
Abstract—The recently developed Compressed Sensing (CS) 
theory has made the super-resolution of spectrum estimation 
possible. In this paper, we exploit the joint sparsity of received 
signals to develop a new Compressive Direction-of-Arrival 
Estimation approach via a new Regularized Multiple 
Measurment FOCal Underdetermined System Solver (RMM- 
FOCUSS) Algorithm. It can overcome the resolution limitation of 
traditional spatial energy spectrum estimation algorithm, such as 
MUSIC algorithm, and present more accurate estimation of 
direction of multiple sources when there are a few numbers of 
antenna units. Some experiments are taken to validate the 
performance of our proposed method.  
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I. INTRODUCTION 
Direction-of-arrival (DOA) estimation is an important issue 

in the field of array signal processing [1]. Several high 
resolution technologies have been advanced for more accurate 
DOA estimation, including MUSIC [2] and MVDR [3] 
algorithm. MUSIC algorithm is characteristic of accurate 
estimation when there are a large number of samples, however, 
it will suffer from high computational complexity because it 
needs to calculate the eigen-decomposition of a large matrix. 
MVDR algorithm assumes that the gain in the steering 
direction is unity, and minimize the output power to estimate 
the directions of sources. However, it is very sensitive to the 
array noises and the uncertainty in the look direction. Some 
variants of these algorithms have been proposed to improve 
these classical algorithms, however, they are all limited to the 
Nyquist’s rate, that is, the spatial resolution is decided by the 
number of antenna units. 

The information level of radio signals is often far lower 
than the actual bandwidth. So Compressive Sensing (CS) can 
be used for lower rate sampling of signals [4], which states that 
a compressible signal that has a sparse representation in some 
dictionary can be recovered from a small number of linear 
measurements. Compressed sensing is a new emerging 

theoretical framework for signal acquiration and processing. 
The past decade has witnessed prosperity in it. Two conditions 
should be satisfied before performing a compressive sensing of 
the signal. The first is the signal is compressible, that is, the 
signal can be sparsely represented under some dictionary. The 
second condition is the compressive measurement matrix 
should be incoherent with the dictionary. As soon as the two 
conditions are satisfied, and there are sufficient number of 
compressive measurements, one can recover signals from a few 
compressive measurements of signals. 

With the rapid development of CS, it has successfully used 
in array signal processing, including the direction-of-arrival 
estimation, beamforming and so on. The sensed signals in the 
array has sparsity, so can be used for compressive and super-
resolution DOA estimation when there are a limited number of 
antenna units. Many new methods based on CS have been 
proposed and show better performance than traditional ones. In 
[5], a focal underdetermined system solver (FOCUSS) was 
proposed  for obtaining signal measurement sparse solutions so 
that we could have access to multiple measurement vectors 
with sparsity. In [6], CS algorithms including CS-BF, CS-
MUSIC and CS-RMUSIC are presented. [7] proposed three 
novel DOA models including covariance matrix CS, 
interpolated array CS and beam space CS. In this paper, we 
exploit the joint sparsity of received signals to develop a new 
Compressive Direction-of-Arrival Estimation approach via a 
new Regularized Multiple Measurement FOCUSS (RMM-
FOCUSS) Algorithm. It can overcome the resolution limitation 
of traditional spatial energy spectrum estimation algorithm, 
such as MUSIC algorithm, and present more accurate 
estimation of direction of multiple sources when there are a 
few numbers of antenna units. Some experiments are taken to 
validate the performance of our proposed method. 

II. SIGNAL MODEL AND OUR METHOD 
In this section we consider a field consisting of a linear 

array of M  sensors and p  sources. Each sensor receives a 
superposition of the time-domain source signals,  
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where ( )ju t is the amplitude of the j-th received signal, and 

jϕ is the phase of the j-th received signal, 0ω is the frequency  
of the j-th received signal; 0 02 2 /f cω π π λ= = ; 0f  is the 
central frequency of the received signal. Under the assumption 
of narrow-band signals, we have, 
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So we can derive  

( ) ( ) 0 1, 2,...,j
j js t s t e j pω ττ −− ≈ =                (3) 

And the receipt signal of the i-th unit is,  
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where ijg is the gain of the i-th unit to the j-th source, ( )in t is 
the noise and ijτ is the time delay of the j-th source arriving at 
the i-th unit. The received signal of the M units can be written 
as,  
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Assuming the gains are the same, and we can get a simplified 
version of 
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A matrix of (6) can be written as,  

( ) ( ) ( )t t t= +X AS N                            (7) 

where ( ) ( ) ( )1 0 2 0 0, ,..., pa a aω ω ω⎡ ⎤= ⎣ ⎦A , and 
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In the compressive DOA estimation approach, we denote 
( ) ( ) ( )1 , 2 , , N Tx x x T R ×∈⎡ ⎤⎣ ⎦X =  and N KR ×∈A , 

( ) ( ) ( )1 , 2 , , K Ts s s T R ×∈⎡ ⎤⎣ ⎦S= ; ( ) ( ) ( )1 , 2 , , N Tw w w T R ×∈⎡ ⎤⎣ ⎦W= . 

Assuming there are sN sources with their DOAs being 

1 2, ,...,
sNθ θ θ . Define the angle related matrix  

( ) ( ) ( )1 2, , ,
sNa a aθ θ θ⎡ ⎤= ⎣ ⎦Ψ and a sparse vector 
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×⎡ ⎤= ∈⎣ ⎦ , where there are 

K nonzero coefficients in the locations of ( ) ( )kz t s tθ = and 
the left sN K− coefficients are zeros. So the formula can be 
rewritten as, 

X = ΨZ + W                                      (9) 

with ( ) ( ) ( )1 , 2 , , sN Tz z z T R ×∈⎡ ⎤⎣ ⎦Z = . So the DOA 
estimation can be reduced to the estimation of matrix Z . In the 
Focuss algorithm, we can solve Z by solving a minimization 
of  0 -norml of solution. That is, 
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where
,0row

Z indicates the number of non-zero rows of the 
matrix and ε  is the error tolerance. It is a non-convex 
optimization problem, so we use a measure ( ) ( ),p qJ Z  to 
evaluate the difference [5-6], 
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We let 2q = to obtain  
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When 0p → , the above function approaches an 
approximation of 0 -norml . On the other hand, it can reduce the 
computation complexity in minimizing the 0 -norml . 

In order to minimize  (12)  ,we let  
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where ( ) ( )1 1k kA AW+ += and ( ) ( ) ( )1 1 1k k kX W Q+ + += . The 
parameter makes a balance between the sparsity and estimation 
error.  In our method we let 2λ σ= , where 2σ  is the variance 
of noise. 

III. EXPERIMENTAL RESULTS 
In this section, some experiments are taken to validate the 

performance of our proposed method. The operating 
environment for all experiments is MATLAB7.0, and 
computer is configured to Intel Core 2/2.13G/2G. 
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(a)                                                                         (b)                                                                         (c) 

Fig.2.  Estimation results when M=32. 

 
(a)                                                                        (b)                                                                         (c) 

Fig.3. Estimation results when M=16.

A. Experiment 1: comparison results with different M’s 
In this test we compare our proposed RMM-FOCUSS 

method with the traditional MUSIC algorithm, the Multiple 
FOCal Underdetermined System Solver (MFOCUSS) 
algorithm, when there are 32, 16 equally spaced antenna units 
and three 420MHz far field narrow band sources. Two sources 
are coherent and the directions are  randomly selected as 0o、
3o  and 20o while SNR=80dB. The number of samples is 

100T = . Fig. 1 plots the energy spectrum. 

 
Fig.1.  The energy spectrum of three sources. 

The estimation results of MUSIC, MFOCUSS and our 
method are shown in Fig. 2(a)-(c) respectively. From the result 
we can see that an accurate estimation can be obtained for 
these three algorithms when they are lots of antenna units. 

Then we reduce the number of antenna units and let M=16. 
The estimation results of MUSIC, MFOCUSS and our method 
when 16M = are shown in Fig. 3(a)-(c) respectively. From the 
result we can see that with the decrease of the number of 

antenna units, the estimation results of MUSIC degrades 
remarkably. However, both MFOCUSS and RMM-FOCUSS 
outperform MUSIC algorithm. 

B. Experiment 2: comparison results with low SNR 
In this test we compare our proposed RMM-FOCUSS 

method with the traditional MUSIC algorithm, the Multiple 
FOCal Underdetermined System Solver (MFOCUSS) 
algorithm, when there are 32 or 16 antenna units, 3 sources the 
same as experiment 1and SNR=30dB. 

The estimation results of MUSIC, MFOCUSS and our 
method when 32M = are shown in Fig. 4(a)-(c) respectively. 
From the result we can see that our proposed method can 
achieve more accurate estimation than MUSIC and 
MFOCUSS. Then we reduce the number of antenna units and 
let M=16. The estimation results of MUSIC, MFOCUSS and 
our method when 16M = are shown in Fig. 5(a)-(c) 
respectively. From the result we can see that our proposed 
method outperforms MUSIC and MFOCUSS remarkably. 

C. Experiment 3: comparison results with different SNRs 
In this test, we investigate the performance of our proposed 

method when SNR=5, 10, 20, 30, 40, 50, 60, 70 and 80dB. Fig. 
6(a) shows the MSE of the estimation result of three methods 
when M=16 and Fig. 6(b) shows the result of three methods 
when M=8. The MSE is defined as,  
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where Z and 0Z are the real and estimated coefficients 
respectively. From the result we can see that our proposed 
method outperforms MFOCUSS remarkably at different SNRs. 

 
Fig.6. (a) MSE of the Estimation results when M=16, (b) MSE of the 
Estimation results when M=8. 

IV. CONCLUSION 
In this paper, we have proposed a Regularized Multiple 

Measurement FOCal Underdetermined System Solver 
algorithm. Results show that it can obtain higher angle 
resolution than traditional methods when there are few antenna 

units. When the SNR is low, our proposed method is more 
robust and accurate. Meanwhile, more research will be devoted 
to building space-time dictionary to achieve high resolution 
spectrum estimation with less antenna units and snapshots. 
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  Fig.4.  Estimation results when when M=32 and SNR=30dB. 

 
(a)                                                                       (b)                                                                         (c) 

Fig.5.  Estimation results when when M=16 and SNR=30dB. 
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