dimensional 
vector represented as follows: ܺ,ீ ൌ ሺݔ,,ீ, ݆ ൌ 1,2, . . , ሻܦ , 
where ݔ,,ீ is the attribute ݆ of the individual ݅ in generation ܩ. All individuals are candidate solutions for the objective 
function ݂ሺ. ሻ to be minimized. Algorithm 1 shows how DE 
affects the population until achieve the stopping criterion. 

 
Algorithm 1 - Differential Evolution 

1:   // Inicialization 
2:    Create a random initial population ܲ of ܰܲ individuals 
3:  // Evaluation 
4:    Evaluate each individual 
5:     while termination criterion not met do 
6:       for ݅ ൌ  1 to ܰܲ do 
7:         // Mutation 
8:           Select basis vector ܺଵ,ீ 
9:           Randomly choose ܺଶ,ீ ് ܺଵ,ீ 
10:           Randomly choose ܺଷ,ீ ് ܺଶ,ீ ് ܺଵ,ீ 
11:           Calculate the vector donor  
12:             ܸ,ீ ൌ ܺଵ,ீ  ீ,ሺܺଶܨ െ ܺଷ,ீሻ 
13:         // Crossover 
14:            Generate ݆ௗ ൌ ,ሺ1ݐ݊݅݀݊ܽݎ  ሻܦ
15:          for  ݆ ൌ  1 to ܦ do 
16:              if ݆ ൌ ሺ0,1ሻ݀݊ܽݎ or ݀݊ܽݎ݆    then ݎܥ
17:               ܷ,, ൌ   ܸ,, 
18:              else 
19:                ܷ,, ൌ   ܺ,, 
20:              end if 
21:            end for 
22:         // Evaluation 
23:            Evaluate the new individual ܷ,ீ 
24:         // Selection 
25:            if ݂ሺ ܷ,ீሻ ≤ ݂ሺ ܺ,ீሻ 
26:           ܺ,ீାଵ ൌ  ܷ,ீ 
27:       else 
28:            ܺ,ீାଵ ൌ  ܺ,ீ  
29:          end if 
30:        end for 
31:      end while 
32: return ܲ 

 
In this work we use the classical DE algorithm 

(DE/rand/1/BIN). The main operators of DE are: 
 

 Mutation: for each individual ܺ,ீ , a mutant vector is 
defined by (2), where 1ݎ,  ,are mutually different 3ݎ and ,2ݎ
randomly selected indices chosen from the range ሾ1, ܰܲሿ. ܨ 
is the mutation factor, which provides the amplification to the 
difference between two individuals so as to avoid search 
stagnation and it is usually taken in the range of ሾ0,1ሿ. 

 ܸ,ீ ൌ ܺଵ,ீ  ܨ ൈ ሺܺଶ,ீ െ ܺଷ,ீሻ                                            (2) 
 

Crossover: in this step, each member of the population ܺ,ீ  
is crossed with a mutant vector ܸ,ீ. They exchange attributes 
following the crossover probability ܥ ߳ ሾ0,1ሿ, as shown in 
(3), in order to form the trial vector ܷ,ீ. 
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ீ,,ݑ ൌ ൜ݒ,,ீ,   ݂݅ ݊ܽݎ ݀ሺ0,1ሻ  ൌ ݆ ݎ ܥ  ݆ௗݔ,,ீ, ݁ݏ݅ݓݎ݄݁ݐ                  (3) 

 
Selection: then the trial vector ܷ,ீ  is evaluated and 

compared to the current vector ܺ,ீ. The member for the next 
generation, at ܩ ൌ  ܩ   1, is described in (4). 
 

ܺ,ீାଵ ൌ ൜ ܷ,ீ,  ݂݅ ݂ሺ ܷ,ீ ሻ  ݂ሺ ܺ,ீ ሻܺ,ீ , ݁ݏ݅ݓݎ݄݁ݐ                                          (4) 

 
 In each generation ܩ , the parameters ܨ  and ݎܥ  were 
updated as in (5) and (6), respectively, where ݀݊ܽݎሺ0,1ሻ is a 
random number from the range ሾ0,1ሿ, ܩ௫  is the maximum 
number of generations ܩ. 
ܨ  ൌ 0.5 ൈ ሺ1   ሺ0,1ሻሻ                                                           (5)݀݊ܽݎ
ݎܥ  ൌ ሺܩ௫ െ  ௫                                                                  (6)ܩ/ሻܩ

IV. FITNESS SHARING 
The main goal of Fitness Sharing (FS) [12] is to distribute a 

population of individuals along a set of resources. When an 
individual ܺ,ீ  is sharing resources with other individuals, its 
fitness ݂ሺ ܺ,ீሻ is degraded in proportion to the number and 
closeness to individuals that surround it. The shared fitness 
for an individual ܺ,ீ is simply calculated as in (7). 

ݎ݄݂ܽܵ  ൌ ሺ,ಸሻ∑ ௦ೕಿುೕసబ                                                                        (7) 

 
 The similarity between individuals ܺ,ீ  and ܺ,ீ is 
measured by a distance function ݃݊݅ݎ݄ܽݏ , as in (8). 
 

݃݊݅ݎ݄ܽݏ ൌ ൞1 െ ሺ݀ ௦൘ߪ ሻఈ, ݂݅ ݀  ൏ ,௦0ߪ  ݁ݏ݅ݓݎ݄݁ݐ                  (8) 
 
In (8), ߙ is a constant to determine the shape of the sharing 

function, and ߪ௦  means the sharing radius. If the 
difference of the individuals is large than ߪ௦ , they do not 
share the fitness. Only the individuals who have smaller 
distance values than ߪ௦  can share the fitness. The sharing 
radius is determined by a threshold value derived from (9), 
where ݀ is a measure of distance between individual ݅ and ݆. 

௦ߪ  ൌ  ଵଶൈேమ ∑ ∑ ݀ேୀଵேୀଵ                                                       (9) 
 
In DE, since the evolution process aims at searching for the 

minimum value, therefore ݂݄ܵܽݎ  is modified as in (10). 
ݎ݄݂ܽܵ  ൌ ݂൫ ܺ,ீ൯ ൈ ∑ ேୀ݃݊݅ݎ݄ܽݏ                                          (10) 

 
 The general flowchart of an enhanced DE algorithm 
incorporating sharing function method is illustrated in Fig. 1. 

 
 

Fig. 1.  General flowchart of the modified DE algorithm with FS. 

V. COMBINING CLASSIFIERS 
 The research field of ensembles becomes very popular 
after the half of the 1990 decade, with many papers published 
on the creation of ensemble methods that provide some 
theoretical insights of why combining classifiers could be 
interesting. According to Dietterich [13], there are three main 
motivations to combine multiple classifiers, the best case, the 
worst case, and the computational motivations: 
 

Representational (or best case) motivation: combination of 
multiple classifiers may have a better performance than the 
single best classifier among them. There are many 
experimental evidences that it is possible if the classifiers in 
an ensemble make different errors on a test set. 
 
 Statistical (or worst case) motivation: it is possible to avoid 
a wrong classifier by averaging several classifiers. It was 
confirmed theoretically in [13]. There is no guarantee, 
however, that the combination will perform better than from 
only one classifier among them.  
  
 Computational motivation: some algorithms perform an 
optimization task in order to learn and suffer from local 
minima. Algorithms such as the back-propagation are 
initialized randomly in order to avoid locally optimum 
solutions. In this case it is a difficult task to find the best 
classifier, and it is often used several (hundreds or even 
thousands) initializations in order to find a presumable 
optimal classifier. Combination of such classifiers showed to 
stabilize and improve the best single classifier result [13].  
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 There are basically two principal approaches for 
combining classifiers: static and dynamic selection [14]. In 
the static approach, bagging [15], boosting [16], and random 
subspace [17], generates a pool of classifiers ܥ ൌሼܥଵ, ,ଶܥ … ,  ,ሽ, while arithmetic rule (e.g. maximum, meanܥ
median, minimum, product), majority vote or another 
different classifier are examples of techniques used to 
combine their decisions. Given such a classifier pool, the 
dynamic selection has focused on finding the most relevant 
subset of classifiers ܦ, for each query pattern, rather than 
combining all available ݈ classifiers, where |ܦ|    .|ܥ|

VI. PROPOSED METHOD 
The hybridization of DE and FS was performed to build an 

automatic method capable of seeking a diverse and accurate 
pool of ELMs. The DE was executed for ܩ௫ ൌ 1000 
generations. We use many generations because we wanted to 
provide enough time for a satisfactory fitness level to be 
achieved for the population. The population size used was ܰܲ ൌ  20. A small number of individuals was used because 
we wanted to observe the effect of shared fitness function. If 
we use a very large number of individuals, the effect of shared 
fitness function could be hidden. With the use of DE, an 
encoding schema and objective function were defined. In  
encoding schema, an individual contains the ELM 
information organized in five parts, as illustrated in Fig. 2.  

 

Inputs Hidden 
Neurons 

Activation 
Function 

Input  
Weights 

Hidden 
Biases 

 

Fig. 2.  Composition of an individual. 
 
The first part of the individual is responsible for the process 

of selecting a subset of inputs extracted from the original set, 
in order to reduce the dimensionality of the problem and 
consequently the complexity of ELMs generated. The second 
part contains information on the hidden neurons. We use the 
minimum number of neurons ܰ ൌ 10 and the maximum 
number of neurons ܰ௫ ൌ 30 . Having too many hidden 
neurons is analogous to a system of equations with more 
equations than free variables: the system is over specified, 
and incapable of generalization. The third part encodes the 
activation function. We use the Gaussian radial basis 
function, hyperbolic tangent function, sigmoid function, sine 
function, and triangular basis function. The fourth and fifth 
parts correspond to the input weights and hidden biases 
(obtained in the range ሾെ1,1ሿ), respectively. The information 
of each part is decoded to form an ELM. After the structure is 
set, the MP generalized inverse is used to analytically 
calculate the output weights. 

A multi-objective learning algorithm can take into account 
more than one objective (instead of using only the training 
dataset to avoid overfitting [2]). Thus, we adopt the most 
known error functions for the training and validation datasets, 
i.e., the root mean square error (RMSE) and classification 
error (CE), defined respectively in (11) and (12). 
ൌ ܧܵܯܴ  ට∑ ∑ ሺ௧ೕିೕሻమೕసభసభ ൈ                                                       (11) 
ൌ ܧܥ  ∑ ୀଵܥ                                                                             (12) 

In (11), ݉ is the number of output units, ݐ is the target to 
pattern ݅  in the output ݆  ,  is the output obtained to the 
pattern ݅ in the output ݆ and ݊ is the number of samples. In 
(12), ܿ  is the number of classes and ܥ  is the number of 
patterns misclassified per class. The RMSE and CE are 
rescaled using fitness sharing method, as in (10). To calculate 
the distance between the networks used to determine the ߪ௦  and the value of  ݃݊݅ݎ݄ܽݏ , we use the method of 
average output [18], as in (13) and (14), where ݊  is the 
number of samples, ݉ is the number of outputs units, ሺݔ௧ሻ 
is the output of the ௧ output node for the ݐ௧ input data.  
 ܱ ൌ ሺ∑ ௧ሻ௧ୀଵݔሺ ሻ ݊ൗ                                                                  (13) 
 ܱ ൌ ሺ ܱଵ, ܱଶ, … , ܱሻ                                                               (14) 
 
 The distance between the two ELMs is the Euclidean 
distance of their average outputs. The similarity between 
ELM ݅ and ݆ can be calculated as in (15). 
 ݀ ൌ ඥ∑ ሺ ܱ െ ܱሻଶୀଵ                                                            (15) 

VII. EXPERIMENTS AND RESULTS 
The experiments were conducted using 14  well-known 

benchmarks classification tasks found in [19]. The 
specifications of these tasks are summarized in Table I, which 
shows diversity in the number of examples, attributes and 
classes. All attributes have been normalized into the range 
[0,1], while the targets have been normalized into [െ1,1].  

 
TABLE I 

SPECIFICATION OF THE TASKS USED IN THE EXPERIMENTS 
Task Examples Attributes Classes  

Abalone 4177 8 3  
Cancer 699 9 2  

Car 1728 6 4  
Diabetes 694 8 2  

Ecoli 336 7 8  
Glass 214 9 6  
Iris 150 4 3  

Pendigits 10992 16 10  
Sat 6435 36 6  

Sonar 208 60 2  
Vehicle 846 18 3  
Vowel 528 10 11  
Wine 178 13 3  
Yeast 1484 8 10  

 
Each task was randomly divided into 50%  for training, 25%  for validation and 25%  for test. 30  executions were 

done for each task. Tables II and III presents the accuracy rate 
in % (the best results are emphasized in bold, according to the 
empirical analysis) and the standard deviation in brackets,  
comparing the initial pool, final pool using DE, and final pool 
using DE+FS. In Table II, all ELMs were combined by mean 
rule (static approach). In Table III, the KNORA (K Nearest 
ORAcles) Eliminate [20] was used (dynamic approach). 
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TABLE II 
CLASSIFICATION ERROR OF STATIC APPROACH IN TEST SET 

Task Initial Pool DE DE+FS 
Abalone 0.3467 (0.0154) 0.3364 (0.0158) 0.3381 (0.0141) 
Cancer 0.0297 (0.0127) 0.0326 (0.0115) 0.0295 (0.0114) 

Car 0.2526 (0.0413) 0.0958 (0.0234) 0.0877 (0.0202) 
Diabetes 0.2385 (0.0226) 0.2312 (0.0261) 0.2268 (0.0274) 

Ecoli 0.1861 (0.0504) 0.1409 (0.0355) 0.1333 (0.0343) 
Glass 0.3792 (0.0610) 0.3453 (0.0597) 0.3302 (0.0577) 
Iris 0.0667 (0.0393) 0.0468 (0.0274) 0.0423 (0.0272) 

Pendigits 0.1062 (0.0090) 0.0586 (0.0058) 0.0585 (0.0059) 
Sat 0.1702 (0.0056) 0.1502 (0.0064) 0.1483 (0.0076) 

Sonar 0.2167 (0.0527) 0.1801 (0.0506) 0.1744 (0.0468) 
Vehicle 0.2520 (0.0247) 0.1954 (0.0189) 0.2058 (0.0231) 
Vowel 0.3487 (0.0597) 0.2707 (0.0410) 0.2667 (0.0370) 
Wine 0.0205 (0.0226) 0.0182 (0.0192) 0.0098 (0.0154) 
Yeast 0.4451 (0.0239) 0.4084 (0.0218) 0.4067 (0.0194) 

 
TABLE III 

CLASSIFICATION ERROR OF DYNAMIC APPROACH IN TEST SET 
Task Initial Pool DE DE+FS 

Abalone 0.3725 (0.0175) 0.3380 (0.0152) 0.3449 (0.0130) 
Cancer 0.0349 (0.0137) 0.0375 (0.0120) 0.0316 (0.0104) 

Car 0.1350 (0.0287) 0.0722 (0.0208) 0.0630 (0.0151) 
Diabetes 0.2738 (0.0312) 0.2331 (0.0232) 0.2385 (0.0240) 

Ecoli 0.1786 (0.0504) 0.1425 (0.0350) 0.1353 (0.0352) 
Glass 0.3447 (0.0718) 0.3371 (0.0620) 0.3396 (0.0720) 
Iris 0.0495 (0.0276) 0.0505 (0.0299) 0.0441 (0.0261) 

Pendigits 0.0370 (0.0067) 0.0299 (0.0048) 0.0286 (0.0046) 
Sat 0.1542 (0.0059) 0.1340 (0.0100) 0.1288 (0.0077) 

Sonar 0.2115 (0.0589) 0.1737 (0.0412) 0.1647 (0.0512) 
Vehicle 0.2545 (0.0251) 0.1956 (0.0221) 0.2096 (0.0253) 
Vowel 0.2525 (0.0507) 0.2063 (0.0406) 0.2086 (0.0361) 
Wine 0.0212 (0.0223) 0.0174 (0.0195) 0.0098 (0.0176) 
Yeast 0.4615 (0.0174) 0.4076 (0.0225) 0.4148 (0.0216) 

 
Tables II and III show that, in an empirical analysis, the 

accuracy rates obtained by DE+FS outperforms the final pool 
using DE for most tasks, 12 against 2 tasks in static approach 
and 8 against 6 tasks in dynamic approach. DE+FS achieved 
better results than initial pool in all tasks. DE achieved better 
results than initial pool, except in Cancer (both approaches) 
and Iris (only in dynamic approach) tasks. However, it is 
necessary to assess whether the performances are statistically 
betters. Thus, we performed the paired ݐ-tests (ߙ ൌ 0.05). In 
static approach, DE+FS was better than initial pool except in 
two tasks (Cancer and Diabetes). In dynamic approach, 
DE+FS was better than initial pool except in three tasks 
(Cancer, Glass, and Iris) and better than final pool using DE 
in three tasks (Cancer, Car, and Sat).  

To access the accuracy of the proposed method, other 
techniques were used for comparison. Table IV presents the 
performance of some traditional ensemble methods, executed 
in Weka 3.6.8: AdaBoost [16] (ADBO), Bagging [15] 
(BAG), and Random Subspace Method [17] (RSM). The 
parameters values were chosen as default from Weka 3.6.8. 
The best results are emphasized in bold, according to the 
empirical analysis, and the standard deviation in brackets.  

 

TABLE IV 
COMPARISONS BETWEEN TRADITIONAL ENSEMBLE METHODS 

Task Proposed 
Method ADBO BAG RSM 

Abalone 0.3381 
(0.0141) 

0.4321 
(0.0201) 

0.3620 
(0.0136) 

0.3568 
(0.0165) 

Cancer 0.0295 
(0.0114) 

0.0477 
(0.0144) 

0.0396 
(0.0141) 

0.0381 
(0.0131) 

Car 0.0630 
(0.0151) 

0.2896 
(0.0198) 

0.0536 
(0.0112) 

0.2819 
(0.0290) 

Diabetes 0.2268 
(0.0274) 

0.2520 
(0.0300) 

0.2497 
(0.0259) 

0.2553 
(0.0316) 

Ecoli 0.1333 
(0.0343) 

0.3587 
(0.0501) 

0.1829 
(0.0459) 

0.1984 
(0.0567) 

Glass 0.3302 
(0.0577) 

0.5792 
(0.0650) 

0.3346 
(0.0503) 

0.3195 
(0.0620) 

Iris 0.0423 
(0.0272) 

0.0495 
(0.0225) 

0.0441 
(0.0251) 

0.0423 
(0.0323) 

Pendigits 0.0286 
(0.0052) 

0.8011 
(0.0066) 

0.0329 
(0.0044) 

0.0278 
(0.0035) 

Sat 0.1288 
(0.0077) 

0.5664 
(0.0093) 

0.1188 
(0.0078) 

0.1146 
(0.0083) 

Sonar 0.1647 
(0.0077) 

0.2609 
(0.0622) 

0.2519 
(0.0655) 

0.2526 
(0.0062) 

Vehicle 0.2058 
(0.0231) 

0.4608 
(0.0427) 

0.2572 
(0.0246) 

0.2535 
(0.0210) 

Vowel 0.2086 
(0.0361) 

0.8651 
(0.0188) 

0.3283 
(0.0508) 

0.2879 
(0.0422) 

Wine 0.0098 
(0.0176) 

0.1000 
(0.0483) 

0.0901 
(0.0697) 

0.0742 
(0.0462) 

Yeast 0.4067 
(0.0194) 

0.5979 
(0.0227) 

0.4178 
(0.0225) 

0.4472 
(0.0330) 

 
Table IV shows that, in an empirical analysis, the rates 

obtained by the proposed method have the lowest error for 
most of tasks, 10 against 4 tasks. The paired ݐ-tests (ߙ ൌ0.05 ) showed that the proposed method was better than 
ADBO, except in Iris task (equivalent). BAG was better only 
in one task (Car) and equivalent in two tasks (Glass and Iris). 
RSM was better in only one task (Sat) and equivalent in three 
tasks (Glass, Iris, and Pendigits). This results show the 
potential of ensembles when EA are employed to optimize the 
classifier generation. 

 
TABLE V 

COMPARISONS BETWEEN METHODS FROM LITERATURE 

Task Proposed 
Method [3] [4] [5] [6] [21] 

Abalone 0.3381 - - - - - 
Cancer 0.0295 0.0352 - 0.0360 0.0310 - 

Car 0.0630 - - - - - 
Diabetes 0.2268 0.2288 0.2278 0.2313 0.2284 0.2648 

Ecoli 0.1333 0.1538 - - 0.1326 - 
Glass 0.3302 0.3573 - 0.3133 0.3660 0.3130 
Iris 0.0423 0.0358 0.0310 - 0.0280 - 

Pendigits 0.0286 - - - - - 
Sat 0.1288 - - - - - 

Sonar 0.1647 0.2231 - - - 0.1343 
Vehicle 0.2058 0.2182 - - - 0.3182 
Vowel 0.2086 - - - - - 
Wine 0.0098 - 0.0188 - - - 
Yeast 0.4067 - - - - - 
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Table V presents comparisons between some methods 
from the literature. This type of comparison must be made 
with caution, because the results are obtained with different 
experimental model setups as well as with different learning 
approaches. Thus the boldfaced values indicate the method 
that has the lowest error for each problem. In most number of 
tasks, the proposed method achieved better performance. 

VIII. FINAL REMARKS 
This work is concerned with the development of a method 

that aims automatic construction of ensembles, based on an 
enhanced DE incorporating a sharing function method. We 
have considered two variants: static and dynamic approaches. 
Both variants have achieved better-performing when 
compared with the initial pool and final pool using only DE. 
The proposed algorithm also outperforms some traditional 
ensembles and methods from literature. The use of a shared 
function method contributed for the diversity and accuracy in 
the population of classifiers. For this work, we choose ELM 
as our base classifier but, in principle, any other classifier can 
be used. Furthermore, other optimization algorithms could be 
applied as well multimodal techniques. 

REFERENCES 
[1] G. B. Huang, Q. Y. Zhu, C. K. Siew, Extreme Learning Machine: 

Theory and Applications, Neurocomputing, vol. 70, no. 1-3, pp. 
489-501, 2006.  

[2] Q. Y. Zhu, A. Qin, P. Suganthan, G. B. Huang, Evolutionary Extreme 
Learning Machine, Pattern Recognition vol. 38, no. 10, pp. 1759–1763, 
2005. 

[3] E. M. N. Figueiredo, and T. B. Ludermir, Investigating the use of 
Alternative topologies on Performance of the PSO-ELM, 
Neurocomputing, vol. 127, pp. 4-12, 2014. 

[4] L. D. S. Pacífico, T. B. Ludermir, Evolutionary Extreme Learning 
Machine Based on Particle Swarm Optimization and Clustering 
Strategies, International Joint Conference on Neural Networks, 2013 

[5] T. P. F. Lima, and T. B. Ludermir, Optimizing Dynamic Ensemble 
Selection Procedure by Evolutionary Extreme Learning Machines and 
a Noise Reduction Filter, IEEE International Conference on Tools with 
Artificial Intelligence, pp. 546-552, 2013. 

[6] D. N. G. Silva, L. D. S. Pacifico, and T. B. Ludermir, Na Evolutionary 
Extreme Learning Machine Based on Group Search Optimization, 
Congress on Evolutionary Computation, pp. 574-580, 2011. 

[7] L. I. Kuncheva, J. Bezdek, and R. Duin, Decision Templates for 
Multiple Classifier Fusion: an Experimental Comparison, Pattern 
Recognition, vol 24, no. 2, pp. 299-314, 2001.  

[8] M. P. Ponti-JR, Combining Classifiers: from the Creation of Ensembles 
to the Decision Fusion, Conference on Graphics Pattern, and Images 
Tutorials, pp. 1-10, 2011. 

[9] L. M. Almeida, and T. B. Ludermir, A multi-objective memetic and 
hybrid methodology for optimizing the parameters and performance of 
artificial neural networks, Neurocomputing, vol. 73, no. 9, pp. 
1438-1450, 2010. 

[10] R. Storn, and K. Prince, Differential evolution: a Simple and Efficient 
Heuristic for Global Optimization over Continuous Spaces. Journal of 
Global Optimization, vol. 11, no. 4, pp. 341-359, 1997. 

[11] S. Das, and P. Suganthan, Differential Evolution – A Survey of the 
State-of-the-art, IEEE Transactions on Evolutionary Computation, vol. 
15, no. 1, pp. 4-31, 2011. 

[12] D. E. Goldberg, J. Richardson, Genetic Algorithms with Sharing for 
Multimodal Function Optimization, Proceedings of the Second 
International Conference on Genetic Algorithms, pp. 41-49, 1987. 

[13] T. G. Dietterich, Ensemble Methods in Machine Learning, 1st Int. 
Work. on Multiple Classifier Systems, pp. 1-15, 2000. 
 
 

[14] K. Woods, W. P. Kegelmeyer, and K. W. Bowyer, Combination of 
Multiple Classifiers Using Local and Accuracy estimates, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 19, 
no. 4, pp. 405-410, 1997. 

[15] L. Breiman, Bagging predictors, Machine Learning, vol. 24, no. 2, pp 
123-140, 1996. 

[16] R. E. Schapire, The Strength of Weak Learn Ability, Machine 
Learning, vol. 5, no. 2, pp. 197-227, 1990. 

[17] T. K. Ho, The Random Subspace Method for Constructing Decision 
Forests, IEEE Transactions Pattern Analysis and Machine Intelligence, 
vol. 20, no. 8, pp. 832-844, 1998. 

[18] K. J. Kim, S. B. Cho, Evolutionary Ensemble of Diverse Artificial 
Neural Networks using Speciation, Neurocomputing, vol. 71, pp. 
1604-1618, 2008. 

[19] A. Frank, A. Asuncion.: UCI Machine Learning Repository (2010), 
http://archive.ics.uci.edu/lm 

[20] A. Ko, R. Sabourin, and A. Britto Jr., From Dynamic Classifier 
Selection to Dynamic Ensemble Selection, Pattern Recognition, vol. 
41, no.5, pp. 1718-1731, 2008. 

[21] D. S. Severo, E. Veríssimo, G. D. C. Cavalvanti, and T. I. Ren, Hybrid 
Feature Selection and Weighting Method Based on Binary Particle 
Swarm Optimization, IEEE International Conference on Tools with 
Artificial Intelligence, pp. 433-438, 2013.  

2682




