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Abstract— This paper proposes a novel bottom-up saliency
model based on the mechanism of the early vision system. A
relationship between the efficient coding theory and bottom-
up saliency map in primate visual cortex is established. In
this paper, we make a distinction of neural response between
activated and inactivated by sparse coding, and define the
saliency as uncertainity of internal representation. Beyond the
definition of saliency, our model also accounts for the issue of
why we need such a saliency map. Finally, we test this model
on artificial images such as psychological patterns and two
different scale datasets. Although it is only a simple model of
bottom-up saliency, the experiment results show it outperforms
other state-of-the-art methods.

I. INTRODUCTION

Human beings have the remarkable ability to effectively
recognize objects in complex scenary. However, since the
amount of visual information surpasses the processing ca-
pability of the visual system, for these “overloaded infor-
mation”, there must be an optimization system to select the
major parts from the original input. Selective visual atten-
tion would remove massive redundancy from visual input
data and save a few important information. It is generally
recognized that the attention could function as selecting
and filtering visual input information through two methods:
bottom-up and top-down.

In the research [11], Koch et.al propose the existence of
saliency map in the visual system and the relationship be-
tween saliency map and attention. Based on feature integra-
tion theory [20], the saliency model combining information
from several abstract feature maps (e.g. local contrast, orien-
tations, color), is designed as an input to control mechanism
for converting visual selective attention. Here we only focus
on biologically plausible computational model of bottom-up
saliency since little is known about the neural instantiation
of the top-down, volitional component of attention [7].

Many existing literatures have proposed bottom-up
saliency models based on information theory [3], spectral
theory [8], and graph theory [6]. But these models don’t
concern the real neural mechanism. So far as we know,
there is no literature proposing that the sparse coding leads
to bottom-up saliency. In this paper, we will elaborate the
relationship between efficient coding and bottom-up saliency
based on the framework of free energy theory.

The free energy principle could account for action, percep-
tion and learning. The principle suggests that agents are able
to suppress free energy by changing sensory input by acting
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on the world [5]. The efficient coding[1], as a theoretical
model of the brain sensory coding and special case of free
energy principle, considers that the responses of the sensory
system form neural codes for efficient sensory information
expression. It means neurons in the visual system suppose to
optimally code input as an efficient representation [12]. There
are many studies showing that filters optimized for coding
natural images lead to filters that resemble the receptive fields
of simple-cells in V1[16], [17].

In this paper, we propose a biological inspired bottom-up
saliency model based on free energy theory. The attention
can be understood as inferring the level of uncertainity. More
specifically, in the work we try to substantiate this point in
primary visual cortex using neuronal simulation of sparse
coding. For a given image, the free energy is defined as the
cost function of learning sparse coding for it. This definition
simulates that the visual system optimizes the uncertainity
of probabilistic representation which is concerned with atten-
tion. And then the salient value is defined as the uncerntainity
between internal representation of neurons and sensory input.

Our major contribution is building a new computational
model to simulate the bottom up saliency in primary visual
cortex. This model is compatible with the psychophysics of
human pre-attentive vision. More specifically, it is shown that
the proposed model replicates various fundamental properties
of human pre-attentive vision. The experimental comparison
addresses the ability to predict human eye fixations on natural
scenes. Our model surpasses other 4 state-of-the-art models,
though some of them even considering the top-down factor.

II. THE PROPOSED SALIENCY MODEL

In this section, we will present our saliency model based
on the efficient coding hypothesis in the framework of free
energy theory. For the sake of understanding this hypothesis,
first we will introduce free energy theory and efficient coding
principle. And then our model based on sparse coding is
proposed further.

A. Efficient Coding Hypothesis

The efficient coding principle suggests that the brain is
to optimize that mutual information between sensorium and
its internal representation. This theory is formalized later in
term of infomax principle [13]. In the view of information
theory, efficient coding decomposes an input image into two
parts:

H(Image) = H(Representation) +H(Uncertainity)

2014 International Joint Conference on Neural Networks (IJCNN) 
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 2136



where H(Representation) denotes the information
that can be interpreted by the internal representation.
H(Uncertainity) is minor, salient areas that are hard to
be represented by internal representation. In other words,
frequent patterns only lead to tiny uncertainity between the
internal representation and sensory input while irregular
patterns lead to much more uncertainity. As shown in
the Figure 1, (c) and (d) represent the uncertainity of
(a) in different internal representation. Either (c) or (d)
show that the representation of the tower in (a) has larger
uncertainity than other surrounding textures such as the
sky and the grass land. We will explain the phenomenon
more specifically in the next section by introducing sparse
coding. In the following section, we will demonstrate the
sparse representation which is used to estimate salient area
by removing the statically redundant components.

In primary visual cortex, the uncertainity between senso-
rium and its internal representation is regarded as a type of
free energy. Thus, the gaze moving is induced by the free
energy to suppress the energy by changing sensory inputs.
The action changes the location of foveal. The receptive
fields of foveal is able to decompose the input more precisely
than receptive fields out of foveal. Thus the free energy is
suppressed.

There are evidences showing that only a few of early visual
neurons out of a large set will be activated as stimulating by
a scene [2]. To simulate the property of simple cells in the
primary visual cortex, the sparse coding theory is proposed
to extract the intrinsic structure of natural images for efficient
coding [16], [21]. These studies show that an image can
be sparse represented by linear combination with few bases.
The input image can be divided into sliding overlap patches
I = [y1, . . . , yn], n is the amount of patches. And then the
corresponding sparse representation for patches are proposed
as following:

yi =

m∑
k=1

αikdk + ri (1)

where ri is the residual of sparse coding for yi and m is
the number of bases. Then yi can be decomposed to the
sparse linear combination D = [d1, ..., dm] by coefficient
αi = [αi1, ..., αim]. Supposing we have learned the over-
complete basis set, and dk is a basis of dictionary D which
is learning from the raw patches.

For simulating the optimal coding, we choose the setting of
learning different dictionaries for different images. Because
this setting all input images have similar capability of internal
representation. In order to train the over-complete basis
set D for present images, the online dictionary learning
method [14] is employed to learn different basis sets for each
input image. This process in one image is under constraint
conditions as following:

min
D,α〉

n∑
i=1

‖yi −Dαi‖22 + λ‖ai‖1 (2)

(a) (b) (c) (d)

Fig. 1. Residual maps using different basis sets. (a) and (b) are divided
from one photo with same size. (c) and (d) are the residual map of input
stimuli (a) and reconstruction result of (a) using different basis sets. (c) used
the basis sets learned from (a). (d) used the basis sets learned from (b). The
images are modified from the photo taken by Ronnie Pitman from Flickr
creative commons1.

where {y1, . . . , yn} are sliding overlap patches divided from
a given image. The above optimization problem solves an
over-complete basis set by minimizing the sum of reconstruc-
tion errors in every patch and regularizing the representation.

To demonstrate the tendency in learning basis set with
sparse constraint, as shown in the Figure 1, we divided one
image into two same size sub-images and trained the sparse
basis set from them respectively. The two different images
have similar textures and background, but the salient region
is just in Figure 1(a). We learned two different basis sets
from different sub-images and respectively reconstructed the
sub-image contained salient region by the different basis sets.
Figure 1(c) and (d) show the residual maps using different
basis sets. The two maps are almost identical. This fully
explained why unsupervised learning with sparse constraint
only pays close attention to the redundant information. It
is an optimal coding strategy for data compression with
minimum information loss in constraint of limit neuron
activated. So for the complex part of the image, the internal
representation needs more resource (i.e. more bases in the
dictionary). In the global optimization, giving up the rare
and complex part seems to work better.

B. The definition of saliency from Sparse Coding

This principle of information maximization suggests that
the human eyes tend to focus on the most informative points
on an image. But it is still a problem that how to define the
informative points in the image. In the view of information
theory, the smaller the probability for one sample in the
dataset is, the more information it contains. Nevertheless,
it is hard to compute the probability in high dimensions by
statistical methods, and to find the real informative sample
because the probability perhaps uniform distributed or all
patches perfectly represent by few bases but no similar
patches each others. In the paper, we propose the definition
of saliency is the reconstruction error in the sparse coding
(i.e. ri in Eq.1). In the following part of this section, we
will show the purpose of the definition in the viewpoint of
information theory. In summary, this definition is a way to
measure the uncertainity in the coding process.

By sparse coding, the huge amount of patches is repre-
sented by A = [α1, . . . , αn] for intermediate latent variables
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D = [d1, ..., dm] (i.e. by over-complete basis set). The
patches [y1, . . . , yn] employ sparse representation to recon-
struct self-information as Eq.1, we denote yi as O(observer)
m∑
k=1

αikBk as Ô(reconstruction) and ε(residual) as recon-

struction error. Hence Eq.1 was reformulated as:

O(observer) = Ô(reconstruction) + ε(residual) (3)

The goal of reconstruction is minimizing the cost function

E = −I(O; Ô) + λ
m∑
k=1

|αik|. (4)

Hence it needs maximizing I(O; Ô) where

I(O; Ô) = H(O)−H(O|Ô) (5)

Since Ô is completely determined by over-complete basis set
D = {d1, . . . , dn}, then

I(O; Ô) = I(O;αi) (6)

Assuming that the residual ε is independent of O hence

H(ε) = H(O|Ô) = H(O)− I(O;αi) (7)

Therefore, the H(ε) implies the extent of uncertainty when
knowing coding αi to predict O(observer) The higher the
H(ε) is the more salient in the patch is. Here we assume the
residual ε is gaussian distribution. By the assumption, the
H(O|Ô) approximating the residual as

H(O|Ô) ≈ log ‖yi −
m∑
k=1

αikBk‖2 (8)

‖yi −
m∑
k=1

αikBk‖2 ∝ 2−I(O;αi) (9)

Therefore by above formula we know it is closely related
between residual and H(O|Ô). The minimizing residual
is closely related to maximizing I(O;αi), hence the high
residual means that the corresponding patch in the image is
hard to be represented sparsely. Thus we define the saliency
as reconstruction error (i.e. Eq.9).

C. Implementation

In our model, the sparse representation residual contains
the salient information. Sparse representation is used to
remove representation for scene. By computing the sparse
representation residual of each patch, a residual map is built.
After normalization, we get our saliency map. The model is
consist of following three steps:

(1) An image input is divided into patches of the same
size and then learn the corresonding over-complete basis set
to ensure such an image can be sparsely coded in a optimal
way.

(2) Patches are sparsely coded with the over-complete
basis set, just as the mechanism in primary visual cortex.

(3) The reconstruction error is used to measure the bottom-
up saliency. The higher the energy is, the more the salient
degree is.

III. EXPERIMENTS

We conduct experiments on psychological stimuli and
two public image datasets to evaluate the performance of
the proposed model. On different public image datasets we
compare our model with four state-of-the-art approaches:
AIM[3], Itti[9], Judd[10], and SMVJ[4]. These approaches
are carefully selected. Commonly-used evaluation criterion
of receiver operating characteristic curve (ROC) is used to
evaluate the performance of each approach.

A. Experimental Setup

All input images are down-sampled to 1
4 and 1

8 of the
original size. We learn three sets of sparse coding over-
complete bases by SPAMS[15] with default setup from
patches of the L*a*b* channel respectively in each scale.

The patches are extracted from the upper-left corner with
1 pixel overlap in each direction and normalized to range
[−1, 1]. The bases are learned from these 7×7 pixels patches
like the setting of [3]. Each over-complete basis set includes
128 sparse bases learned from the patches which are almost
as much as pixel number. By computing the residual map
of each scale and each channel, we get 6 sub-maps for each
input image. We resize, normalize and average out all 6 sub-
maps to generate the saliency map.

In each dataset, we conduct the experiments in two differ-
ent settings: ”with Center Prior” and “without Center Prior”,
to avoid the effect of Center Prior, which explained in [10]
as humans naturally tend to gaze interesting object near the
center of the image when receive a visual stimulus. Center
Prior is added into AIM, Itti’s and our algorithm in the
setting “with Center Prior”. The Center Prior is simulated
by using a two dimensional anisotropic Gaussian function
with standard deviations (σx, σy):

f(x, y) = exp{−1

2
(
x− x0
σ2
x

+
y − y0
σ2
y

)} (10)

where (x0, y0) denotes the center of the image and σy = H
and σx =W . H and W denote the height and the width of the
image. This function is used to convolve the saliency maps as
a weighted sum to generate saliency map with Center Prior.
Center Prior has already been added into SMVJ and Judd’s
algorithms in their own code. As [8], we also smoothed the
saliency map with a Gaussian filter g(x)(σgauss = 8).

We plot the ROC curve by computing the mean value of
the output from toolbox provided by [6]. The True Positive
Rate (TPR) and False Positive Rate (FPR) are computed by
following equations:

TPR =
TP

P
=

TP

TP + FN

FPR =
FP

N
=

FP

FP + TN

(11)

where true positive (TP) denotes hit, true negative (TN)
denotes correct rejection, false positive (FP) denotes Type I
error and false negative (FN) denotes Type II error. We also
compute the Areas Under Curve (AUCs) for the comparison
of different methods.
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Fig. 2. Comparison of seven psychological stimuli between our model and other approaches.

B. Experimental Results

In this section, we present the results of our method on ex-
tensive experiments on psychological stimuli and two public
eye-tracking datasets. We did experiments on psychological
stimuli adopted in a series of attention experiments [22], [20]
and made a comparison of the saliency map accuracy, using
two datasets, Bruce dataset [3] and Judd dataset [10], one
with 120 images and other one with more than 1000 images.
For each dataset we compare our model with the state-of-the-
art approaches. In psychological stimulus experiments, the
results fully illustrate our method’s generality in different pat-
terns. By the quantitative analysis with ROC curve and area
under ROC, proposed method shows a good performance in
different datasets.

We have the experiments on several psychological stimuli
which had been identified as pre-attentive. In the area of
psychology, these psychological stimuli are used to perform
the some pre-attentive visual tasks such as target detection,
boundary detection, counting and estimation. These artificial
patterns include “orientation”, “length”, “size”, “curvature”,
“density”, “intersection” and etc. . We select seven of these
to verify performance of the proposed method.

As shown in Figure 2, we compare our results with others
from Judd and Itti by showing the saliency map.The figure
clearly shows that our method predicts the good saliency
spots in seven different psychological stimuli though the
“size” and “length” pattern detect other salient regions for
local density change. However, Itti’s method completely fails
in “length”, “curvature”, “orientation”, and “length” patterns.
Even Judd’s method also fails in “curvature”, “orientation”
and “length” patterns.

1) Experiments on small-scale dataset: We use the eye-
tracking dataset collected by [3] as the small-scale dataset
in the experiments to test our model. This dataset usually
serves as the benchmark dataset for comparing the results of
saliency detection. All 120 images are shown on a 21 inch
CRT monitor with a 4 second interval at a distance of 0.75

m from the subject. The eye-tracking data are collected from
20 different subjects for the full set of 120 images.

In this experiment, we evaluate our model by both the
saliency map visual effect and the ROC computed by saliency
map compared with human fixation density. In the compar-
ison of ROC, as Figure 4 shown, both in “without Central
Prior” and the “with Central Prior” group, our model
shows competitive performance. Itti’s algorithm obtains bet-
ter results than original edition because of adopting Harel’s
implementation. Our model achieves the best performance
in both group with and without center prior. It can be seen
clearly that our model outperforms other methods in Bruce
dataset.

2) Experiments on large-scale dataset: To test the ro-
bustness of our algorithm, we use a bigger eye-tracking
dataset collected by [10] as the large-scale dataset in the
experiment section. This dataset is one of the largest eye
tracking datasets of natural images available for the vision
and graphics community on open website.

The dataset contains 1003 stimulus images from Flickr
creative commons and LabelMe [18]. The Eye tracking data
are recorded from 15 subjects who free viewed these images.
The longest dimension of each image is 1024 pixels. Images
are shown on a 19 inch monitor with a resolution 1280×1024
with a 3 second interval separated by 1 second gray screen
at a distance of approximately two feet from the subject. The
subjects are in a dark room and use a chin rest to stabilize
their head.

In the comparison of ROC, as shown in Figure 5, both in
the “without Central Prior” and the “with Central Prior”
settings, our model is also much better than the other
algorithm. The results of this dataset are lower than the small-
scale dataset because the scale of the dataset. It also can be
seen clearly that our model performs well in the Judd dataset.

We show some of saliency maps in Figure 6. It shows
clearly that our model achieves very good results. The
saliency map is able to represent salient area accurately.
The AUCs comparison on different datasets and different
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Fig. 3. The comparison with five state-of-the-art methods, human fixation
density maps and the proposed model in small-scale dataset . The rows from
top to down are: the original stimulus image, saliency maps generated by
AIM, Itti, Judd, SMVJ, Human fixations density maps of stimulus images
and saliency maps generated by Our model.

center prior condition is also shown in Table I, and SMWO
denotes Small dataset without center prior, SMW denotes
Small dataset with center prior, SMWO denotes Large dataset
without center prior, LGW denotes Large dataset with center
prior. It obviously shows that our model outperform other
ones. These experiments prove that our algorithm is consis-
tent in different datasets with different scales.

IV. CONCLUSION AND DISCUSSION

In this paper, we proposed a method for saliency detec-
tion based on the sparse representation residual of images.
The sparse representation residual (SR2) model has several
advantages in different perspectives:

(1) It is a generic algorithm to different raw visual input
such as psychological patterns and natural scene images. SR2

uses self information to construct feature, it doesn’t need to
compute prior features such as orientations, color, etc.

(2) SR2 is easy to understand under the architecture of the
early vision system. Each step in our model corresponds to
a function model in the primary visual system. We build it
all based on acknowledged computational models.

(3) It is a simple, efficient computational model. As the il-
lustration in experiments section, the proposed method shows

Fig. 4. The ROC curves of our model and the other state-of-the-art
approaches on the Bruce image dataset.

the exciting performance in two different dataset which in-
clude eye tracking data. Compared with these methods based
on learning or complex model, our method need not dataset
for supervised learning and high level feature, however it
still outperforms others methods in the benchmark. In future
work we are interested in how to put the model into a
neural network architecture which can be easily understood
and computed. Actually, these is a related work, giving a
reasonable interpretation with a similar model [19].

For the problem of setting of learning a different set of
basis for every image, we think that the dictionary learning is
difficult to simulate the performance of primary visual cortex
(V1) because there are too many neurons in the V1. Thus,
learning a different set of basis will lead to less reconstruction
error which is more likely to simulate the representation in
V1. Actually, if we use the unified dictionary, the results are
similar to the counterpart with the default setting.
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