
 
 

 

  

Abstract—It is common to find continuous input variables 
with non-monotonic propensity relation with the binary target 
variable. In other words, when taken as propensity scores, these 
variables do not generate unimodal Kolmogorov-Smirnov 
Curves. However, these variables possess highly discriminant 
information which could be explored by simple classifiers if 
properly preprocessed. This paper proposes a new method for 
transforming such variables by detecting local optima on the 
KS2 curve, segmenting and reordering them to produce a 
unimodal KS2 on the transformed variable. The algorithm was 
tested on 4 selected continuous variables from the benchmark 
problem of Loan Default Prediction Competition and the results 
showed significant improvement in performance measured by 
both the AUC_ROC and Max_KS2 metrics for 3 different 
Artificial Intelligence algorithms, namely Linear Discriminant 
Analysis,  Logistic Regression and MultiLayer Perceptron. 

Index Terms — Continuous variables´ transformations, 
Weight of evidence, Binary decision, Monotonic propensity. 

I. INTRODUCTION 
UCH scientific investment has been made towards the 
development of effective Artificial Intelligence (AI) 
algorithms along the years [1]. The input data 

preprocessing however has not received that much attention. 
Furthermore, that effort has been mostly focused on the 
syntactic role of making the input data format compatible to 
the AI techniques requirements [2,3]. 

Usually, from the syntactic point of view, categorical 
variables either have to be converted to numerical values or 
encoded in a binary representation, for some AI techniques 
while continuous values have to be normalized and/or 
discretized in equidistant intervals [2,3]. 

Slightly more sophisticated approaches take into 
consideration the continuous input data distributions by 
normalizing its values according to limiting quantiles and/or 
discretizing them in equally spaced quantile intervals [2,3]. 

A lot more sophisticated approaches are based on the 
information gain in the classification task. CHAID is one of 
such approaches widely used for this purpose [4]. 

An approach developed by SAS claims to optimize the data 
segmentation of continuous variables [5] but that cannot be 
checked since it is kept as industrial secret. Weight of 
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Evidence (WoE) is a statistical approach which also segments 
continuous input variables weighted by a metric very useful 
for logistic regression [6]. Both of these approaches are 
related to the algorithm proposed here by the segmentation of 
the continuous input variables according to a form of 
univariate information gain based on the target variable. 

This paper presents a new approach for transforming the 
continuous input variables using the Kolmogorov-Smirnov 
Curve as information gain metrics towards the target variable.  
The local optima on the KS2 curve are detected, the variable 
is segmented and reordered in decreasing order of the 
information gain in each segment, thus producing new 
transformed continuous variable with maximum unimodal 
KS2. 

This paper is organized in 5 more sections. Section II 
presents the related approaches for data preprocessing and 
describes the Kolmogorov-Smirnov (KS2) metrics for 
performance assessment of binary classifiers. Section III 
details the proposed algorithm for segmentation and interval 
reordering in decreasing information gain. Section IV 
presents the ROC Curve as another performance metrics for 
binary classification, the three algorithms used as 
classification techniques and the benchmarking data set used 
in the experimental project. Section V shows the results and 
their interpretation confirming the proposed approach 
produces statistically significant improvement. Section VI 
summarizes the paper´s main contributions, considers its 
impacts and discusses limitations and potential ways to solve 
them.  

II. RELATED METHODS FOR PREPROCESSING 
Preprocessing is an important stage in any application of 

artificial intelligence algorithm and is a compulsory chapter 
on any data mining book [2,3]. General texts describe several 
preprocessing techniques mostly aimed at the syntactical role 
of making input variables data formats compatible with those 
of the knowledge extraction algorithms and a few standard 
techniques to enrich the data. 

On data mining solutions, preprocessing required for 
syntactical compatibility affects both continuous and 
categorical input data variables. From the syntactical point of 
view, continuous input data variables need either to be 
discretized for some classification techniques or just to be 
normalized for some other techniques. 

This paper focuses on the mathematical semantics that can 
be embedded on continuous input variables through data 
distributions´ based transformations. Some of these 
mathematical semantics preprocessing techniques (e.g. 
Principal Component Analysis) deal only with the input data 
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distributions while others associate them with the target 
variable, as a way to improve the information gain of the 
original input variables with respect to a specific metrics. 

This section presents the two most related approaches for 
producing a transformed continuous input variable aiming at 
maximizing the univariate information gain of the original 
variable. As supervised learning algorithms, care should be 
taken with data sampling to prevent over-fitting due to the use 
of a  posteriori information at the input variables. 

A. Weight of Evidence (WoE) 
The Weight of Evidence (WoE) is a preprocessing 

approach for enriching the information gain developed 
focusing on the application of logistic regression for binary 
decision problems. It consists on a measure of how important 
a given evidence, ݁ , is for the realization of a given 
hypothesis, ݄ . If the hypothesis and the evidence are 
independent events, then the WoE is assigned to zero. 
Formally, the WoE is defined as the formula [6]: ܹܧሺ݄: ݁ሻ ൌ ݈݃ ܱሺ݄|݁ሻܱሺ݄ሻ ,                                                        ሺ1ሻ 

where ܱሺ݄ሻ and ܱሺ݄|݁ሻ are the prior and posterior odds of 
the hypothesis ݄ respectively, defined by the formulas: ܱሺ݄ሻ ൌ ሺ݄ሻ1 െ ሺ݄ሻ,                                                                      ሺ2ሻ ܱሺ݄|݁ሻ ൌ ሺ݄|݁ሻ1 െ  ሺ݄|݁ሻ.                                                               ሺ3ሻ

A straightforward application of the WoE in the continuous 
variable segmentation for binary classification problems is to 
calculate the ܹܧሺ݄: ݁ሻ  for the hypothesis ሺݐ݁݃ݎܽݐ ൌ 1ሻ . 
After normalizing the continuous input variable, ݔ , and 
partitioning the ሺ0,1ሻ interval into subsets ሼܾଵ, ܾଶ, … , ܾሽ, the 
evidence ݁ is defined as the sentence  ሺݔ א ܾሻ , for  ݅ ൌ1, … , ݊. In that case, the different evidences are flags denoting 
if the value of the input variable is in a given segment. Then, 
the WoE for the different evidences ݁ , for ݅ ൌ 1, … , ݊ are 
calculated. Finally, by grouping the variable segments, ܾ, 
that resulted in similar WoE, it is obtained a discrete 
segmentation of the continuous variable. It is expected that 
segments with neighbor WoE values should behave similarly 
as predictors of the ݐ݁݃ݎܽݐ  variable, therefore they are 
grouped together. 

However this WoE procedure has the drawback of 
producing  a discrete/categorical set of values for the 
continuous input variable, therefore resulting in an 
information quantization loss. 

The WoE specific implementation of StatSoft [7] looks for 
three basic relationship profiles on the original input 
variables, namely monotonic, quadratic and cubic. 

Other problems that affect the application of the WoE are 
related to the requirements of 1) Normality of the reference 
data, 2) Independence of samples, and 3) Homogeneity of 
variance [8] which are not always found. 

B. Binning optimization (SAS®) 

The approach developed by SAS® claims to optimize the 
data segmentation (binning) of continuous variables [5]. It 
proposes an algorithm that claims to have the following 

features: 1) minimum and/or maximum percentage of 
observations per bin (good, bad, and total), 2) minimum 
and/or maximum bin width, 3) minimum and/or maximum 
number of bins, 4) minimum aggregate WoE difference 
between bins and 5) monotonicity of aggregate bin WoE 
values (increasing, decreasing, or a combination). 
 The original idea behind this framework is the 
mathematical programming model structure and 
implementation of constraints. The model is built by creating 
a ordered set, ܰሺݔሻ , of the values of a continuous 
characteristic variable, ݔ.  
Then, the logarithm of the posterior odds, ݈ܱ݃ሺ݄|݁ሻ, of the 
hypothesis, ݄, ሺݐ݁݃ݎܽݐ ൌ 1ሻ is calculated. In this case, the 
evidence, ݁, is assigned to the sentence ሺݔ ൌ ݊ሻ, where ݊ 
denotes the ݅௧  value of the ordered set ܰሺݔሻ , mentioned 
above. A binning procedure is to select particular values of ܰ 
to denote the limits of the bins that will partition the 
continuous variable set. In that sense, the binning set, ܤ, may 
be defined a ܤሺݔሻ ൌ ሼܾଵ, ܾଶ, … , ܾሽ, a partition of ܰ, where ܾ is an interval. 
 Similarly to the WoE approach, the next step is to calculate 
the aggregate logarithm of the posterior odds, ݈ܱ݃ሺ݄|݁ሻ, 
for the hypothesis ሺݐ݁݃ݎܽݐ ൌ 1ሻ  and evidence ሺݔ א ܾሻ . 
Finally, the optimization binning problem is stated as the  כܤ ൌ ,௭݊݅݉݃ݎܽ   ܵ|݈ܱ݃ሺ݄|݁ሻ െ אא|ݖ ,                   ሺ4ሻ 

where ܵ  is the number of observations of the value ݊   is an aggregate value of a decision variable forݖ ሻ andݔሺܰא
the bin ܾ  [4]. This optimization is subject to the constraints 
such as the bin size, the number of bins, and monotonicity 
ାଵݖ)   is claimed כܤ ሻ. The resulting optimized binningݖ
to have all five desired properties mentioned in the beginning 
of the section. 

 This algorithm, however, by being preserved as a 
industrial secret, is not amenable to scientific verification due 
to lack of details in its published version.  

III. PROPOSED PREPROCESSING ALGORITHM 
This paper proposes an algorithm to transform a 

continuous input data variable into another which is optimal 
in terms of information gain. The algorithm segments it and 
reorders its segments to generate another continuous input 
variable that maximizes the gain in relation to the binary 
target variable. 

Its main advantage compared to the previous two 
approaches is that it transforms a continuous variable into 
another continuous with optimal gain instead of producing a 
categorical one through optimal binning. Therefore, it does 
not produce quantization error in the variable segmentation, 
as the previous approaches do in the binning process for 
categorization. 

The specific metrics chosen for information gain used in 
the proposed algorithm is the Kolmogorov-Smirnov (KS) 
Curve between the data distributions of the two classes of the 
target variable in binary decision problems [9]. It has been 
chosen because it facilitates the detection of the segmentation 
points (maxima and minima) and offers two metrics for gain. 

Despite having been conceived as a non-parametric test for 
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B. Classification algorithms 
In decision support systems, for controllability and impact 

simulation, the binary decision is the result of applying a 
decision threshold on a propensity (or risk) score. This was 
the main criterion for choosing the classifiers together with 
their popularity in binary decision making. 

Linear Discriminant Analysis (LDA) consists of a method 
of dimensionality reduction and feature extraction used in 
different domains, from early applications in corporate 
finance [12] to more recent in health data mining [13]. In 
some cases, it is used as a binary classifier although the 
method has some long date known limitations [14]. The idea 
is to optimize class separation by introducing a rotation in the 
continuous variable space. Formally, in the binary case, one 
has a set of D-dimensional feature vectors ܺ ൌ ሼݔଵሬሬሬԦ, ,ଶሬሬሬሬԦݔ … ,  పሬሬሬԦݔ  ேሬሬሬሬԦ ሽ, of which ܰ belongs to class "0", and ଵܰ belongs to class "1".  In LDA, one projects all vectorsݔ
onto a line, by taking following inner product ݕ ൌ ሬሬԦݓ ڄ  పሬሬሬԦ,                                                                         ሺ6ሻݔ
where ݓሬሬԦ is a constant vector. The goal is to find the vector ݓሬሬԦ 
that maximize the separation of the scalars ݕ . The concept of 
separation depends on some criterion function, ሬሬԦሻݓሺܬ  . To 
account for both the mean and dispersion of the classes, in 
order to obtain a ݓሬሬԦ that separates well samples from different 
classes, Fischer [15] introduced a linear functional to 
characterize this optimization problem,  ܬሺݓሬሬԦሻ: ܬሺݓሬሬԦሻ ൌ ሬሬԦݓ|  ڄ ሺߤሬሬሬሬԦ െ ݏ|ଵሬሬሬሬԦሻߤ ଶ  ଵݏ ଶ ,                                                 ሺ7ሻ 

where the mean vector of each class, 0 and 1, is defined by ߤሬሬሬሬԦ 
and ߤଵሬሬሬሬԦ respectively, and the distance between the resulting 
mean scalars is given by |ݓሬሬԦ ڄ ሺߤ െ ݏ ଵሻ|. The variablesߤ ଶ 
and ݏଵ ଶ denote the scatter, a measure equivalent to the 
variance, defined for ݅ א ሼ0,1} as  ݏపଶ ൌ  ൫ݕ െ ሬሬԦݓ ڄ ௦௦  א ሬሬԦ൯2௬݅ߤ .                                          ሺ8ሻ 

This optimization problem has a closed form, ݓሬሬԦԢ, that can 
be obtained though differential calculus [15] and its solution 
is: ݓሬሬԦᇱ ൌ ܵെ1൫0ߤሬሬሬሬԦ െ  1ሬሬሬሬԦ൯,                                                          ሺ9ሻߤ
where the matrix ܵ is obtained uniquely by the bilinear form 
relation ݏ ଶ  ଵݏ ଶ ൌ  .ሬሬԦݓ ሬሬԦ்ܵݓ

Logistic Regression has been successfully applied to 
binary classification problems, particularly to credit risk 
assessment. It does not require a validation set for over-fitting 
prevention and presents explicitly the knowledge extracted 
from data in terms of the coefficients (β) indicated in 
Equation (10), statistically validated by their significance (p). 

The logistic regression technique is well-suited to study the 
behavior of a binary dependent variable based on a set of p 
independent variables xp (explanatory features). 

The logistic regression model can be expressed by the logit 
function 
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and pxx ,,1 … are the explanatory variables. 

MultiLayer Perceptron (MLP) neural network is a 
non-linear classifier composed of fully connected layers of 
neurons with weights in each connection [16]. In this paper, 
the MLP architecture had a single hidden layer with 5 neurons 
and was trained with the error back-propagation algorithm. 
The weights were initialized with values randomly drawn 
from a uniform distribution  between –10-4 and +10-4 for 
symmetry breaking, trained with a learning rate of 0.01 and 
stopped by cross-validation on the hold out data set. 

C. Performance metrics 
Considering that for general applications in decision 

support systems the operating point (decision threshold) is 
not fixed, the performance metrics should assess a feature of 
the classifier itself. Therefore, the area under the ROC curve 
[17] and the maximum KS2 distance are among the most 
widely accepted performance metrics for binary classifiers. 
Despite known drawbacks of these metrics in relation to costs 
[18], this paper leaves the cost issue for BI tools to help 
human experts analyze the optimal operation point (decision 
threshold). 

The performance assessment was carried out in a 30-fold 
cross-validation process tested with a two-sided paired t-test 
with a 0.99 confidence level [19]. 

The ROC Curve [17] is a non parametric tool that 
represents the compromise between the true positive and the 
false positive example classifications based on a continuous 
output along all its possible decision threshold values (the 
score). In medical scenarios, the ROC curve equivalently 
expresses the compromise between sensitivity and specificity 
(actually, 1- specificity). There are two metrics usually 
extracted from the ROC curves: The minimum distance from 
the ROC curve to the upper left corner (ideal point) which is a 
performance indicator constrained to a single operation point 
and the Area Under the ROC Curve (AUC_ROC) which is 
used for assessing the performance throughout the whole 
continuous range of scores [17]. Considering binary decision 
on continuous range, the bigger the AUC_ROC, the closer the 
system is to the ideal classifier (AUC_ROC=1). If the ROC 
curve of a classifier appears above that of another classifier 
along the entire domain of variation, the former system is 
better than the latter. 

The Kolmogorov-Smirnov maximum distance (Max_KS2) 
has already been described in Section III.  

V. RESULTS AND INTERPRETATION 
From the several continuous input variables available, only 

four with the desired non-monotonic property were used in 
this experiment. Fig.4 shows the KS2 curve for the variable 
f-444 before and after being transformed by the proposed 
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algorithm. The figure shows that the monotonic 
transformation increases a lot the Max_KS2 distance between 
the two classes´ cumulative distribution functions. 

One could expect that this univariate increase in 
performance would be transferred to a system that gathered 
the contributions from all isolate variable with such a feature. 

And that was the idea put forward in this paper. Tables I 
and II below show the comparisons between each set of input 
variables before and after transformation for all the three 
techniques and for both the Max_KS2 and AUC_ROC 
metrics. The figures in boldface are statistically significant at 

the 0.01 level (α=0.99), in a 30-fold cross-validation process. 
Table I shows the difference of performance measured by 

the Max_KS2 metrics with significant improvement in all 
three classifiers caused by the proposed transformation. 
Despite statistically significant for the MLP neural network, 
the increase was not large because of its inherent high 

capability to deal with non-linear problems. However the 
MLP took much longer to converge on the original variables 
set than on the transformed variables set. 

Logistic regression (GLM) and Linear discriminant 
analysis (LDA) have no significant difference in 
performance. The MLP outperforms them both with or 
without the variables´ transformation but its advantage is 
much smaller after the variables´ transformation. 

Table II shows the difference of performance measured by 
the AUC_ROC metrics also with significant improvement in 
all three classifiers caused by the proposed transformation. 

The results are quite similar showing that these 
performance metrics are highly correlated. 

Finally, Fig .5 and Fig. 6 below show the KS2 and the ROC 
curves respectively for the Logistic regression model before 
and after the input variables transformations. The overall gain 
is impressive, increasing over 50% the performance in 
reference to that of a random decision. Similar curves were 
produced for the Linear discriminant analysis and for the 
MLP neural network models. 

VI. FINAL CONSIDERATIONS 
This paper has presented a new approach for  transforming 

continuous input variables to optimize its information gain 
measured by the KS2 metrics in binary decision problems 
without adding quantization errors. 

The experiments have shown that the approach produces 
statistically significant improvement in performance on the 
binary decision benchmarking problem assessed by both 

 
Fig. 4.  KS2 curves of the f-444 variable before and after the 
transformation.  

Original

Transformed

TABLE II 
PERFORMANCE COMPARISON BY THE AUC_ROC METRICS 

AUC_ROC Average StdDev CoeffVar p-Value 

LDA Improvement 0,05415 0,01193 0,22247 0,00000

GLM Improvement 0,05482 0,01166 0,22242 0,00000

MLP Improvement 0,00631 0,00509 0,80682 0,00000

GLM - LDA -0,00027 0,00078 0,66407 0,99710

MLP - GLM 0,05958 0,01247 0,20926 0,00000

GLM_Seg - LDA_Seg -0,00027 0,00050 46,41815 0,99710

MLP_Seg - GLM_Seg 0,01344 0,00820 0,61050 0,00000

TABLE I 
PERFORMANCE COMPARISON BY THE MAX_KS2 METRICS 

Max_KS2 Average StdDev CoeffVar p-Value 

LDA Improvement 0,06719 0,01973 0,25255 0,00000

GLM Improvement 0,06770 0,01915 0,24101 0,00000

MLP Improvement 0,01447 0,01154 0,79717 0,00000

GLM - LDA -0,00047 0,00358 17,09273 0,77810

MLP - GLM 0,07526 0,01866 0,24792 0,00000

GLM_Seg - LDA_Seg -0,00047 0,00272 2,43568 0,77810

MLP_Seg - GLM_Seg 0,01047 0,01478 1,41145 0,00055

 
Fig. 5.  Logistic regressions´ KS2 curves with and without the input 
variables´  transformations with the proposed approach. 

Original

Transformed

 
Fig. 6.  Logistic regressions´ ROC curves with and without the input 
variables´  transformations with the proposed approach. 

Original

Transformed

3724



 
 

 

Max_KS2 and AUC_ROC metrics for the Logistic regression 
(GLM), Linear discriminant analysis (LDA) and the MLP 
neural network. 

It is important to emphasize that the MLP neural network 
was able to solve the problem with significantly better 
performance than the other two techniques on the original 
non-monotonic variables at the cost of a much longer training 
time than on the transformed variables. It also benefitted from 
the variables transformed for significantly producing a 
monotonic mapping to the target variable, although in a 
smaller scale. 

The large increase in performance for Linear Discriminant 
Analysis and Logistic Regression, suggests that these 
techniques are not well suited for problems with input 
variables presenting non-monotonic relationship with the 
target variable. That might be the reason for the success of the 
Weight of Evidence transformation despite its quantization 
error. 

The proposed algorithm needs refinement in detecting the 
KS2 maxima and minima. At the moment, it requires a lot of 
repetitions in the bootstrapping process for smoothing the 
curve to produce a precise segmentation. 

Despite the visual and intuitive appeal, mathematical 
formalization is being carried out to prove that the approach is 
theoretically sound. Furthermore, the approach has to be 
compared to the WoE approach to assess if the quantization 
error is significant for Logistic regression (GLM), Linear 
discriminant analysis (LDA) and the MLP neural network. 
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