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Abstract—Speed profile prediction on ramps is a challenging 

problem because speed changes on ramps involve complicated 
lane maneuvering and frequent acceleration or deceleration 
depending on geometry of the ramp and traffic volumes. Ramps 
can be categorized into three groups based on their 
interconnection of freeway: freeway entering ramps, freeway exit 
ramps, and inter freeway ramps. However, different 
geographical shapes of ramps within the same category cause 
different speed profile distributions. To predict speed profile on 
any ramp types, we proposed an Intelligent Trip Modeling on 
Ramp (ITMR) System that consists of a ramp classification 
method based on the decision tree and speed profile prediction 
neural networks. The proposed ITMR takes inputs from 
geographical data on the route and also the personal driving 
pattern extracted from the knowledge base built with the 
individual historical driving data. Experimental results show that 
the proposed system learned dynamic ramp speed changes very 
well to provide accurate prediction results on multiple freeway 
entering ramps, exit ramps and inter freeway ramps.    

 Keywords— speed prediction; trip modeling; traffic model; 
ramp; 

I. INTRODUCTION 
Recently, Advanced Traffic Information System (ATIS) 

has drawn lots of attention due to the explosive sensor 
technology innovations and vast amount of real time and 
historical traffic information available. ATIS can support a 
driver by providing useful predictive traffic information using 
combined traffic information [1].  

Trip modeling for speed profile is to predict a spatial 
distribution of traveling speed along a route. In ATIS the 
accurately predicted traffic information can be used to reduce 
the uncertainty of the future traffic states, improve traffic 
mobility, and provide the driver with a realistic estimation of 
travel times, expected delays and alternative routes to the 
destinations. Our and other’s research showed that an 
accurately predicted vehicle speed profile of an intended route 
is important to achieve optimal fuel economy in a hybrid 
electrical vehicle (HEV) [1-5], and estimate distance-to-go in 
Electric Vehicle (EV) [6].  

Ramps provide interfaces between different traffic 
facilities through speed-change lanes. Speed-change lanes 
allow vehicles to increase speed or decrease speed for safe and 

smooth transition. The speed-change lane for on-ramp 
(freeway entering ramp) is an acceleration lane, while the 
speed-change lane on off-ramp (freeway exit ramp) is a 
deceleration lane [7]. Although ramps are significantly shorter 
in length compared with other traffic facilities, its speed 
profile usually changes dramatically. Trip modeling of speed 
profile on ramps has lots of potential in assessing the ramp 
geometric design, operations, safety of a roadway facility, and 
vehicle power management [8-9]. 

Speed profile prediction on ramps is a challenging problem 
because speed changes on ramps involve complicated lane 
maneuvering, frequent acceleration or deceleration depending 
on geometry of each ramp, number of lanes, and traffic 
volumes.  Ramps can be categorized into three groups based 
on their interconnection of freeway: freeway entering ramps, 
freeway exit ramps, and inter freeway ramps. However even 
for ramps in the same category, different geographical shapes 
of ramps cause different speed profile distributions. Ramps 
also show significant speed pattern variations due the fact that 
drivers often make a transition through a ramp to different 
traffic facilities. 

For the last decade, research in traffic information 
prediction has been very active. The techniques can be broadly 
categorized into two groups: model based and data-driven 
methods [10]. Model based approaches predict future traffic 
states on the route of interest based on theoretical models [11]. 
In general, model based approaches need expertise for design 
and maintenance of the traffic model, and extensive 
calibration of traffic model parameters on a site-by-site basis 
[10]. On the other hand, data driven traffic modeling 
approaches relate observed traffic conditions with current and 
past traffic data without using explicit physical traffic models. 
Data driven approaches are fast to develop since they do not 
require extensive expertise in traffic prediction modeling [6], 
[11]–[14]. However, most of this work has been focused on 
freeways, whereas little work focuses on traffic information 
predictions on ramps.  

Recently, Huang et al. [4] proposed modeling speed 
profiles on freeway exit ramps using support vector regression. 
They collected data using radar guns at 400 ft intervals on 24 
freeway exit ramps and speed data were collected 10 times for 
each collection point. But the proposed speed profile model 
has unsatisfying performances with 11.50% error over real 
measured data. 

This work is supported in part by a research contract from Ford Motor
Company. 
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Even though ramps are already classifie
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have different physical shapes that result in
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using the individual driving historical data on 
The KB provides individual driving stat
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prediction performances. 
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Fig. 3 presents the proposed decision tr
classification. In the ramp classification decis
node is a ramp type, i.e. freeway entering ram
ramp, and inter freeway ramp. Geographical 
speed limit, curvature distribution mode, and
large curvature on the ramp are used to split 
after the root layer.  

First, the decision tree is splitting based on
Then, the decision three is divided into the nex
curvature distribution mode on the ramp.
distribution mode represents the most frequen
on the ramp. Fig. 4 shows three diff
distribution modes in three different ramp s
the analysis of curvature distribution on the 
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0° to 10° such that Bin1 = [0°, 2.5°], Bin2= 
(5°, 7.5°] and Bin4= (7.5°, 10°]. Then the fifth
large curvature range 10° to 90° (i.e. Bi
because curvatures in this range do not occur f

For each traveling point xi, the curv
calculated as follow:           ߠሺxiሻ ൌ arccos ሺ ௫ഢషభ௫ഢሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ·௫ഢ௫ഢశభሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦԡ௫ഢషభ௫ഢሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦԡԡ௫ഢ௫ഢశభሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦԡሻ    

where  ݔݔሬሬሬሬሬሬሬሬሬԦ is an Euclidean vector from ݔ
the dot product. To determine the curvature d
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Fig. 3. Ramp classification decision tree based on speed
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0 2.5 5 7
0

1000

2000

3000

4000

Curvatu

# 
of

 D
at

a 
P

oi
nt

s

ramps. Thus, a ramp with 
inning will have a different 
large curvature point at the 
is large if the curvature on 
ter than threshold (we used 
defined based on the large 
ature  2) large curvature  at 
arge curvature points at the 
4) both portion has large 

bservation, driving patterns 
hird part of the ramp from 
example some ramps have 

g than the rest of ramps.  

n the large curvature exists 
eginning of the ramp. The 
ows that the speeds are 
s large. Fig. 7 presents 
tion results based on the 
urvature distribution mode, 
e ramp. Two circular shape 
a are classified as the same 
s in Figure 7b are grouped 

sion tree is tested with 40 
13 exit ramps, and 11 inter 
o 24 different ramp groups 
bove 

 

rent ramp shapes.  

 
e on freeway entering ramps.  

7.5 10 90
ure

969



Fig 6.Example of large curvature locations and speed pro
 
 
 

(a) Entering Ramp classification: group 1 
 

(b) Entering Ramp classification: group 2 
Fig. 7. Examples of entering ramp classification by the de
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Fig.8.  Matching the new ramp with known ramps in knowledge base. 

 
system that predicts the driving speed profile along the 
selected ramp route before the trip starts. Traffic information 
predictions such as speed, flow, and travel time are complex 
non-linear spatial-temporal problems for which the dynamics 
in free-flowing or congested conditions are different. The 
learning capabilities of neural networks make them a suitable 
approach for solving the complicated non-linear traffic 
prediction problem. The NN based traffic prediction system 
requires time intensive training to learn from the traffic 
training data and also the performance of NN based the traffic 
prediction system is very much dependent on the design of its 
input features and its architecture. Analysis of the features 
available to choose highly correlated input features with the 
output is an important step when developing a reliable speed 
prediction system.    

A. Feature Selection based on Correlation Analysis 
All the geographical information on ramps is acquired 

through an ATIS (in our case provided by Here or former 
Nokia/Navteq) and the available information includes latitude, 
longitude, altitude, number of lanes, curvature, speed limit, etc. 
The individual driving data on the selected ramps were 
collected by two different vehicles equipped with data loggers 
and a total of 720 trips on 40 different selected ramps were 
recorded. Fig. 9 displays speed profiles recorded on different 
days on a freeway entering ramp at the intersection between 
the local Plymouth Road and freeway I-94 in Ann Arbor, 
Michigan, U.S.A.  In Fig. 9, the speed profile is represented in 
a three-dimensional plot where x is longitude, y is latitude and 
z is the actual recorded speed in miles per hour (mph). Using 
individual driving historical data on ramps, a KB was built 
that contains average historical speed, standard deviation of 
historical speed, and the maximum and minimum historical 
speed at each traveling point on the ramp. Since the vehicle 
speed on the ramp is quite related with the location on the 
ramp, two more features are defined by us. First, the distance 
from the beginning of the ramp to the traveling point xi, ܦሺ࢞ሻ 
is calculated. Secondly, the distance from xi to the nearest 
point where the curvature is larger than 20° is calculated and 
denoted as ࢋࢍ࢘ࢇࡰሺ࢞ሻ. 

To find effective input features to the RSPPNN system 
among all available geographical & historical statistics 
features, Pearson correlation analysis is applied. Pearson 
correlation measures how well the variables are related. We 
applied this analysis between recorded true vehicle speeds and  

 
Fig.9. Recorded Speed profiles on a selected freeway entering ramp. 

 

each of the available features. TABLE I presents the top 6 
highest correlated features with the true recorded speed on 
various ramps, where μሺݔሻ  is the average historical speed, 
σሺݔሻ is standard deviation of historical speed, maxሺݔሻ  is 
maximum historical speed, and  minሺx୧ሻ  is minimum 
historical speed at the traveling point xi. For the freeway 
entering ramp and the exit ramp, the average historical speed 
μሺݔሻ has the highest correlation with the true vehicle speed. 
For the inter freeway ramp, the location index (i.e. traveling 
point xi) has the highest correlation with the true vehicle speed. 
Based on this analysis, the top 6 highly correlated features 
were selected as inputs to the RSPPNN system. 

B. Architecture of Ramp Speed Profile Prediction NN 
The RSPPNN is built with the multi-layer perceptron 

(MLP) type neural network which consists of three layers with 
one single output which is the predicted speed. A back-
propagation algorithm is used for all NN training, a log 
sigmoid transfer function is used for the hidden layer, and a 
pure linear transfer function is used for the output layer. The 
hidden layers of these neural networks vary from 5 to 50 
hidden nodes. The number of hidden nodes for each neural 
network hidden layer is determined using the following 
training process; for each possible number of hidden nodes we 
apply 3-fold cross validation to train and evaluate the system. 
The number of hidden nodes that gave the best validation 
results is chosen for the neural network. According to the 
experiments results, the best hidden node number are 10, 15, 
and 10 for entering ramp NN, inter freeway ramp NN, and exit 
ramp NN respectively. 

Based on the feature selection analysis in Section III-A, the 
RSPPNN is designed to take the three different types of inputs: 
geographical inputs, individual historical inputs, and the 
dynamic traffic TMC data which is the traffic sensor data on 
the freeway where the ramp merges and denoted as ࡹࢀࢂ.  For 
the inter freeway ramp, TMC data near the beginning of the 
ramp is used because two TMC data are available on the inter 
freeway ramp (i.e. near  the beginning and the ending of the 
ramp). Three geographical input features are used: 1) the 
location index at xi, ݔ݁݀݊ܫ݊݅ݐܽܿܮሺ࢞ሻ, 2) the distance from 
the beginning of the ramp to the traveling point xi, ܦሺ࢞ሻ, and  
3) the distance from xi  to the nearest point where the curvature 
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is larger than 20°, ࢋࢍ࢘ࢇࡰሺ࢞ሻ . The indiv
driving features used as inputs to RSPPNN s
average speed of  historical driving data 
standard deviation of historical driving speed
the maximum historical driving speed at xi, m
the minimum  historical driving speed at x
output of the RSPPNN is the predicted speed 
Fig. 10 presents the architecture of the RSPPN

IV. IMPLEMENTATION AND EXPERIM

As described earlier in the paper, our 
Modeling on Ramp (ITMR) system cons
classification decision tree, knowledge b
individual historical driving data, and speed p
neural networks, RSPPNN. The overall arc
ITMR system is presented in Fig. 11. When a
predicted on a new route, the ITMR system f
ramp category based on geographical informa
in Section III-B. Then, a matching process 
extract the historical statistics at the best ma
points from ramps with the same category 
input features defined in Fig. 10 are generated
RSPPNN system. The output of the system 
speed profile on the ramp. 

 

TABLE I.  PEARSON CORRELATION ANALY

Entering Ramp Inter Ramp E
Symbol CR* Symbol CR* Symboࣆሺ࢞ሻ 0.9257 ࣆ 0.5961 ࢞ሺࡰ 0.8759 ࢞࢞ሺ࢞ሻ 0.5940 ሺࡰ࢞ሺ࢞ሻ 0.8604 ࢋࢍ࢘ࢇࡰሺ࢞ሻ 0.4716 ࢋࢍ࢘ࢇࡰ ࢞ሺ࢞ሻ 0.8452 ࢞ࢇሺ࢞ሻ 0.4639 ࢞ࢇሺ࢞ሺ࢞ሻ 0.7641 ሺ࢞ሻ 0.4622 ࡰሺ࢞ࢇ࢞ሺ࢞ሻ 0.7345 ࣌ሺ࢞ሻ 0.4205 ࢋࢍ࢘ࢇࡰ
(CR* : Correlation Value) 

 
 

 
Fig.10. The architecture of RSPPNN. 

vidual historical 
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Fig.11. The architecture of an Intelligent Trip
System. 
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ramps are evaluated using 
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For the comparison, the 

out KB is calculated as a 
implemented exactly the 

m except that it only takes 
a and the geographical data 
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to RSPPNN. In general, ITMR system improves the 
performance 14% over the system without KB. The 
performance of Ramp 8 and Ramp 11 are not good because of 
lack of the training data  (these ramps belong to the same 
group but Ramp #11 only has one trip, and Ramp #8 only has 
2 trips. We do not have enough training data for this case). 
TABLE III shows the performances of ITMR system on inter 
freeway ramps. A total of 11 different inter freeway ramps are 
evaluated using 107 recorded trips. The average performance 
of ITMR on inter freeway ramps is 3.7973 mph with 47.97% 
improvement over the baseline system that did not use a KB 
for speed profile prediction. 

 
 

 
Fig.12. An example of speed profile prediction on the freeway 
entering ramp. 
 
 

TABLE II.  Freeway Enterin Ramp Experiment Result 

Ramp 
Category  

Testing 
Ramps 

Used ramps 
for Training

Prediction 
MAE with 

KB 
(mph) 

Prediction 
MAE without 

KB 
(mph) 

#1 Ramp10 Ramp1 3.6903 4.3263

Ramp1 Ramp10 4.2617 5.9695

#2 Ramp15 Ramp3,      
Ramp14  

7.7241 10.6294

Ramp14 Ramp3,  
Ramp15 

4.4692 6.1737

Ramp3 Ramp14,  
Ramp15 

11.0047 7.8686

#3 Ramp13  Ramp5 2.3593 4.6438

Ramp5 Ramp13 4.6383 6.0984

#4 Ramp16 Ramp7,  
Ramp9,  
Ramp12,  

5.9741 7.9952

Ramp12 Ramp7,  
Ramp9,  
Ramp16 

4.7657 13.0265

Ramp9 Ramp7,  
Ramp12,  
Ramp16 

3.2708 6.7263

Ramp7 Ramp9,  
Ramp12,  
Ramp16, 

1.7600 10.1922

#5 Ramp11 Ramp8 20.6169 21.2314

 Ramp8 Ramp11 22.5464 22.4489

TABLE III.  INTER RAMP EXPERIEMT RESULTS 

Ramp 
Category 

Testing 
Ramps 

Used ramps 
for Training 

Prediction 
MAE with KB

(mph) 

Prediction MAE 
without KB 

(mph) 

#6 
Ramp6 Ramp1 4.2886 12.4727

Ramp1 Ramp6 5.4190 9.7837

#7 
Ramp9 Ramp3 6.8006 14.6241

Ramp3 Ramp9 2.5033 4.4217

#8 
Ramp5 Ramp4 3.2151 5.3152

Ramp4 Ramp5 3.4625 5.8590

 
 

The example of speed profile prediction on freeway exit 
ramps by the ITMR system is presented in Fig. 13. The speed 
profile is predicted on I-94E to Ann Arbor Saline Rd. in Ann 
Arbor, Michigan, U.S.A. The true recorded speed profile is 
superimposed with red color in the same figure. In this 
example, the MAE of the proposed ITMR system is 3.5079 
mph. The overall performance of the proposed ITMR system 
on freeway exit ramps is presented in TABLE IV. A total of 
13 different freeway exit ramps are evaluated using 276 real 
driving recorded trips. The average performance of ITMR on 
freeway exit ramp is 8.3619 mph which is a 4.54% 
improvement over the system that does not used KB for speed 
profile prediction. 

 

V. CONCLUSION  
We have presented an Intelligent Trip Modeling on Ramp 

(ITMR) system to predict speed profiles on freeway ramps. 
The ITMR system consists of a ramp classification decision 
tree, a knowledge base built with individual historical driving 
data, and speed profile prediction neural networks, RSPPNN. 
The ITMR system was fully implemented and evaluated using 
real driving data recorded by probe vehicles. The performance 
of the ITMR system shows that the proposed method can 
predict speed profiles on any ramps precisely and outperforms 
the baseline that does not use the knowledge base built with 
the historical individual driving data. Currently we are 
working on understanding the effect of different NN 
architectures and individual driving behavior by analyzing 
individual driving data to improve the performance further.  

 
 

 
 

Fig. 13.  An example of speed profile prediction on the freeway exit ramp. 
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TABLE IV.  FREEWAY EXIT RAMP EXPERIEMT RESULTS 

Ramp 
Category 

Testing 
Ramps 

Used ramps 
for Training 

Prediction MAE 
with KB 
(mph) 

Prediction MAE 
without KB 

(mph) 

#9 

Ramp6 Ramp1, 
 Ramp3,  
Ramp4 

4.8720 16.8127

 

Ramp4 Ramp1,  
Ramp3,  
Ramp6 

4.1534 7.8864

 

Ramp3 Ramp1,  
Ramp4, 
Ramp6 

4.9236 6.5274

 

Ramp1 Ramp3, 
 Ramp4,  
Ramp6 

9.3055 10.3761

 

#10 

Ramp10 Ramp2,  
Ramp5,  
Ramp7 

10.3976 7.6881

 

Ramp7 Ramp2, 
 Ramp5,  
  Ramp10 

11.2909 12.9858

 

Ramp5 Ramp2,  
Ramp7,  
Ramp10 

10.9189 8.4123

 

Ramp2 Ramp5,  
 Ramp7,  
Ramp10 

12.5309 9.4632

 

#11 
Ramp11 Ramp9 4.8849 6.9413

Ramp9 Ramp11 4.9796 18.4676
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