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Abstract— Serotonin and dopamine transmitters are synthe-
sized in the lower brain but are transmitted widely to many
areas of the brain. Emergent representations are critical in un-
derstanding their effects. In our prior work [26], their effects on
internal, non-motor neurons are studied for pattern recognition
tasks only. In this paper, we study their effects on sequential
tasks — robot navigation with different settings. They are
sequential tasks because the outcome of behavior depends on
not only the current behavior as in pattern recognition but also
the previous behaviors (e.g., previous navigational trajectories).
Analytically, we show that the serotonin and dopamine systems
affect the performance of sequential tasks in a compounded
way. Experimentally, we show that the effect on the learning
rate of feature neurons (in the Y area) allows the agent to
approach the friend and avoid the enemy faster as compounding
effects of sequential states. Further, we tested the effect of
punishment and reward schedule with the same initial locations.
We also experimented the effect of punishment and reward
schedule with random initial locations. These experiments all
indicated that the reinforcement learning via the serotonin and
the dopamine systems is beneficial for developing desirable
behaviors in this set of sequential tasks — staying close to
its friend and away from its enemy. As far as we know, this
is the first work that investigates the effects of reinforcer (via
serotonin and dopamine) on internal neurons for sequential
tasks.

I. INTRODUCTION

THE modulatory system of the brain is often called
motivational system or value system in neuroscience

and psychology. It is about how neurons in the brain use a
few particular types of neural transmitter to indicate certain
properties of signals. In the subject of neural modulation,
a small group of neurons synthesize and release a particular
type of neural modulatory transmitters which diffuse through
large areas of the nervous system, producing an effect on
many neurons. Functionally, neural modulation is needed for
non-associative learning (e.g., sensitization and habituation),
classical conditioning, instrumental conditioning (also called
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reinforcement learning), motivation, emotion and homeosta-
sis.

A modulatory system goes beyond information process-
ing and sensorimotor behaviors. It provides mechanisms to
developmental system so that it develops dislikes and likes
[1]. Without a modulatory system, the brain does not have a
sense of what is important to learn.

A. Neurotransmitter

A main function of the brain is to develop circuits for
processing sensory information and generating corresponding
motor actions. Such processing is characterized by direct
synaptic transmission—the pre-synaptic neuron directly in-
fluences the post-synaptic neuron through different types
of neurotransmitters. For example, glutamate is a kind of
neurotransmitter. Nerve impulses trigger release of glutamate
from the pre-synaptic cell [2]. Once released, the glutamate
neurotransmitter binds a glutamate receptor, such as the
NMDA receptor, in the post-synaptic neuron. A sufficient
number of bindings by neurotransmitters results in the firing
of the post-synaptic neuron [3]. Each cell typically has many
receptors, of many different kinds.

While glutamate and GABA are neurotransmitters whose
values are largely neutral in terms of reference at the time
of birth, some other neurotransmitters appear to have been
used by the brain to represent certain signals with intrinsic
values [1], [3], [4]. For example, serotonin (5-HT) seems to
be involved with pain, punishment, stress and threats; while
dopamine (DA) appears to be related to pleasure, wanting,
anticipation and reward [4].

Therefore, 5-HT and DA, along with many other neuro-
transmitters that have inherent values, seem to be useful for
modeling the intrinsic value system of the central nervous
system and artificial neural networks.

B. Psychological and biological studies

Psychological studies have provided rich behavioral ev-
idence about the existence of the motivational system [1,
5-13]. It is known that the motivational system is important
to the autonomous learning of the brain. However, although
there is a very rich literature about models of neuromodu-
latory systems, such models are limited in terms of com-
putational functions due to a few well known limitations in
prior neural network models. Weng argued that they have
overcome such limitations [14].

The motivational systems are often referred to as diffuse
systems in the sense that each modulatory neuron in such
a system uses a particular neurotransmitter (e.g., serotonin
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or dopamine) and makes diffuse connections, via such
neurotransmitters, with many other neurons [1]. Instead of
carrying out detailed sensorimotor information processing,
these cells often perform regulatory functions, modulating
many postsynaptic neurons (e.g., the cerebral cortex, and the
thalamus) so that they become more or less excitable, or
make fewer or more connections. The neurotransmitters of
such modulatory systems arise from the central core of the
brain, typically from the brain stem. The core of each system
has a small number of neurons (e.g., a few thousand), but
each such neuron contacts more than 100,000 postsynaptic
neurons that are widely spread across the brain. The synapses
of such modulatory neurons release a particular type of
transmitter molecule (e.g., serotonin or dopamine) into the
extracellular fluid. Thus, such molecules diffuse to many
neurons, instead of being confined to a local neighborhood
of a synaptic cleft.

The effects of dopamine and serotonin are not completely
understood, according to the literature. Both serotonin and
dopamine come in many different forms, since the brain may
conveniently use a particular neurotransmitter for different
purposes in different parts of the body. For example, some
forms of dopamine are related to reward and some serotonin
is related to aversion and punishment. There are other forms
of serotonin and dopamine that have different effects that are
not widely understood [7], [15]. We will focus on the forms
of dopamine and serotonin that affect the brain as reward
and punishment respectively.

Dopamine is released in the brain’s Ventral Tegmental
Area (VTA) and particularly the nucleas accumbens act as
a general facilitative agonist for pleasure and is related to
the reinforcement of behaviors [16]. Increased dopamine
in these areas creates such feelings as euphoric sensations,
added energy, and an increase in focus ability. Dopamine
is associated with reward prediction [7]. If an agent gets a
reward, then dopamine is released in the brain. If an agent
is expecting a reward, dopamine is also released.

Serotonin often appears to be dopamines counterpart [17].
Dopamine excites the neurons while serotonin inhibits them.
One specific type of serotonin with this effect is 5-HT. Sero-
tonin leads to behavior inhibition and aversion to punishment
[17]. For example, if a monkey pushes a lever and receives
a shock, then it will avoid pressing that lever [7]. There
are two parts of the brain that release serotonin, the dorsal
raphe and the median raphe [17]. The dorsal raphe connects
serotonin to all of the areas that have dopamine connections
[18]. Serotonin from the dorsal raphe interacts with dopamine
to cause the agent to avoid behaviors that the dopamine
encourages.

In the following, wet discuss the theory for emergent value
systems for sequential tasks.

II. THEORY FOR VALUE SYSTEM OF SEQUENTIAL TASKS

In terms of context dependence, there are two types of
tasks, episodic and sequential.

A. Episodic and sequential tasks

In an episodic task environment, the agent’s experience
is divided into atomic episodes. Each episode consists of
the agent perceiving and then performing a single action.
Crucially, the next episode does not depend on the actions
taken in previous episodes. In episodic environments, the
choice of action in each episode depends only on the episode
itself. Many classification tasks are episodic. For example,
an agent that has to spot defective parts on an assembly line
bases each decision on the current part, regardless of previous
decisions; moreover, the current decision does not affect
whether the next part is defective. In sequential environ-
ments, on the other hand, the current decision could affect all
future decisions. Chess, taxi driving and robot navigation are
sequential. In these cases, short-term actions can have long-
term consequences [19]. Episodic environments are much
simpler than sequential environments because the agent does
not need to think ahead.

B. Reinforcement in sequential tasks

Reinforcement learning is the problem faced by an agent
that must learn behavior through trial-and-error interactions
with a dynamic environment. Without some feedback about
what is good and what is bad, the agent will have no grounds
for deciding which move to make [19]. The agent needs to
know that something good has happened and that something
bad has happened. This kind of feedback is called a reward
or punishment. In the natural world, signals from a pain
sensor is associated with bad and those from a sweet sensor
is associate with good. However, the brain mechanisms of
such an association is largely unknown.

Reinforcement learning has been carefully studied by an-
imal psychologists for many years [20-23]. Techniques used
in traditional reinforcement learning include: Markov deci-
sion process, dynamic programming, Monte Carlo method,
temporal difference learning, Q-learning, function approx-
imation, etc. However, those models are symbolic in the
sense that each mode has specific, handcrafted meanings for
a specific task.

Using Brain-like emergent representations, each neuron
does not have a specific task meaning. Patterns of neuronal
firing emerge from interactions of the physical external
world. In particular, a motor neuron (or a firing pattern of
neurons) does not represent a bad action until it consistently
fires with the presence of serotonin. Weng et al. [12] modeled
that serotonin and dopamine are associated with pain sensors
and sweet sensors, or punishment and reward, respectively,
in general. Serotonin inhibits the firing of the current motor
neurons and dopamine excites the firing of the current
motor neurons. Hopefully, since the diffusions of such neural
transmitters are relatively slow, statistically, the level of
such neurotransmitters correlates with the responsible motor
actions reasonably well.

The above is about motor neurons. In a sequential task,
however, each reinforcer (punishment or reward) is a conse-
quence of a sequence of past state trajectories indicated by
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sensory-state pairs in terms of (x(t), z(t)):

(x(t−m), z(t−m)), ..., (x(t−1), z(t−1)), (x(t), z(t)) (1)

where x(t) and z(t) are the sensory and state vectors, re-
spectively. In our Developmental Network (DN) framework,
state and action are the same since reporting state is an action.
E.g., say bad words is an action punishable.

The Y area, represented by a large number of Y neurons,
represents a multi-exchange bridge that form feature clusters
in the two islands X area and Z area (as discussed in the
next section):

(x(t− 1), z(t− 1))→ y→ (x(t), z(t))

where → means “predicts”. If the following (x(t), z(t)) is
independent with y, the task is episodic. In a sequential task,
the following (x(t), z(t)) depends on y.

In our prior work [26], we modeled that serotonin and
dopamine both increase the learning rate of the firing Y
neurons to memorize the important event in episodic tasks. In
this paper, we study how serotonin and dopamine increase
the learning rate of firing Y neurons for sequential tasks.
As we can see from the above analysis, changing the rate
using serotonin and dopamine transmitter should improve the
performance of learning sequential tasks.

The rest of the paper is organized as follows. In section
III, we review the theory behind our model. In section IV,
we design the experiment, show and analyze the experiment
results. In section V, we present the conclusion and the future
study.

III. NETWORK ARCHITECTURE

A. Developmental network

Development network is the basis of a series of Where-
What networks, whose 7th version, namely, the latest version,
appeared in [24]. The simplest version of a Developmental
Network (DN) has three areas, the sensory area X , the
internal area Y , and the motor area Z, with an example in
Fig. 1. The internal area Y as a “bridge” to connect its two
“banks”— the sensory area X and the motor area Z.

Fig. 1. The architecture of DA. It contains top-down connections from
Z to Y for context represented by the motor area. It contains top-down
connections from Y to X for sensory prediction (but this part is not used
in the work here). Pink areas are human designed or human taught. Yellow
areas are autonomously generated (emergent and developed).

The most basic function of an area Y seems to be
prediction—predict the signals in its two vast banks X and
Z through space and time. The prediction applies when part
of a bank is not supervised. The prediction also makes its
bank less noisy if the bank can generate its own signals (e.g.,
X)[14].

A secondary function of Y is to develop bias (like or
dislike) to the signals in the two banks, through what is
known in neuroscience as neuromodulatory systems.

The DN algorithm is as follows. Input areas: X and Z,
Output areas: X and Z. The dimension and representation
of X and Y areas are hand designed based on the sensors
and effectors of the robotic agent or biologically regulated by
the genome. Y is skull-closed inside the brain, not directly
accessible by the external world after the birth.

1) At time t = 0, for each area A in {X,Y, Z}, initialize its
adaptive part N = (V,G) and the response vector r, where
V contains all the synaptic weight vectors and G stores all
the neuronal ages.

2) At time t = 1, 2, ..., for each area A in {X,Y, Z}, do
the following two steps repeatedly forever:

a) Every area A computes using area function f .

(r′, N ′) = f(b, t, N) (2)

where f is the unified area function described in the follow-
ing equation (3), b and t are areas bottom-up and top-down
inputs from current network response r, respectively; and r′

is its new response vector.
b) For each area A in {X,Y, Z}, A replaces: N ← N ′

and r← r′.
If X is a sensory area, x ∈ X is always supervised and

then it does not need any synaptic vector. The z ∈ Z is
supervised only when the teacher chooses to. Otherwise, z
gives (predicts) motor output. Next, we describe the area
function f .

Each neuron in area A has a weight vector v = (vb,vt),
corresponding to the area input (b, t), if both bottom-up part
and top-down part are applicable to the area. Otherwise, the
missing part of the two should be dropped from the notation.
Its pre-action energy is the sum of two normalized inner
product:

r(vb,b,vt, t) =
vb

||vb||
· b

||b||
+

vt

||vt||
· t

||t||
= v̇ · ṗ (3)

where v̇ is the unit vector of the normalized synaptic vector
v = (v̇b, v̇t), and ṗ is the unit vector of the normalized
synaptic vector p = (ḃ, ṫ). The inner product measures
the degree of match between these two directions v̇ and
ṗ, because r(vb,b,vt, t) = cos(θ) where θ is the angle
between two unit vectors v̇ and ṗ. This enables a match
between two vectors of different magnitudes. The pre-action
energy value ranges in [-1, 1].

To simulate lateral inhibition (winner takes all) within each
area A, only top-k winners fire and update. Considering k =
1, the winner neuron j is identified by:

j = arg max
1≤i≤c

r(vbi,b,vti, t) (4)
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where c is the neuron number in the area A.
The area dynamically scale top-k winners so that the top-

k responses with values in [0,1]. For k = 1, only the single
winner fires with responses value yj = 1 and all other
neurons in A do not fire. The response value yj approximates
the probability for ṗ to fall into the Voronoi region of its v̇j

where the “nearness” is r(vb,b,vt, t).
All the connections in a DN are learned incrementally

based on Hebbian learning—co-firing of the pre-synaptic
activity ṗ and the post-synaptic activity y of the firing
neuron. Consider area Y , as other area learn in a similar
way. If the pre-synaptic end and the post-synaptic end fire
together, the synaptic vector of the neuron has a synapse gain
yṗ . Other non-firing neurons do not modify their memory.
When a neuron j fires, its weight is updated by a Hebbian-
like mechanism:

vj ← ω1(nj)vj + ω2(nj)yjṗ (5)

where ω2(nj) is the learning rate depending on the firing
age nj of the neuron j and ω1(nj) is the retention rate with
ω1(nj) + ω2(nj) ≡ 1. The simplest version of ω2(nj) is
1/nj , which gives the recursive computation of the sample
mean of input ṗ :

vj =
1

nj

nj∑
i=1

ṗ(ti) (6)

where ti is the firing time of the neuron. The age of the
winner neuron j is incremented nj ← nj+1. A component in
the gain vector yjṗ is zero if the corresponding component in
ṗ is zero. Each component in vj so incrementally computed
is the estimated probability for the pre-synaptic neuron to
fire under the condition that the post-synaptic neuron fires. A
more complicated version of ω2(nj) is presented in the next
section when we discuss the architecture of our motivated
system.

B. Motivated Developmental Network (MDN)

According to literature[17], serotonin and dopamine re-
ceptors are also found in brain neurons except the motor
neurons. It means that the release of serotonin and dopamine,
which occurs in RN and VTA areas, should also have effect
on neurons in Yu neurons. Previous researches [1], [25],
namely, the original MDN, modeled the effect of serotonin
and dopamine on motor areas, but they did not consider the
effect of these neurotransmitters on Yu neurons.

Fig. 2 presents the architecture of the motivated DN. It
links all pain receptors with raphe nuclei (RN) located in
the brain stem—represented as an area, which has the same
number of neurons as the number of pain sensors. Every
neuron in RN releases serotonin. Similarly, it also links all
sweet receptor with VTA—represented as an area, which has
the same number of neurons as the number of sweet sensors.
Every neuron in VTA releases dopamine.

Serotonin and dopamine are synthesized by several brain
areas. For simplicity, we use only RN to denote the area that
synthesizes serotonin and only the VTA to denote the area

Fig. 2. A motivated DN with serotonin and dopamine modulatory subsys-
tems. It has 9 areas. RN has serotonergic neurons. Neurons in YRN and Z
have serotoninergic synapses. VTA has dopaminergic neurons. Neurons in
YVTA and Z have dopaminergic synapses. The areas Yu, YRN and YVTA
should reside in the same cortical areas, each represented by a different type
of neurons, with different neuronal densities. Within each Y sub-area and
the Z area, within area connections are simulated by top-k competition.

that synthesizes dopamine, although other areas in the brain
also involved in the synthesis of these neurotransmitters.

Therefore the sensory area X = (Xu, Xp, Xs) consisting
of an unbiased array Xu, a pain array Xp and a sweet array
Xs. Y = (Yu, YRN, YVTA) connects with X = (Xu, Xp, Xs),
RN and VTA as bottom-up inputs and Z as top-down input.

Within such a motivated developmental network, the
motor area is denoted as a sequence of neurons Z =
(z1, z2, · · · , zm), where m is the number of motor neurons
whose axons innervate muscles or glands. Each zi has three
neurons zi = (ziu, zip, zis), where ziu, zip and zis (i =
1, 2, · · · ,m) are unbiased, pain and sweet, respectively. And
these indicate the effects of glutamatergic synapses, sero-
toninergic synapses and dopaminergic synapses, respectively.

Whether the action i is released depends on not only the
response of ziu but also on those of zip and zis. zip and
zis report how much negative value and positive value are
associated with the i-th action, according to past experience.
They form a triplet for the pre-action energy value of each
motor neuron, glutamate, serotonin and dopamine.

Modeling the cell’s internal interactions of the three differ-
ent types of neurotransmitter, the composite pre-action value
of a motor neuron is determined by

zi = ziuγ(1− αzip + βzis) (7)

with positive constants α, β and γ. In other words, zip
inhibits the action but zis excites it. α is a relatively larg-
er constant than β since punishment typically produces a
change in behavior much more significantly and rapidly than
other forms of reinforcers.

Then the j-th motor neuron fires and action is released
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where

j = arg max
1≤i≤m

{zi} (8)

That is, the primitive action released at this time frame
is the one that has the highest value after inhibitory modu-
lation through serotonin and excitatory modulation through
dopamine, respectively, by its bottom-up synaptic weights.
Other Z neurons do not fire.

C. Novelty

Our improvement on the motivated development network
lies in the following three aspects:

Firstly, though Zheng [26] also considered the effect of
serotonin and dopamine on the neurons in Yu, their experi-
ment object is face recognition which is a pattern recognition
problem. The recognition result is determined only by the
current decision. But the robot navigation in unknown envi-
ronment is a typical sequential problem because the current
decision can affect the following one, and the final result is
determined by all the former decisions instead of the last
one. It is very important and essential to study the effect of
serotonin and dopamine on the sequential behavior.

Secondly, previous work [2] studied the effect of serotonin
and dopamine on the learning rate of Z qualitatively. Our
research studied their effect on the learning rate of Z and Yu
quantitatively. In other words, we calculate the linear pun-
ishment (or reward ) value according to the distance between
the agent and the friend (or enemy) and the threshold, instead
of the qualitative way. Quantitative method can approach the
real case in physical world better and explain the effect of
serotonin and dopamine on the navigation performance more
directly.

Finally, we studied the effects of different environments
(such as different teachers) on the final navigation perfor-
mance. To the strict “teacher”, even though you do very well,
he still consider you have not done enough. On the contrary,
to the tolerant “teacher”, though you do not do well, he may
think you have done quite well. Different environments will
produce different effects on the same sequential task. So it is
very necessary to study the effects of different environments
on sequential tasks.

IV. EXPERIMENT

This section, we will describe the experiment procedure
designed to test the above theory and algorithm.

A. Experiment design

In our experiment, we use three robots to test our algo-
rithm. One of the robots is the agent which can think and
act, the other two are its friend and enemy, respectively. If
the agent approaches the friend robot, it is rewarded with
dopamine. If it approaches the enemy, it is punished with
serotonin. In this way, the agent will learn to close its friend
and avoid its enemy. But it must learn this behavior through
its own trial and error experience.

The agent’s brain is the motivated DN with three areas,
X , Y and Z, as depicted in Fig. 2. Where X is the sensor

area which has three sub-areas, Xu is the unbiased area, Xp

is the pain area and Xs is the sweet area. At each time step,
each area produces a response vector based on the physical
state of the world. The Xu vector is created directly from the
sensors’ input. The Xp vector identifies in which ways the
robot is punished and represents the release of the serotonin
in RN. The Xs vector identifies in which ways the robot is
rewarded and represents the release of the dopamine in VTA.

All of the YRN, YVTA and Z sub-areas compute their
response vectors in the same way. At the end of each
time step, the neurons in YRN, YVTA and Z areas that fired
update themselves. Their weights are updated according to
the former equations (5) and (6). Their ages are updated as
follows: ai ← ai+1. The Z area recombines the results from
its collaterals to compute a single response vector.

According to the work of [24], serotonin and dopamine
levels are released at different levels rather than binary
values. The release gives specific neurons in the YRN and
YVTA areas a non-zero response, which, in our version of
modulated developmental network, will have effect on the
learning rate of neurons in Yu. Moreover, the roles of a motor
neuron and an inter neuron are very different. The former
roughly corresponds to the action that is responsible for the
corresponding punishment and reward; the latter corresponds
to the memory of the corresponding event. Therefore, sero-
tonin and dopamine should increase the efficiency of learning
in Yu, instead of directly discouraging and encouraging the
firing. One way to reach such an effect is to increase the
learning rate depicted as follows:

ω2(nj) = min((1 + αRN + αVTA)
1

nj
, 1) (9)

where αRN and αVTA are the constants related with RN
and VTA respectively. This expression shows that reward
and punishment change the learning rate in Yu neurons. If
neurons in Xp and Xs do not fire, responses in RN and VTA
are zero. Thus the learning rate (9) will turn into its original
form 1/nj .

Fig. 3. The setting of the wandering plan which includes the agent, the
friend robot and enemy robot. The size of the square space used is 500×500.

B. Input and Output

The Y and Zu areas are initialized to contain small random
data in their state vectors. The Zp and Zs areas are initialized
to zero since the agent has no idea which actions will cause
pleasure or pain. The ages of all neurons are initialized to
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1. The number of neurons in Y layer and the fire number
k can be selected based on the resources available. The size
of Z area is equal to the number of actions that the agent
can perform. At any time, the agent can perform one of nine
possible actions, it can move in each of the cardinal or inter-
cardinal directions or it can maintain its current position. So
the neurons in Z areas has 9 rows and 3 columns. 3 columns
denote the Zu, Zp and Zs respectively.

The size of each vector in the X area is determined by
the transformation function through which the robot can
sense the locations of its friend and enemy. If we define
the following entities, a (agent), f (friend), e (enemy) , we
can draw a sketch of the location relation among the three
robots as figure 3, and get the following expressions:

θf =arctan(ax − fx, ay − fy),

df =
√
(ax − fx)2 + (ay − fy)2,

θe =arctan(ax − ex, ay − ey),

de =
√
(ax − ex)2 + (ay − ey)2,

xu ={cos θf , sin θf , cos θe, sin θe,
df

df + de
,

de
df + de

},

where θf and θe are the angle between the heading of the
agent and the direction of the friend robot and enemy robot,
respectively; df and de are the distance between the agent
and the friend and the enemy, respectively.

The pain sensor and the sweet sensor has just one value
to denote the fear and desire. The fear threshold is set 125,
namely, if de > 125, there is no punishment. If 30 < de ≤
125 , punishment value is set 4. Otherwise, the punishment
value is calculated through the fear threshold divided by the
actual distance de.

Similarly, the desire threshold is set 50, namely, if df <
50, there is no reward. If 50 < df ≤ 150, the reward value
is calculated through the actual distance df divided by the
desire threshold. Otherwise, the reward value is set 3.

C. Experiment setup

We designed a simulation environment to illustrate how
such a motivated agent would response in the presence of the
friend robot and enemy robot. The motivated robot (agent) is
controlled by the motivated “brain” which is actually a mo-
tivated development network. The “brain” releases serotonin
and dopamine for the enemy and friend based on the specific
circumstances. Through the simulation, the agent will learn
by reinforcement, deciding which one to avoid and which
one to go after, based on the release of the serotonin or
dopamine.

At each time step, the horizontal and vertical coordinates
are collected for each entity. With these data, we can calcu-
late the distance between the agent and its friend and enemy.
Through observing the distances of the agent to its friend and
enemy, we can measure the learning procedure of the agent.

The agent starts with a behavior pattern determined by its
initial neural network configuration. The unbiased regions are
initialized with small random data while the biased regions

are initialized to zero. This gives the initial appearance of a
random behavior pattern. Eventually, it performs an action
that causes it to be rewarded or punished, causing it to
be either favor or avoid that action when placed in similar
situations in the future.

D. Results and analysis

In order to test the effect of serotonin and dopamine on
the algorithm performance of current MDN, we compare the
distance between the agent and its friend (or enemy) under
the original MDN (based on Daly’s work, reference 2, it
only considered the effects of serotonin and dopamine on the
motor area qualitatively) and the current MDN (we designed,
it not only considered the effects of serotonin and dopamine
on the motor area, but also considered their effects on the
Yu area quantitatively) shown in Fig. 4 (a), (b) respectively.
From the figure 4, we can see that at the initial time steps,
the agent does not know that the friend can cause pleasure
and the enemy can cause pain. So it moves randomly and
does not feel pain and pleasure. But when the agent moves
towards the friend randomly, it realizes that it can receive
pleasure as seen between time step 20 and 25. Similarly,
when the agent moves towards the enemy, it realizes that it
receives pain. So from then on, the agent will stay close to
its friend while avoiding the enemy. This indicates that the
reinforcement learning is useful in teaching the agent to stay
close its friend and away from its enemy. The agent is able
to figure out how to react in a given situation rather than
having to be explicitly taught where to go.

Except this, from Fig. 4, we can also see that under the
same condition, the current MDN can get a smaller df and
bigger de than the original MDN which demonstrates the
effects of the serotonin and dopamine on the learning of Yu.
Learning rate of Yu in current MDN introduces the effect
of serotonin and dopamine, but the learning rate of Yu in
original MDN is its initial expression ω2(nj) =1/nj . So the
learning rate of current MDN is bigger than the original
MDN, its learning speed is faster than that of the original
MDN. So the current MDN can approach the friend or avoid
the enemy faster than the original MDN.

In the second part, we study the effect of same environ-
ment and different punishment and/or reward values on the
robot navigation. Initially, the three robots are set to constant
locations in different cases. In other words, their relative
locations are fixed and the distances between the agent and
the friend (or enemy) are invariable. But the punishment
and/or reward values are variable. Then we analyze the
effects of these different punishment and/or reward values
on the robot behavior improvement. The effects are shown
in Fig. 5. From Fig. 5, we can see:

(1) Very small punishment. In this situation, punishment
is set 1 and reward is set according to section B. From Fig.
5 (a), we can see that the nearest distance between the agent
and the enemy is 0. At the former one time step, the agent
is far from its friend. The agent receives the punishment and
reward at the same time, but it moves through the enemy
instead of moving far away from it and moves towards the
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Fig. 4. Distance comparison between agent and friend (a) and enemy (b)
under original MDN and current MDN.

friend. So we can conclude that when the agent, friend and
enemy are located in the same line, and if the reward value
is bigger than the punishment value, the punishment can
be omitted. This phenomenon also means that the reward
is set too big and the punishment is relatively too small.
This suggests that minimum punishment should be bigger
than the maximum reward. This is one of the requirements
in designing punishment and reward value. Their whole
depictions defined in section B are shown in Fig. 6.

(2) Small reward. In this situation, reward is set 0.3. At
time step 20 and the following time steps, we can see that
the agent does not receive punishment (because the distance
between the agent and the enemy is bigger than the fear
threshold 125) and only receive the reward. But the distance
df increases instead of decreasing. This phenomenon shows
that when the agent is far away from the enemy, the effect
of weights is bigger than that of the reward. It also means
that the reward is set relatively small.

(3) Punishment and reward value we set. From Fig. 5 (a)
and (b), we can see that in this situation, the agent can
not only keep certain distance from the enemy, but also
moves towards the friend in short time. These means that
the punishment and reward values we set are suitable.

(4) Small punishment or big reward. In this situation, the
maximum reward value is set 5 or bigger, punishment value
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Fig. 5. Distance comparisons among different punishments and/or rewards.

is set according to section B, or the reward keeps invariable
and the maximum punishment is set 2. The effects of small
punishment on algorithm performance are between that of
(1) and (3). The effects of big reward is similar to that of
the small punishment. In this situation, the agent can also
keep a certain distance from the enemy, but the distance is
relatively small, compared with that of the (3). It can also
reach the friend in short time.

In the final part, we test the effects of different environ-
mental parameters (different punishment and reward thresh-
olds) on the sequential task quantitatively. The experiment
results are illustrated in figure 7. six groups of numbers along
the horizontal axis denote the different distances between
the agent and the friend (or enemy), and these distances
are adopted as the reward (or punishment) thresholds in the
corresponding experiments, and the vertical axis denotes the
average distances we measured. If the distance between the
agent and the friend is bigger than the corresponding reward
threshold, the agent will receive a reward from its friend
which will attract the agent to move towards the friend.
Otherwise, the agent will not receive the reward. Similarly,
if the distance between the agent and the enemy is smaller
than the corresponding punishment threshold, the agent will
receive a punishment from its enemy which will force the
agent to move away from the enemy. Otherwise, the agent
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will not receive the punishment.
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Fig. 7. Average distance between agent and its friend and enemy in different
situations.

V. CONCLUSIONS

We analyzed the effect of serotonin and dopamine systems
on Y neurons for sequential tasks. We conducted three
simulation experiments to test the effects of serotonin and
dopamine on robot navigation performance. In future work,
the agent will be placed in a more complicated situation with
multiple friends and enemies to further study the effects of
serotonin and dopamine.
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