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Abstract— Many existing studies on human learning pay
almost exclusive attention to how individuals learn. Unlike
those studies, we examined influence of social structures on
knowledge acquired by societies using computer simulations.
We compared four types of social networks, namely regular,
random, small world, and scale-free networks. When individual
differences and the principle of homophily (i.e., people who have
similar beliefs tend to have close relationships with each other)
exist in societies, the societies would acquire pareto-optimal
knowledge. We also investigated influences of highly connected
individuals on knowledge acquired by societies. The results
inarguably indicate that highly connected individuals play
important roles in social learning, setting the standards for what
type of knowledge to be acquired by societies. Index Terms—
ocial Learning; Social Networks; Multi-agent Simulationocial
Learning; Social Networks; Multi-agent SimulationS

I. INTRODUCTION

Many existing studies on human learning in Cognitive

Science pay almost exclusive attention to how individuals

learn. However, people acquire knowledge not only through

individual learning, but also through interacting with others.

Pentland [7] argued that influences of social structures and

activities need to be considered in order to better under-

stand true human cognitive behaviors. Likewise, Goldstone

and Janssen [4] emphasized the importance of research

on collective behavior. For example, they pointed out that

”interacting ants create colony architectures that no single

ant intends,” indicating that social interactions can produce

unique dynamics of knowledge acquisition that cannot be

clarified by studies on individual’s micro-level processes in

knowledge acquisition.

In the present paper, we examine how a society as a whole

acquire knowledge where each individual collaboratively

learns from each other.

A. Knowledge to be learned

In the present paper, we considered coefficients of linear

regression as elements of knowledge to be learned among

individuals in a society, and heuristic-based optimizations of

the coefficients as learning. Thus, people are assumed to learn

relationships between the criterion/dependent variable and a

set of predictor or independent variables. A linear regression
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model can be expressed as follows:

yi =

J
∑

j=0

b
(k)

j xij (1)

here yi is the criterion variable, i indicates a particular

data point or exemplar, xij is the predictor variable j, and

b
(k)

j is person k’s knowledge about relationship between the

dependent variable and the jth independent variable (b0 is

being the intercept).

Although treating sets of coefficients of a linear regression

model as human knowledge may seem unrealistic, what are

learned in many models of human cognition are indeed

numerical variables or parameters that represents ”knowl-

edge” in the models. As an initial attempt, we use one

of the simplest numerical model in order to investigate

dynamics of knowledge acquisition in societies. In addition,

we incorporated a type of genetic algorithms in modelling

social learning, thus our paradigm can be easily extended

to examine models in which knowledge is symbolically

represented.

II. LEARNING ALGORITHMS

A. Overview of Learning Algorithm

We assumed that quite simple learning processes take

place in a society. In particular, we assumed that people com-

municate and exchange elements of their of knowledge with

others where each individual combines his or her knowledge

with those of another individual. We refer to this process

as ”Knowledge Combination.” Knowledge Combination may

be interpreted as formations of new hypotheses. We also

assumed that each individual has their own belief about what

constitutes ”good” knowledge, and knowledge that is believe

to be good will be kept by individuals and therefore by the

society. We refer to this process as ”Knowledge Selection.”

In modeling the abovementioned learning strategies, we

incorporated a type of Evolution Strategy (ES) techniques in

the present research. Knowledge Combination is achieved by

what is called crossover in evolutionary computation litera-

ture in which randomly selected two individuals exchange

elements of their knowledge (i.e., coefficients). There may

be miscommunication in Knowledge Combination, and thus

random perturbations are involved during this process. In

random perturbations, which may be interpreted as mutation,

a small random value drawn from the Normal distribution is

added to each element of knowledge. After new knowledge

is formed through Knowledge Combination, each individual
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assesses his or her own knowledge on the basis of self-

defined knowledge utility. Knowledge with high utility values

will be kept by individuals and the society, while that with

low utility values will be discarded.

B. Social structures

Four types of social structures are examined in the present

research, namely, random, regular, small-world, and scale-

free networks. A random network is a network where each

node (person) is randomly connected with a given number of

other nodes. A random network is characterized as having

a short average path length (average of shortest distances

among all nodes) and a low cluster coefficient (proportion

of nodes, that are connected to node x, are connected to

each other). In terms of a social network, a low cluster

coefficients indicates that it is less likely that person x’s

friends are themselves friends. A regular (lattice) network

is a network where each node is connected with neighboring

n nodes. A regular network has a long average path length

and a high cluster coefficient. Although, neither random nor

regular networks are realistic model of a human society, we

incorporated those networks as benchmarks.

A small world network, usually created by randomly

rewiring about 10% of connections of a regular network, has

a short average path length and a high cluster coefficient

[8]. Previous studies have shown that many real world

networks have analogous network structure to a small world

network. For example, collaboration networks of film actors

[8], networks of scientific collaboration [6], and ownership

links among German firms [4] are shown to be structured as

small world networks.

The last social network structure we examine is a scale-

free network [1]. Scale-free network model incorporates

both growth (number of nodes increases) and preferential

attachment (probabilities that a newly added node will be

connected to other nodes are proportional to the number of

connections that those nodes have). Because of preferential

attachment, the number of connections for each node differs

greatly in scale-free networks, unlike small world networks.

In a scale-free network, the numbers of connections that

each node has follows a power-law distribution regardless

of the size of a network. There are many nodes with smaller

numbers of connections while there are only few nodes

with many connections. The nodes with many connections

are called ”hubs.” Although, existence of a hub is well

known phenomenon in real world networks [1][6], among

four network structures examined in the present research,

hubs exist only in scale-free networks. Scale free networks

also have short average path lengths and high cluster coef-

ficients. However, cluster coefficients depend on the number

of connections and its distribution also follows a power-law

distribution [1].

1) Communication in a society: We assumed that people

have interactions with a limited number of individuals. Only

connected individuals are able communicate with each other.

For regular and small world networks, we further assumed

that the principle of homophily exists in a society such

that people who have similar beliefs (about what constitutes

”good” knowledge) would have close relationships with each

other and that those who have close relationships would learn

from each other. This assumption has reasonable face validity

as, for example, right-wing conservatives often omit what

is being stated by left-wing liberals or vise versa. In those

networks people exchange information with people from

their close friends, meaning that there are several more-or-

less independent clusters in a society. People within the same

cluster have the similar beliefs about what constitutes good

knowledge, while different clusters of individuals possess

different beliefs.

The principle of homophily does not exist in a random

network, because its connections are random.

C. Knowledge Combinations

In Knowledge Combination, randomly selected pairs of

individuals who are connected with each other exchange

information to form new knowledge. The model utilizes

discrete recombination for knowledge parameters . Thus,

b
(k)

l =

{

b
(k)

j if UNI ≤ 0.5

b
(m)

j otherwise
(2)

where UNI is a random number drawn from the Uniform

distribution, and m indicates person who has a connection

with person k. For self-adapting strategy parameters (i.e.,

σs), intermediary recombination (simple arithmetic average)

is used:

σ
(k)

j =
σ

(k)

j + σ
(m)

j

2
(3)

The parameters for self-adaptation (σs) are the parameters

that define search widths (i.e., learning rates) for the elements

of knowledge (i.e., b). A unique search width is allocated

to each element within individuals so that sensitivity to

objective hypersurface is individually tailored to meet his

or her learning objectives.

This combination process continues until every individual

completes forming new knowledge.

1) Inaccurate Knowledge Combination: Knowledge

Combination is assumed to involve inaccurate processes,

as human communication are not always perfect. Each

individual’s knowledge elements are randomly perturbed as

follows:

σ
(k)

j (t + 1) = σ
(k)

j (t) · exp(N(0, γ)) (4)

b
(k)

j (t + 1) = b
(k)

j (t) + N(0, σ
(k)

j (t + 1)) (5)

where t indicates time, γ defines global search width (via

σ’s), and N(0, σ) is a random number drawn from the

Normal distribution with the corresponding parameters.

D. Knowledge Selection

We assumed that there are two ”universally” important

elements in determining utility of knowledge about relation-

ships between the criterion variable and a set of predictor

variables. One is accuracy and the other is simplicity. Every-

one, regardless of his or her belief about what constitutes
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good knowledge, evaluates his or her knowledge on the

basis of those two elements. However, individuals from

different clusters differently weight the importance of those

two elements. In the present research we operationally define

different beliefs by different sets of weight vectors

1) Knowlege Inaccuracy and Complextiy: In the model,

inaccuracy (thus accuracy) of a particular set of coefficients

(knowledge) is estimated based on a set of all unique data

point in a training set. Thus, knowledge inaccuracy for person

k is given as follows:

E(b(k)) =

I
∑

i=1



y
(k)

i −

J
∑

j=1

b
(k)

j xij





2

(6)

where I is the number of unique training data exemplars, y
(k)

i

is the true value of the criterion variable for exemplar i, and

the second term in the right-hand side of the equation is the

predicted value for the criterion variable for person k. The

desired output values are assumed to be obtained individually

and thus Knowledge Inaccuracy is individually estimated.

Complexity (simplicity) of a particular set of coefficients

is given as follows:

C(b(k)) =
∑

j

(

b
(k)

j

)2

(7)

This complexity measure simply signifies absolute magni-

tudes of associations between the criterion and predictor

variables. Thus, when predictor variables and the criterion

variables are weakly associated, this measure tends to be

small. Knowledge complexity is also estimated individually.

2) Individual Differences in Learning Objectives: Al-

though we assumed that all individuals take both accuracy

and simplicity into account in learning, there are some

individual differences in weighting those two properties. We

consider the differences in weights corresponds to difference

in their beliefs. We define vE as a scalar weighting for

relative importance of Knowledge Inaccuracy, and vC =
1 − vE for Knowledge Complexity.

Using these weights and Knowledge Inaccuracy and Com-

plexity measures, we let

F

(

b
(k)

)

= vE

E

(

b
(k)

)

− minE

maxE − minE

+ vC

C

(

b
(k)

)

− minC

maxC − minC
(8)

as an overall fitness value of knowledge for a given belief

(a particular Inaccuracy - Complexity weighting vector).

Since knowledge inaccuracy and complexity are in different

scales, they are normalized with corresponding minimum and

maximum values. The minimum values are values calculated

based on data created in simulations. Since theoretical maxi-

mum values are infinite for both inaccuracy and complexity,

we set the maximum values as 100 × min.

III. SIMULATION

In order to explore how social interactions would produce

unique dynamics of knowledge acquisition, two simulation

studies were conducted. In both simulation studies, individu-

als in a society learns relationships between the criterion and

a set of predictor variables. In Simulation 1, we examined

characteristics of knowledge acquired by the societies that

are organized as random, regular, and small world networks.

In Simulations 2, we examined scale free networks. The

main reason why we conducted separate simulations for scale

free networks was that we were able to create other three

networks with the same model (i.e., WS model, [8]) with

different parameter values, which allowed us to control the

characteristics of the simulated individuals (e.g., number of

connections) in Simulation 1. Scale free networks requires a

separate model (BA model; [1]).
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Fig. 1. The characteristics of knowledge acquired by regular, random,
and small world networks for a particular data set. LS and TS indicate
learning and testing data sets, respectively. In regular and small world
networks some individuals acquired very accurate knowledge at the cost
of complexity, while others acquired very simple knowledge at the cost
of accuracy, showing that those societies as a whole formed Pareto-optimal
knowledge. Knowledge acquired by a random network was less diverse than
those of regular and small world networks. Most individuals in a random
network acquired generalizable knowledge (i.e., knowledge inaccuracies for
new data were relatively low).

A. Simulation 1

1) Method: There were a total of 50 predictor variables.

Among them, only 20 variables have meaningful associations

with the criterion variable. In other words, the criterion vari-

ables were created with 20 predictor variables and random

noise drawn from the Normal distribution.

yi =

20
∑

j=1

bjxij + N(0, 100) (9)

A total of 100 data points were created in each simulation,

among which 50 data points were used for learning and

the remaining 50 points were used for testing/generalization.

minC was defined as
∑20

j=1
b
2
j and minE as

∑

i(yi −
∑20

j=1
bjxij)

2

The model was run in a simulated social learning pro-

cedure with 1000 generations (communication) to learn the

relationship between the criterion and predictor variables.

The model parameter was arbitrary selected (γ = 0.1). There

were a total of 300 individuals in a society. Each individual
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Fig. 2. Results of Simulation 1. Left panel shows knowledge complexity-vs-inaccuracy trade-offs, where each dot represents average of single individual,
and lines indicating ± 2 standard deviations. Right panel shows knowledge complexity-vs-generalization trade-offs.

had exactly 10 connections. The scalar weights that define

relative importance for Knowledge Accuracy (i.e., vE) were

evenly spread from 0 and 1 for 300 individuals. Note that the

weight for Knowledge Complexity was 1 minus Knowledge

Accuracy (vC = 1−vE). There was a total of 300 simulations

for all three social network structures.

2) Results and Discussion: Figure 1 shows the character-

istics of knowledge acquired by regular, random, and small

world networks for a particular data set, for both learning and

testing data sets. Figure 2 shows characteristics of knowledge

acquired by individuals in societies, where each dot repre-

sents knowledge acquired by one individual (averaged). The

left panel shows relationship between knowledge inaccuracy

and complexity, and the right panel for knowledge gener-

alization (inaccuracies for new data sets) and complexity.

The figures and Table 1 show that there was a great degree

of individual differences in acquired knowledge in regular

and small world networks. Some individuals acquired very

accurate knowledge at the cost of complexity, while others

acquired very simple knowledge at the cost of accuracy.

The figures also shows that the regular and small world-

like society as a whole formed thorough Pareto-optimal

knowledge. That is, it is very less likely that one individual’s

acquired knowledge was simultaneously better in both accu-

racy and simplicity than those of other individuals.The results

can be interpreted as that those societies would acquire

cluster of knowledge that exceed at least one important

aspect of knowledge when there are individual differences

in beliefs and when individuals learn from others who share

similar beliefs and values. This result was not surprising,

because social learning processes that take place in regular

and small world networks resemble one of multi-objective

evolutionary optimization methods called vector evaluated

approach (Deb, 2001). The resemblance may indicate that

the principle of homophily (i.e., people who have similar

beliefs tend to have close relationships with each other) and

individual differences together can lead a society to acquire

and hold pareto-optimal knowledge.

Individual differences alone is not sufficient for describing

acquisition of thorough pareto-optimal knowledge, as the

random networks did not form such knowledge. Knowledge

acquired by a random network society was less diverse

than those of regular and small world networks. Random

connections might have canceled out individual differences.

However, most individual in random networks acquired

generalizable knowledge (i.e., knowledge inaccuracies for

new data were relatively low). In fact, the random network

resulted in the lowest average generalization error among

the three social networks. In contrast, some individuals in

regular and small networks acquired either under or over

generalizing knowledge.

B. Simulation 2

1) Method: In Simulation 2, we examined knowledge

acquisition in scale-free networks. In particular we pay close

attention to influences of nodes with many connections (i.e.,

hubs) on overall acquired knowledge in societies.

The general procedures of Simulation 2 follow those of

Simulation 1. In Simulation2, the same data sets (i.e., ys

and xs) were used and same knowledge acquisition processes

were applied as in Simulation 1.

Because it is quite difficult to control dispersion of beliefs

(about what constitutes good knowledge, i.e., vE & vC )

with a scale-free networks, we randomly permutated equally

spaced vEs among individuals.

2) Results and Discussion: Given that vEs were randomly

assigned to individuals, inaccuracy-complexity trade-off of

acquired knowledge in scale free networks resembled that of

random networks

Figure 3 shows the relationships between knowledge char-

acteristics of the node with the highest number of connec-

tions and those of other individuals within the same society.

The relationships between the hub’s and average knowledge

inaccuracy in learning was quite strong. Their correlation

coefficient was 0.744. The relationship between the hub’s

and average knowledge complexity was also strong, and its

correlation coefficient was 0.747. The relationship between
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TABLE I

DESCRIPTIVE STATISTICS OF KNOWLEDGE ACQUIRED BY SOCIETIES

Type Inaccuracy Complexity Generalization

Avg. Std. Avg. Std. Avg. Std.

random 4389.1 590.9 1869.4 813.6 1114.2 810.2

regular 4231.5 1530.4 3324.6 4708.4 1268.1 4008.1

small world 4245.6 1489.9 3155.9 4152.2 1252.5 3567.4
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Fig. 3. Results of Simulation 2. The left panel shows relationship between knowledge inaccuracy (in learning) of the node with the highest number of
connections (i.e., hub) and average knowledge inaccuracy among individuals in the same society. The middle and right panels show relationship between
knowledge complexity and generalization inaccuracy of the hub and average knowledge complexity and generalization inaccuracy, respectively.
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Fig. 4. The left panel shows relationship between nodes’ connectivities and knowledge learning inaccuracy. The middle and right panels show relationship
between nodes’ connectivities and knowledge complexity and generalization inaccuracy, respectively.

hub’s and average generalization inaccuracy was remarkably

strong. Its correlation coefficient was 0.970.

These results inarguably indicate that the hubs play impor-

tant roles in social learning. They set standards for knowledge

complexity and knowledge accuracy. However it is quite dif-

ficult to understand why the hubs’ knowledge generalization
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inaccuracies have stronger associations with that of other

individuals as compared with knowledge inaccuracies (for

learning sets) and complexities. Figure 3 shows the rela-

tionships between nodes’ connectivities and knowledge accu-

racies, complexities, and generalization. Higher numbers of

connections were associated with lower learning inaccuracies

and intermediate levels of generalization inaccuracies. There

was no clear relationship between the number of connections

and knowledge complexities. It also indicates that there were

greater levels of variabilities in knowledge complexities than

learning inaccuracies. This in term suggest that optimization

of knowledge complexity was more difficult than optimizing

knowledge inaccuracy (or maxC was set too large or more

learning generation might have been needed). A wider range

of knowledge complexities in societies more or less evened

out the societies’ needs for simplifying knowledge, and then

they acquired knowledge at middle levels of complexities. If

this is the case, the results of Simulation 2 may not be caused

by the nature of scale-free networks, but by the one specific

instantiation of scale-free networks. Further simulations and

analyses are needed to examine this issue.

IV. CONCLUSION AND FUTURE DIRECTIONS

Many existing study on human learning in Cognitive

Science pay almost exclusive attention to how individual

learns. In the present research, unlike previous studies, we

examined learning processes that take place in society using

computer simulations. We examined how society as a whole

acquired knowledge while each individual interacts with

others. We compared four types of social networks, namely

regular, random small world, and scale-free networks. Where

applicable, we assumed that the principle of homophily

(i.e., people who have similar beliefs tend to have close

relationships with each other) and individual differences exist

in societies. In such societies (individual differences and

homophilic), we found that the society would acquire pareto-

optimal knowledge, such that there is no cluster of knowledge

that was worse (or better) in two important aspects of

knowledge (i.e., accuracy and simplicity) as compared with

those of other clusters. That society acquired very robust and

wide variety of knowledge. In Simulation 2, we investigated

influence of highly connected individuals on knowledge

acquired by societies. The results inarguably indicate that

highly connected individuals play important roles in social

learning, setting the standards for knowledge complexity

and accuracy. Though it is still inconclusive, knowledge of

highly connected individuals seem to have stronger influence

on generalizabilities of acquired knowledge (vs. knowlege

complexities and learning inaccuracies).

With two simulation studies, we showed that social in-

teractions can produce unique dynamics of knowledge ac-

quisition that is difficult if not possible to be clarified by

studies on individual’s micro-level processes in knowledge

acquisition.

There are several ways to extend our research paradigm.

In the present research, we assumed that people exchange

elements of knowledge that are being heuristically optimized

by individuals (i.e., b). In reality, people also communicate

their inferences about the criterion (i.e., y in our simulations),

and then optimize their knowledge on the basis of other

people’s inferences. Another natural and appealing extension

is to incorporate unsupervised learning to see how knowledge

is self-organized.
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