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Abstract—Given a finite i.i.d. dataset of the form (y;,x;),
the Single Index Model (SIM) learning problem is to estimate
a regression of the form u o f(x;) where u is some Lipschitz-
continuous nondecreasing function and f is a linear function. This
paper applies Vapnik’s Structural Risk Minimization principle
to SIM learning. I show that a risk structure for the space of
model functions f gives a risk structure for the space of functions
uo f. Second, I provide a practical learning formulation for SIM
using a risk structure defined by margin-based capacity control.
The new learning formulation is compared with support vector
regression.

INGLE-INDEX MODEL (SIM) is a regression technique

that extends the Generalized Linear Model in that the link
function—instead of being predefined—is learned jointly with
the linear model.! The problem is to estimate a regression
of the form §; = wo f(z;) to minimize some loss function
%2?21 1(9i,vy;), where {(y;,z;)} is an i.i.d. sample, u belongs
to the class of Lipschitz-continuous nondecreasing functions
M, and f belongs to the model space F of linear functions.
For the remainder of this paper, I call w the link function and
f the model function.

SIM has a number of useful features, in principle. It
allows for some nonlinearity in the hypothesis class while
retaining the interpretablity of linear models. In GLMs, a
link function must be chosen based on assumptions about the
data distribution. SIM is a non-parametric method, so such
assumptions are not required. Moreover, I will show that, with
the right capacity control structure, SIM’s nonlinear hypothesis
class properly contains a linear hypothesis class, yet has the
same statistical complexity bound. The principle drawback
for SIM is that model inference is practically intractable. In
addition to proposing a capacity control structure for SIM, this
paper presents an efficient approach to model inference.

According to Vapnik’s principle of Structural Risk Mini-
mization [1], a machine learning formulation should choose
a hypothesis space that jointly minimizes the empirical risk
of the best element of the space and the confidence interval
associated with the chosen hypothesis space. I will focus on
the following empirical risk functional:
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where I(y, f) = |y — f|? for ¢ =1 or 2 and y; is a real-valued
regression target.

There are two approaches to a SIM learning formulation:
1)  Choose parametric representations of M and F, and
jointly optimize to find the parameters for u* € M
and f* € F. This is the approach taken in previous
papers.

Use a learning formulation that (approximately) min-
imizes R(f), where

2)

R o1 &

R(f) = inf izzluym ° f(@))

without explicitly finding u*. After f* is known, find
u* via a 1-dimensional regression.

I focus on the latter approach, which I call implicit learning. 1
call R isotonic-invariant risk because it is invariant for any
isotonic transformation of f. (“Isotonic” is a synonym for
“nondecreasing.”)

To practically use this approach, the following questions
must be addressed:

1)
2)

Can a risk structure be defined for SIM?

Can a learning formulation be given with desirable
properties, such as convexity and computational effi-
ciency?

This paper gives a constructive, affirmative answer to
these questions. To answer the first question, I show that the
statistical complexity of any hypothesis space of the form
MH ={uo f:ue M,feH} (for any hypothesis space H)
can be characterized by a measure of statistical complexity of
H. Applying the result to SIM, MF inherits any risk structure
that can be placed on F. To answer the second question, I
propose a risk structure for the set of linear functionals that
is computationally tractable and amenable to SIM learning,
which is based on the margin hyperplane principle.

I. PREVIOUS WORK

The Single-Index Model learning problem has a small body
of literature in the statistics field [2], [3], [4], [5]. There are two
contemporary papers in the machine learning field that extend
the Perceptron to the SIM framework. The first of these papers
proposed a formulation called the Isotron [6]. It was only of
theoretical interest and not practical because it required a large

21t is also possible to consider the e-insensitive loss |y — f|¢ = min(0, |y —
f| — €)? with a simple modification to my approach.



number of samples to prevent overfitting. The second paper set
out to address that problem by placing capacity control on the
link function [7]. Both of these papers parametrize the class
of isotonic functions by piecewise linear functions, and then
apply a form of alternating minimization to jointly optimize
the representations. This is a nonconvex problem, although the
papers still prove learning guarantees.

By contrast, we can interpret this paper’s Theorem 1
(infra) to argue that capacity control should be applied at
the level of the model function. Therefore, just as SVM
extended the Perceptron via margin-based capacity control, this
paper extends the single-index formulations with margin-based
capacity control. In addition, the formulation proposed here is
convex.

Finally, the authors of [8] propose learning isotonic trans-
formations of the input features for the classification task. In
other words, whereas the single-index formulation finds an iso-
tonic link function following a linear model, this formulation
has a linear model following an isotonic transformation of the
features. While the idea is practically useful, I am not aware
of a way to motivate the approach by learning theory or to
characterize the statistical complexity of the hypothesis space.

Viewing ridge regression (RR) and support vector regres-
sion (SVR) as members of a family of methods based on
trading off model complexity (measured by L? regularization
of model parameters) with empirical risk, then my proposed
method should be included in that family as well. Moreover,
I establish a risk structure for my SIM formulation using the
same bound (VC dimension of margin hyperplanes) that has
been used to analyze SVR and RR (although there are many
alternative approaches [9, cf. 12.4]). Therefore, I take support
vector regression as the most directly comparable method for
evaluation purposes.

II.

In this section, I take up the first of the questions re-
quired to produce a useful SIM learning formulation: Can
a risk structure be defined for SIM? A risk structure for
regression requires controlling the capacity of the loss class:
{llly1, f(z1)), -, U (yn, h(xn))] : b € H,y € R"} where H
is an arbitrary hypothesis space. Without a prespecified link
function, it would seem little could be said about the loss
class. However, Vapnik proved that the VC dimension of the
loss class for squared (L?) and quantile (LY) loss is bounded
above and below by a constant of the level VC dimension of H
[10, p. 108]. Therefore, I use the bound to ignore the loss class
and focus directly on the level VC-dimension of the hypothesis
class H. It turns out that this is easy to characterize for the
proposed SIM risk structure where H := MF.

RISK STRUCTURE

The level VC dimension of some real-valued hypothesis
class H is simply the VC dimension of the class under
composition with the set of all characteristic functions. More
specifically, define characteristic function X(z) = 0 if z < 0
and 1 otherwise. Then the level VC dimension of # is the VC
dimension of the set of characteristic functions {X(f — ) :
f €M, B eR}HL, p. 191].

The following theorem shows that the isotonic link function
transformation effectively adds no statistical complexity to the
underlying hypothesis space, according to the level VC bound:
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Theorem 1: Let H be any family of functions Z — R,
and let M be the class of isotonic (nondecreasing) functions
R - R. Let MH = {uo f:ue M,f e H}. The level VC-
dimension of M% is the same as the level VC-dimension of
H.

Proof: First, MH D H (since M contains the identity),
so the VC dimension of M# cannot be less than for 7. The
opposite inclusion is trivial from the definition of level VC-
dimension. Suppose a set can be labeled in a particular way
by X(uo f(x)—f), and that uP"¢(3) is defined. Then the same
labeling can be attained by X (f(z) — uP"¢(B)). If uPT¢(3) is
not defined, then take any @ which is a nondecreasing function
that agrees with « on set to be labeled and for which aP"¢(3)
is defined. (Such a @ always exists since the set to be labeled
is finite.) Then X (f(x) — aP"¢(B) gives the desired labeling.

Therefore, any set that can be shattered by M# can also
be shattered by #, so the level VC-dimension of the former
is not greater than the latter. ]

Letting H be an arbitrary element of a risk structure on F,
we see that a risk structure on F will be inherited by MF.
Therefore, if we can find a risk structure for F, we shall have
our answer to the question asked at the outset.

A learning formulation implements a risk structure by
computing the following for any element of the risk structure:
1) the empirical risk of the best hypothesis in that element and
2) the statistical complexity of that element. I shall shortly pro-
pose a tractable approximation of isotonic-invariant empirical
risk based on pairwise interactions of examples. It would be
convenient to find a measure of the statistical complexity of
a set of linear functionals based on the same criterion. Just
such a measure was proposed by Vapnik alongside his well-
known proof of the VC-dimension of margin hyperplanes [1,
pp. 359-361]. The proof idea is similar to Herbrich’s bound
on statistical complexity for support vector ordinal regression
[11], which considers the VC dimension of a hypothesis class
on the pairwise differences of a set.

To summarize the previous section, we have the following
chain of reasoning:

1) The level VC dimension of the loss class is bounded
(up to a constant) by the level VC-dimension of the
hypothesis class.

The level VC dimension of the hypothesis class MH#H
(for an arbitrary ) is the same as the level VC
dimension of the class H.

The level VC dimension of a class A containing
linear functionals can be defined based on pairwise
interactions of points, according to Vapnik’s proof.

2)

3)

The relationship with support vector regression is the follow-
ing: The risk structure for SVR has elements which are sets
of linear functionals with bounded VC dimension. The risk
structure on F in SIM also has elements which are sets of
linear functions with bounded VC dimension. Since MH 2> H
for any H C F , each risk structure element in SIM in principle
properly contains a risk structure element of SVR, yet the
level VC bound is the same for both. (Of course, the way in
which the best functional is chosen from a given risk structure
element differs greatly between the two methods.)



III. CAPACITY-CONTROLLED SIM FORMULATION

Isotonic-invariant empirical risk is difficult from a com-
putational perspective. It is not convex or continuous in f.
Assuming some hypothesis space 7 contains an open subset of
the the set of linear functionals X — R (where X is the feature
space), it is easy to see that isotonic-invariant risk is constant
almost everywhere in Lebesgue measure. It only changes when
the sort order of [f(z;)] changes. To make this tractable, the
isotonic-invariant empirical risk will be replaced by a tractable
lower bound.

Let us consider the following isotonic-invariant empirical
risk functional for ¢ =1 or 2:

min —
ueM n

Z‘yz*uof ;)|

The bound I propose is based on the minimum loss for each
pair of points, considered independently. For just two points,
the isotonic-invariant empirical risk is trivial: If the two points
are ranked in correct order (y; > y; and f; > f;), then there
is an isotonic function that attains zero loss. If the order is
inverted (f; > f;), then the minimum-loss isotonic function
is constant, and the loss can be computed elementarily. See
Figure 1.

Yir -
Yi o’ -
i f
(a) correct order
Yi =l -
Yi 1 o -
f

: (b) inverted order

Fig. 1. Minimum-loss isotonic functions for a pair of points in correct order
and incorrect order. In the latter case, it apparent that the minimum loss is
attained by a constant regressor; the up-sloped line cannot be the minimizer.
For L? loss, the regressor is unique (middle line), while for L' loss any
constant function in the range [y, y;] attains the minimum, such as the lowest
line in addition to the middle line.

I define the loss as c%j and c2j for L' and L2 loss,
respectively:
1 . L — g — oy — ol
L™ Hgnwz ul + ‘yj ul ly; yj| Cij
2 . 2 2 1 2 2
L7 min(y; —uw)” + (y; —w)”  =5Wi—y)” = ¢
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The global loss ¢ is found by assigning loss to each point in
a way that minimizes the overall loss but is consistent with
each pairwise loss. That is, if z; and z; are inverted, then the
global loss should satisfy &; +&; > ¢;;. This can be written as
a linear program:

Rp(f)

—mlnf

e Zék

s.t. V(z ]) eP:
£z+€] >Cq I(f(z )7f(x]):73)

where P is the preference set induced from the regression
targets by (i,j) € P < y; > y;, and [ is the pairwise rank
inversion indicator defined as

1 (,j)ePand w-z; <w-xz;

1 (ji)ePand w-z; >w-

0 otherwise

| =

This is an underestimator of isotonic-invariant empirical risk,
since cg is the minimum loss over each pair.3 The bound is
only attained if there exists a regression that bisects each loss

pair as in Figure 1(b).

This loss function can also be interpreted in terms of
the task assignment problem [12] applied to the pairwise
loss matrix L;; = cq] I(f(z;), f(z;),P). The task assignment
problem is to select a subset of elements from a matrix so that
each row and column has exactly one element selected and the
sum of the selected elements is minimized (or maximized, as
in this case). The Hungarian (Munkres) algorithm [13], [14]
can be interpreted as a constructive proof of the existence of
a potential function ¢ such that > ¢ is the optimal assignment
cost and for every i, j, §; +§; > ¢;; for some pairwise cost c;;.
The isotonic-invariant risk approximation Rp is exactly the
assignment cost from the potential function with costs L;;;
therefore it has an equivalent interpretation as an instance of
the task assignment problem.4

Adding the penalty for model complexity, the learning
formulation for the model function is the following:

1 n
min§wTw +C Z ¢
=1
s.t.V(i,5) € P:
T
w (xz_x )>1_51]
G+ GG = cijéij
(=0
Here, &;; is the hinge loss approximation of the pairwise
rank inversion indicator. This is a convex QP with d + n

variables and O(n?) constraints. An interior-point algorithm
can be formulated (using numerous symbolic eliminations in

the KKT system) with step complexity O n3 + nds), where n
is the number of examples, d is the dimension of the examples,
and s is their average sparsity.5

3However, the rank-inversion indicator is not convex and this has to be
relaxed to a hinge function to make a tractable learning formulation; thus, the
underestimation property is lost in the practical algorithm.

“4A loss function that requires solving the linear assignment problem as also
proposed for the ranking task by [15].

5To the best of my knowledge, a dual simplex algorithm can be formulated
with a step complexity of O(n? + nds).



IV. LINK FUNCTION REGRESSION

One final piece of the puzzle remains: To find the link
function. One-dimensional curve fitting has been studied a
great deal. Strictly speaking, this application requires isotonic
curve fitting, and choices here are more constrained. Moreover,
there is opportunity for expert intervention since 1-d curves are
easily visualized. Practically, the link function is found with
the following steps:

1)
2)

Project each example with the model function.
Fit a link function on the graph of the regression
targets versus their projections.

The graph is not generally perfectly isotonic, as the model
function makes errors. Naive curve-fitting could give a non-
isotonic curve, which would certainly be overfit.

I wanted an automated end-to-end system for evaluation on
account of the large number of models to be fit and the need to
present an unbiased analysis. Thus, I invested a great deal of
effort into the problem of finding good link functions without
supervision, even though in practice this is less important.
I examined isotonic regression [16], linear spline regression,
and cubic smoothing splines. Isotonic regression naturally
produces jagged models, with level regions punctuated by
sharp increases. While the jagged parts tend to be within
the noise variance of the data, the lack of smoothness hurts
their performance. Moreover, there is not a way to extrapolate
outside of the support of the training set, except as a constant
function. Linear splines allow for extrapolation and isotonicity
and had competitive performance. However, knot number and
placement was difficult to automate.

I recommend the cubic smoothing spline [17]. It solves
problems of knot placement and number, replacing these with
a single smoothness parameter. The drawback is that one
cannot enforce isotonicity. One paper [18] proposed a novel
isotonic cubic smoothing spline that can be found by solving a
second-order cone programming problem. I implemented this
with CVX/Sedumi, but the solver often ran into numerical
problems, and I chose not to use this method. The classical
smoothing spline can be adapted to enforce knot isotonicity;
that is, the spline is nondecreasing on the set of knots (but
possibly decreasing anywhere else). The matter is perhaps
trivial because in all the experiments I examined, I only found
a few examples of a smoothing spline failing to be isotonic,
and I never found a knot-isotonic spline that was not fully
isotonic. Still, the isotonic constraint is part of the theoretical
method and a formulation should attempt to satisfy it.

I also experimented with replacing the classical squared
loss in the smoothing spline with Huber’s robust loss (some
properties proved in [19]). For the interested reader, the evalu-
ation gives results both for the classical cubic smoothing spline
and the enhanced version with knot isotonicity and Huber loss.

V. EVALUATION

I seek to validate the following hypotheses in an empirical
evaluation:

1) A full analysis of risk bounds is beyond the scope
of this paper, but it is axiomatic that they depend

positively on both the empirical risk and the statistical
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complexity of the hypothesis class. That is, reducing
the empirical risk will reduce the bound on true risk if
the hypothesis class complexity is not changed. I have
argued that each element of the SIM risk structure
properly contains one for linear SVR, but has the
same complexity bound. Therefore, SIM formulations
should have better risk bounds and should attain
better empirical performance than linear methods.
The hypothesis class in SIM is restricted compared
to a general nonlinear method. For high-dimensional
low sample-size problems, the restricted hypothesis
class in SIM (with corresponding lower complexity)
should outperform more general nonlinear methods
(such as kernel SVR).

2)

A. Experiments

SIM, linear SVR, and RBF kernel SVR are compared on
the following tasks:

1)  Regression with high-dimensional synthetic data and
nonlinear label transformation: Synthetic datasets are
created in the following way: For each example,
features are drawn from a high-dimensional Gaussian
x ~ N(0,I). Labels are created by composing a
link function w with a Tprojection operator w, plus
white noise: y; = u(w” x;) + €. The noise level is
chosen to preserve a desired signal-to-noise ratio.
The true underlying generation process (v and w) is
hidden from the learner. Although this process creates
datasets which correspond to SIM’s hypothesis space,
many natural phenomena follow a power law or
logistic pattern based on several factors, so this is
a reasonable model for real-life datasets.

2)  Regression problems using well-known UCI datasets.

All experiments are repeated 10 times on random partitions of
the data into training, validation, and test sets. The random
partition in one experiment is the same for all methods.
The reported measure is normalized root mean squared error
(NRMSE) Z?:1(?3i—yi)2
' no?(y)
tion, and test sets are disjoint, with the training and validation
sets having the same number of examples and the test set being
the remainder of the dataset. For the synthetic experiments, the
test set contained 10,000 examples.

. In all cases, the training, valida-

Data were prepared by standardizing each feature in the
training set, followed by a global scaling so that the largest-
magnitude training example had unit norm. This transforma-
tion was then applied to the validation and test sets. Regression
targets were also standardized.

I chose small-scale evaluations in order to keep compu-
tation time reasonable because codes are not optimized and
because the automated nature of the model selection (for
fairness in evaluation) requires a great deal of computation.
Nevertheless, the performance of the method is relative to
the sample size and dimensionality, so a small-scale test is
conclusive.

B. Model selection

For linear and kernel SVR, the cost parameter C' and loss
insensitivity parameter ¢ were found using the analytic “rule-



of-thumb” method of Cherkassky [10, p. 448]. The method
gives cost and loss-insensitivity parameters based on an anal-
ysis of the training set, including estimating its noise variance.
In my experiments, each analytic parameter was expanded to
a set by a range of scalings = — [.25z, .5z, z, 2z, 4], and grid
search with validation was used to select the best combination.
For RBF kernel SVR, the kernel parameter was selected by
considering a range of scalings (2_3,2_2, . .,23) around the
median pairwise distance of the training examples.

The SIM formulation has a cost parameter for the model
function which is analogous to the C' parameter in SVR. This
parameter was chosen from the analytic set used in the SVR
formulations. The SIM formulation can make use of an e-
insensitive loss like SVR. Given that the SIM formulation is
based on an optimistic approximation of isotonic-invariant risk,
it seems likely that the insensitive loss would be helpful in
high-noise settings. However, insensitive loss did not signifi-
cantly change the results of the experiments I am reporting. It
is likely that none of the experiments had high enough noise for
this phenomenon to arise. Overall, the insensitive loss function
does not seem promising for SIM, as experiments suggest that
SIM has little advantage over linear methods in high-noise
settings.

In addition, the 1-d link function fit can require parameters.
A smoothing spline requires a single parameter. The grid
search procedure for selecting the model function and link
function is given in pseudocode in Algorithm 1. (Note that the
calls to the model function learner can be reused during the
link function fitting, and that spline fitting is computationally
inexpensive compared to the model function learning.) I found
that using validation to choose from a small, fixed set of
smoothing parameters (.96,.97,.98,.99,.995) was sufficient to
produce good link functions. For the enhanced spline mini-
mizing Huber’s robust loss, the loss parameter was chosen to
be the noise standard deviation, which was estimated as part
of the analytic model selection process.

Algorithm 1 Grid search model selection procedure

Input: training data (y, X), validation data (¢, X), ranking
model parameter space C, isotonic model parameter space
u.
Output: optimal model and link functions
for ceC,v el do
we < SIMLearn(y, X, ¢)
ue,v < smoothingSplineFit(y, Xw, v)
rew = 2 U(G;, (X - w))
end for
(¢c,v) < argminrey
(w*, u*) + (we, ue,v)

The evaluation also included prediction clipping. For each
dataset, a histogram of regression targets was analyzed. If
the distribution was uniform on its support, then predictions
were restricted to the range of targets seen in the training set
(clipped). Clipping prevents the loss from being dominated by
a few extreme points that receive highly unlikely predictions.

I also wished to simulate the effect of expert intervention
in fitting the link function. For this experiment, the model
function is learned with (only) the training data, but once
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it is fixed, the validation set is combined with the training
set and the link function is fit using cross validation over the
combined set. The argument for this being a reliable proxy for
expert intervention is that it would be reasonable practice for
an expert to combine the sets in this way, as 1-d curve fitting
is not prone to overfitting. These results have “CV” in their
identifier. One might object that this gives the SIM method
an unfair advantage over the SVR methods which do not have
the benefit of the additional examples. The response is that the
major part of the SIM procedure was completed without the
additional examples, with curve fitting being a less important
part. Nevertheless, a set of results is given (“SIM IS”) with
the training and validation sets strictly separated.

Finally, this experiment considers two curve fitting tech-
niques: classical cubic smoothing splines and an enhanced
version enhanced using Huber loss and enforcing isotonicity
at the knots. Results from this experiment have a suffix “SS”
or “IS,” which is mnemonic for smoothing spline and isotonic
spline, respectively.

C. Implementation details

The following is a list of codes used in this paper and their
descriptions.

1) SIM model solver: The formulation is a convex
quadratic program, and it was implemented using an
interior-point solver following a description in [20].
The solver is a naive implementation, resulting in
O(n + d)3 step cost, which is suboptimal for high-
dimensional or sparse data compared to an optimized
formulation. Finding the link function required one
of the cubic spline routines, documented below.
Classical cubic spline solver: I used Matlab’s csaps
routine, which was written by Carl de Boor following
his description in [17, ch. 14].

Huber-loss cubic smoothing spline with knot isotonic-
ity: I wrote this code in Matlab, reimplementing de
Boor’s code with appropriate changes. This requires a
quadratic program, which was solved with quadprog.
Support Vector Regression solver: This is the standard
formulation found in LIBSVM and SVM'9"* codes:

17 1
min 5w w—‘,—CZle(yi—w.aci—b).

2)

3)

4)

It was implemented (in the Langrangian dual) with
Matlab’s quadprog interior-point-convex solver.

D. Synthetic experiments

The data generation process has already been described.
I evaluate the results for SNR values of 20, 40, and 80,
and logistic ﬁ and exponential link functions on data
realizations with 50 examples and 20 dimensions. Since the
data are generated by a function that is in the hypothesis space
of the SIM method, it is expected to perform considerably
better than linear SVR, which does not contain the function.
The poor performance of kernel SVR suggests that the SIM
formulation does have an advantage in a high-dimensional
low sample-size setting. The results suggest that SIM can
recover the true model even in the high-dimensional low-
sample setting. It is important to note that noise level, data
dimension, and sample size in this experiment were chosen



TABLE 1. SYNTHETIC DATA RESULTS
SNR SIMCVIS SIMCV SS SIM IS L SVR K SVR
logistic 50 examples X 20 dimensions
20 407 (.09) 407 (.09) 411 (.09) | .520 (06)  .557 (.05)
40 .350 (.07) 353 (.07) 352 (.07) | 498 (.06)  .536 (.03)
80 277 (.06) .279 (.06) 282 (.06) | .460 (.05)  .523 (.03)
exponential 50 examples X 20 dimensions
20 362 (.04) 364 (.04) 385 (.04) | 474 (04) 494 (.03)
40 .295 (.05) 283 (.04) 312 (.05) | 472 (05)  .499 (.05)
80 .276 (.06) 273 (.07) 290 (.07) | .463 (.06)  .481 (.05)

for the effect. With an SNR of 80 and a sample size of 30
(smaller than the evaluation in Table I), SIM performs well in
comparison to linear SVR (.44 v. .59). If the SNR is lowered to
20, both the methods perform about the same (.61 v. .63). This
example suggests that SIM’s nonlinearity isn’t useful in high
noise problems, but that it fails gracefully, becoming similar
to linear SVR when nonlinearity is of no help.

The results of the experiments (mean and std over 10
partitions of the data) are shown in Table I. Recall that three
variations of SIM are evaluated in order to compare techniques
for fitting a link function. “SIM CV IS” and “SIM CV SS”
both use additional points from the validation set to fit the
link function (but not the model function), while “SIM IS”
uses only the training set. Additionally, “SIM CV SS” uses
the classical smoothing spline instead of an enhanced isotonic
spline.

As expected, SIM is able to find much better models
than the SVR formulations. One of the experiments for the
logistic link function with SNR=20 is shown in Figure 2 as an
illustration of the method. The upper plot shows the projections
of the synthetic data on the x-axis, and y-axis giving the result
of transformation by the link function and addition of white
noise. The lower plot shows the same information, but with
the projection learned by SIM and the link function regression.
(The x-axis scale is not significant in the learned projection.)

E. UCI datasets

The datasets considered were Boston Housing [21], Con-
crete Strength [22], Body Fat,6 Auto MPG,7 CPU Small,8 and
Yacht Hydrodynamics9 [23]. Since I am evaluating a general-
purpose tool, I avoided any domain-specific attributes of the
problems. The number of predictors for each dataset is given
in the results table.

Table II gives the test set loss mean and standard deviations
for 10 random realizations of each experiment. The size of the
training (and validation) set is reported in the first column.
Again, the reported results include three SIM formulations
which differ only in terms of the link function procedure. Since
they tend to be fairly similar, I will refer to them in common.

SIM outperformed linear SVR (perhaps modestly) in all
experiments but Body Fat and Cpu Small. Visualizing the
projections learned by SIM, it is apparent that the learned link

Ohttp://lib.stat.cmu.edu/datasets, retrieved from http://www.csie.ntu.edu.tw/
~cjlin/libsvmtools/datasets/

"http://lib.stat.cmu.edu/datasets, retrieved from http://www.csie.ntu.edu.tw/
~cjlin/libsvmtools/datasets/

8retrieved from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

9retrieved from http://archive.ics.uci.edu/ml/datasets/Yacht+
Hydrodynamics#
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Projection view, logistic link function SNR=20
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Fig. 2. Tllustration of a synthetic dataset. The upper frame gives the regression
values versus the ground truth projection of the data. The lower frame shows
the projection returned by the SIM learner and the spline that was fit through
the training examples. The x-axis scale of the lower plot is not significant, as
it depends on the regularization parameter C.

TABLE II. UCI RESULTS

size¢z SIMCVIS SIM CVSS SIM IS L SVR K SVR
Boston Housing (13 predictors)

50 .530 (.03) .523 (.03) 533 (.03) | 592 (.04) 527 (.03)

40 .538 (.03) .536 (.02) 551 .(.03) | 592 (.03)  .547 (.04)

30 .539 (.04) 537 (.04) 543 (.04) | .602 (.04)  .552 (.05)
Body Fat (14 predictors)

50 .184 (.02) 185 (.02) .190 (.03) | .180 (.03)  .207 (.03)

40 154 (.04) 158 (.03) 157 (.05) | .137 (.05)  .193 (.03)

30 .183 (.03) .189 (.03) 181 (.03) | .165 (.03)  .229 (.03)
Concrete Strength (8 predictors)

50 .670 (.04) .669 (.03) 677 (.03) | .690 (.03)  .576 (.02)

40 .680 (.03) .693 (.05) 691 (.02) | .695 (.03)  .586 (.03)

30 .676 (.06) .671 (.05) 709 (.04) | 723 (.04)  .629 (.05)
MPG (7 predictors)

50 .673 (.04) .675 (.04) .685 (.05) | .713 (.03)  .624 (.06)

40 .693 (.07) .689 (.06) .698 (.06) | .709 (.05)  .627 (.07)

30 .669 (.07) .699 (.07) 702 (.06) | .704 (.07)  .639 (.05)
Cpu small (12 predictors)

50 .520 (.20) 516 (.23) 555 (21) | 503 (.16)  .591 (.16)

40 412 (.09) 423 (.09) 539 (27) | 475 (17) 578 (.15)

30 .610 (.22) .597 (.27) .653 (.17) | .629 (.15)  .704 (.16)
Yacht Hydrodynamics (6 predictors)

50 .148 (.05) .148 (.05) .164 (.05) | .606 (.04)  .502 (.06)

40 202 (.11) 207 (.12) 213 (.11) | .606 (.06)  .515 (.06)

30 .278 (.06) 274 (.06) 314 (06) | .613 (.03)  .589 (.08)




functions are very nearly linear, so the class of nonlinear link
functions fails to add to the explaining power of the model.
See Figure 3. It is worth noting that the non-optimality for SIM
on these datasets is fairly small, though for the cpu dataset we
have to bring in validation points to fit a good link function.
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Fig. 3. Visualizations of the data projected by the optimal SIM model
functions for body fact and CPU datasets. For the body fat dataset, the optimal
link function is already linear, so it is unsurprising that linear SVR is (slightly)
superior to SIM. The cpu dataset is challenging because the test distribution
appears to contain two distributions: the points forming the steep upsloped
line on the left and the level points trailing low to the right. For the points
forming the steep line, a linear link function is optimal. Clipping was critical
to avoiding outsized errors on the points to the right, since none of them were
part of the training sample.

We also see that SIM generally found better models than
kernel SVR, with the exception of the Concrete Strength and
MPG datasets. Without investigating deeper, it suggests that
these datasets have locality properties that the RBF kernel is
able to harness.

Finally, we see that the SIM formulation outperformed
linear and kernel SVR significantly on the yacht dataset.
Figure 4 is a visualization of the optimal SIM model function
projection. It appears to be a case where SIM would work
well. I am not aware of an explanation why kernel SVR failed
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to model the problem.
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Fig. 4. Visualization of the optimal SIM model function projection of the
yacht dataset.

F. Conclusions

As expected, the method is reliably better than linear SVR
as expected, but the improvement is somewhat modest—in the
range of a 10% relative reduction. We see that SIM can find
better models than kernel SVR, but only when the problem is
data-constrained. Even when it is not an improvement, SIM
is never significantly worse than linear SVR. It attains modest
improvements in the test set loss in a number of instances, and
significant gains for the synthetic data and one UCI dataset.

The evaluation confirms the intuition from theory, that SIM
method retains the benefits of linear regression (interpretation
and visualization) and low statistical capacity while providing
improved flexibility. Moreover, I have shown that the method
can be superior to more general nonlinear methods under
certain circumstances, such as in the high-dimensional low
sample-size setting. Finally, it appears there exists at least one
natural problem (yacht dataset) where SIM hypothesis explains
the observations much better than linear or kernel SVR.

Moreover, there are also model selection considerations to
keep in mind:

1)  The model search space for SIM was much smaller
than the space for RBF kernel SVR because SIM has
no kernel.

2)  SIM did not require a loss insensitivity parameter (as

in SVR formulations) for these datasets. The extent
to which this holds generally is not known.

Given these merits, I believe the SIM method has the potential
to earn a respectable place among high-dimensional regression
tools.

G. Scalability

The goal of this paper was to propose a learning for-
mulation based on a theoretical foundation while taking into
account computational issues in a high-level way. Nevertheless,
to give the reader some idea of the computational requirement,
I evaluate SIM on a larger problem. I applied the previous



evaluation procedure to the Ames Housing Dataset [24]. After
processing, the data had 318 predictors. A single realization
of 500 training examples was used. The naive SIM implemen-
tation required 74 seconds to optimize the model function,
whereas SVR required about 5 seconds.!” The naive SIM
implementation is known to have poor scaling in d. Much of
the solution time came from fill-in when solving the KKT
system, since it is represented as a sparse linear equation. The
fill-in can be prevented using clever block eliminations. For
the comparatively smaller problems in the evaluation, solution
times were under one second.

H. Future work

We saw that for most datasets, SIM offered modest im-
provement, while for some it offered great improvement. At
present, the only way to know is to try the method and evaluate
using withheld data or cross-validation. It would be useful to
have a way to characterize datasets which have a potential gain
in performance.

The chief drawback of the method, at present, is the high
cost of model inference. This method will require a faster
inference algorithm to be highly useful. Much of this is simply
a matter of efficient implementation, as the O (n3+nds
scalability of an optimized interior-point implementation is
acceptable for many applications. For larger problems, I intend
to investigate a dual simplex solver, which would have a step
complexity of O(nz), similar to dual simplex SVM solvers
[25] which compare favorably to well-known SVM solvers,
such as LIBSVM and SVM'9ht,
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