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Abstract— Can a machine tell us if an image was taken in Bei-
jing or New York? Automated identification of the geographical
coordinates based on image content is of particular importance
to data mining systems, because geolocation provides a large
source of context for other useful features of an image. However,
successful localization of unannotated images requires a large
collection of images that cover all possible locations. Brute-force
searches over the entire databases are costly in terms of com-
putation and storage requirements, and achieve limited results.
Knowing what visual features make a particular location unique
or similar to other locations can be used for choosing a better
match between spatially distance locations. However, doing this
at global scales is a challenging problem. In this paper we
propose an on-line, unsupervised, clustering algorithm called
Location Aware Self-Organizing Map (LASOM), for learning
the similarity graph between different regions. The goal of
LASOM is to select key features in specific locations so as to
increase the accuracy in geotagging untagged images, while also
reducing computational and storage requirements. Different
from other Self-Organizing Map algorithms, LASOM provides
the means to learn a conditional distribution of visual features,
conditioned on geospatial coordinates. We demonstrate that the
generated map not only preserves important visual information,
but provides additional context in the form of visual similarity
relationships between different geographical areas. We show
how this information can be used to improve geotagging results
when using large databases.

I. INTRODUCTION

Understanding where user generated images come from

(e.g. Beijing or New York) can be a great source of con-

textual information. For example, object detection can be

constrained to search for location-specific objects.

The number of photos taken at a location can provide

information about the popularity of a particular place, which

can be used in tourist recommendation systems [1]. Im-

age search and retrieval can also benefit greatly from this

work [2]. Finding videos and images related to a particular

location or even places mentioned in a news story is of great

interest to mass media [3]. Images and videos recorded in the

same area tend to be related in terms of activity and content.

Finally, determining where an image was taken is valuable

to the intelligence community for use in surveillance.

The availability of geotagged images on sites such as

Flickr has allowed researchers to explore the problem of

automatic geotagging of images and videos that are missing
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Fig. 1: Overview of the LASOM algorithm, which uses a

dictionary of codebook vectors to determine the location of

a query image.

such information. Most successful approaches have com-

bined media tags with global image descriptors and au-

thorship information [4]. Yet, there is plenty of untapped

information that still exists in image content. Understanding

how features are distributed in the world and using such

information can improve geotagging performance. Specif-

ically, this information can be used for building a list of

geographical regions where a query might have originated.

Due to a huge variability of visual features across the

world, geolocation is inherently a big data problem. Since

hand labeling all training images is unfeasible, employing

unsupervised methods would be much more effective. One

solution is to assign the location of the first best match to a

query image [5]. This method can perform fairly well, but

requires an extremely large database of images, increasing

resource requirements and amplifying noise.

Alternatively, image similarity graphs [6] can be used to

reduce the search space to a small set of most relevant

images. However, considering the size of the databases, cap-

turing similarity relationship between all images is difficult

and can increase the computation requirements for adding

new images to the database. Furthermore, manually sifting

through such databases becomes impractical.

Many geolocation techniques will first perform some form

of clustering before training a classifier to detect which

cluster a query image belongs to. These clusters are either

done on the location information [7], [8], [9] or on the

visual features [6], using such methods as k-means or mean-

shift. In this paper we propose a new on-line unsupervised

clustering algorithm, called Location Aware Self-Organizing

Map (LASOM), that can be used for estimating the density

distribution of one variable conditioned on another. The

algorithm, outlined in Figure 1, explicitly uses location

information to determine whether we need to store a training
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image’s feature1 at a particular location or if the information

contained in a training image is redundant. Self-Organizing

Map (SOM) is then used at that location to learn the signature

of that region by modifying local representation to capture

the novelties of new training samples. The noise reduction

step removes outliers and merges similar clusters to further

reduce computational and storage requirements.

SOM [10] algorithms are designed to incrementally build

relationship graphs without supervision. However, current

SOM algorithms are not suitable for solving the general

geolocation problem and suffer from two major issues. First,

both the visual features and the locations are highly variable.

Second, a large amount of training data is required to

demonstrate this variability. LASOM separates the task of

clustering the visual features from spatial clustering, making

it intuitive for the geolocation problem. It also requires fewer

complex parameters than other algorithms.

This work provides an important contribution in the

form of a new method that reduces noise in a dataset

as well as provides compression, enabling it to scale to

very large databases. This compression does not reduce the

performance of location estimates and moreover, it can be

improved using the learned relationships between images.

These contributions bring us closer to solving the geolocation

problems which span large spatial distances and require

huge databases. Furthermore, using on-line algorithms allows

adding new data without having to restart the learning

process. To the best of our knowledge, this work is the

first attempt at applying unsupervised on-line clustering

algorithms to the geolocalization problem.

II. BACKGROUND

The present work is a fusion of two different areas of

research. The interest in the geolocation problem has made

it an active research topic with recent work showing that

graph-based representations can aid greatly in the task.

Unsupervised incremental clustering methods are a class of

algorithms that can be used to construct such data structures

and improve geolocation performance. We will first review

the efforts to solve the geolocation problem, before dis-

cussing a class of unsupervised clustering algorithms called

Self-Organizing Maps.

A. Geolocation

At its core, the geolocation problem is about assigning

coordinates to an unannotated image or a video [8]. Hays

and Efros [5] showed that a simple scene matching approach

can achieve respectable performance. This required a large

database of images and comparing each query image against

every item in the database. Since the goal of our work is

similar, we will use k-nearest neighbor search (k-NN) as

a baseline to show that our approach scales and provides

better performance through noise reduction and by learning

the relationship between image features and locations.

1In this paper we learn the distributions of different feature types (e.g.
color histogram and texture) separately.

Support Vector Machines (SVM) have been used with

some success to discriminate between different regions [9],

[11], [6]. The use of SVMs, however, requires a set of posi-

tive and negative examples to be generated. It is not always

clear how to do this. Crandall et al. [11], for example, first

clustered their dataset and then selected the top ten clusters

as class labels. This would not work for locating an image

that comes from a low density cluster. Furthermore, k-NN

often works very well at geotagging popular locations [5],

despite the claim made in [11] that image features are a poor

choice for localizing images in global databases.

Other approaches have augmented the image or video in-

formation with external sources such as authorship informa-

tion [4], time between photos made by a single person [12],

textual tags [13], [14], [4], [15]. In this work we assume

that none of this information is available for a query image

and that the image has to be classified based only on visual

features. For a more detailed discussion of the geolocation

problem, refer to [16].

B. Self-Organizing Maps

Cao et al. [6] have shown how similarity relationships

in a form of a graph can be used for geolocating images.

Their graph structure did not capture geotags associated with

images and was only used for retrieving visually similar

images based on a query image. The results were used to

reduce the time it took for a more complex image matching

method (geometric verification). In contrast, our goal is to

create graphs that explicitly represent geospacial information

as well as visual features.

We also draw inspiration from our previous work [7],

where we proposed using Growing Neural Gas (GNG) [17],

a variant of SOM algorithm, for constructing visuo-spatial

representations of small environments. They achieved consid-

erable compression, representing over 25,000 input images

using only 500 codebook vectors, while still maintaining a

representation that was detailed enough for identifying loca-

tion specific information. Shao et al. [18] proposed a method

for improving the GNG algorithm called Enhanced Self-

Organizing Incremental Network (ESOINN). They changed

the way new nodes were added to the graph, how the

connections were made, and how to determine outliers.

From our experimentation on a large dataset we found

that neither GNG nor ESOINN could learn a representation

that produces accurate geotagging performance. In these

approaches the location is not an explicit concept and the

relationship between a visual feature and a geotag must be

captured implicitly. This requires a large amount of training

data, which requires longer training times. Using high dimen-

sional data with ESOINN resulted in the creation of many

clusters that were not connected to any other cluster, causing

most of the training information to be lost at the noise

reduction step. By making location an explicit concept, we

provide a method for specifying what relevant information

should be stored and when.
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III. METHODOLOGY

The goal of automatic geotagging is to find a list of prob-

abilities for each possible location, L, given a query feature

vector, f . More specifically we want to find argmaxL p(L|f).
Calculating this directly is very difficult, due to the large

variability of visual data at each possible location. We can,

however, approximate the solution by argminfl ‖ f−fl ‖ [5],

where fl is an image feature vector at location L. In other

words, the best match in a very large database should

correspond to the most likely location of the query feature.

Such an approach suffers from two issues. First, the number

of comparisons that must be made grows linearly with the

size of the database, O(|fl|). Second, this method suffers

from noise and increasing the size of the database only aggra-

vates the problem. Since no other contextual information is

available, obtaining high performance using this method has

been difficult. In the next subsection we discuss the details

of a new on-line, unsupervised clustering algorithm that

compresses large databases by only keeping the information

required to identify a specific location.

A. Location Aware Self-Organizing Map

LASOM is a specialized algorithm for learning the dis-

tribution of one feature conditioned on another one. Spatial

constraints will be used to learn the distribution of visual

features at particular geographical locations. The algorithm

is based on a class of algorithms known as Self-Organizing

Maps (SOM) [10]. Our approach to the geolocation problem

requires us to build visual signatures for geospatial areas

of particular size. The region size in this case acts as a

constraint on the location variable, while visual features

stored at that location represent the visual signature of that

location. During training LASOM estimates a solution for

this problem using two key steps.

In step one, LASOM uses the explicit knowledge of space

to assign an input feature f to a codebook vector, c1 if

and only if the visual features of c1, Wc1
is the closest

vector in feature space ‖ Wc1
− f ‖ and is also within the

geospatial constraint (i.e., within a distance threshold). This

step specifically targets ambiguities between different spatial

regions. A blue house in one town may look similar to a

blue house in another town. Traditionally, an SOM would

average the distance between the two locations, as that would

minimize the average error. In our case this is not the desired

solution, since we want to record information about both

locations. If c1 is geospatially distant then LASOM will

consider assigning f a neighbor of c1 if they are within

f ’s region. Since neighborhoods are formed based on visual

similarity, neighbors of c1 are also similar to f . Finally,

if nothing is found, f is added to the set of codebook

vectors and an edge between c1 and f is added to the set

of edges. This allows future inputs to resolve ambiguities

between different regions. How LASOM determines class

membership and the need to add a class is one of its novelties.

In the second step LASOM uses a novel method for

reducing the codebook size. Instead of removing unlikely

codebook vectors LASOM attempts to merge them with other

codebook vectors. By waiting to do this after a predetermined

number of learning iterations, LASOM allows time for

codebook vectors to be selected. Selected vectors are updated

and move around geographically as well as in feature space.

Perhaps a very similar codebook vector started outside some

node’s spatial constraints, but with time has shifted to reside

within it. Consider a city street where all houses are painted

green. Perhaps initial training steps introduced input vectors

from the opposite ends of the street. Clearly, no assumption

can be made about the point between these two inputs.

However, with time, some training samples will land closer

to one node and at other times samples will be closer to

the other, shifting them both towards the center of the street.

After a certain point it will become clear that both codebook

vectors are being drawn to the same physical location. The

next three sections will formalize these ideas.

B. Training

The LASOM algorithm starts with a small codebook

dictionary, which can be randomly generated or created from

training samples. Given a query feature vector, f , LASOM

finds the top two matching codebook vectors, c1 and c2 in

the current dictionary, D using some distance metric (e.g.

c1 = argminc∈D ‖ f − Wc ‖, where Wc are the features

associated with codebook vector c). The goal of LASOM

is to minimize ‖ f −Wc ‖ function. We use two distance

functions depending on the feature type (e.g. histogram or

vector). This will be discussed in Section 4.1. c1 may or may

not be close to the actual location of the feature vector, Lf .

Each codebook vector has GPS coordinates associated with

it. During training, these coordinates are used to determine

whether the input feature f belongs to the codebook vector

c1 or not by limiting the maximum distance between them,

H(Lf , Lc1
) < δ. The ‘haversine’ distance formula was used

to compute the distance, H(x,y), along the surface of the

earth.

If the physical distance between f and c1 is not within

this threshold, but there is a neighboring node that is very

similar to the input and is within the distance threshold then

c1 becomes that neighbor and c2 is replaced with the old

c1 . In this process, all the scores are transformed to a

Gaussian, N (0, 1), by subtracting the mean and dividing by

the standard deviation. A neighbor is considered similar if its

transformed score is less than −3, or 3 deviations from the

mean. If there is a c1 within a threshold distance of f then

c1 is updated to reduce ‖ f −Wc ‖. If we had to replace the

global match with its neighbor, this has the effect of making

it more similar to the global match, ∆Wc1
= ǫ× (f −Wc1

),
where ǫ is a learning parameter. Intuitively this process

can be seen as moving a codebook vector in feature space

until the center, or average, of that space is found. This

movement is constrained by neighboring nodes. The on-line

nature of the algorithm gives greater weight to more recent

observations than to old training samples. To prevent c1 from

forgetting old inputs ǫ is defined as ǫ(t) = 1

t
. In LASOM t

is set to the number of times a particular codebook vector
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Algorithm 1: The training algorithm for LASOM

Result: G = (E, V ), AgeMatrix: Staleness of an edge,

WinningTimes: # of times v ∈ V was a

winning vector

Data: (Lf , f ): Set of Training Samples

1 while there are more training samples do

2 c1 ← argminc∈E ‖ ft −Wc ‖;

3 c2 ← argminc∈E\c1
‖ ft −Wc ‖;

4 Let N = Neighbors of c1;

5 if H(Lft
, Lc1

) ≥ δ AND

∃n∈Nsuch that ‖ ft −Wn ‖

3 deviations closer to ft as any other node AND

H(Lft
, Ln) < δ then

6 c2 ← c1;

7 c1 ← n;

8 if H(Lft
, Lc1

) < δ then

9 Wc1
= Wc1

+ǫ(WinningT imes(c1))×(f−Wi);
10 increment WinningT imes(c1) by 1;

11 If (c1, c2) /∈ E add an edge (c1, c2) to E;

12 AgeMatrix(c1, c2) = 0;

13 ∀n∈N\c2
increment AgeMatrix(n, c1) by 1;

14 else

15 Let C = (Lft
, ft);

16 Add the node C to V ;

17 Add an edge (C, c1) to E;

18 forall the (e1, e2) ∈ E do

19 if AgeMatrix((e1, e2)) > Γ then

20 remove (e1, e2) from E;

21 if current trial is a multiple of λ then

22 G← MergeClusters(G,

23 AgeMatrix,WinningT imes);

won (similar to [18], [19]). After winning many times,

it can be assumed that a vector is representative of that

location. Finally, an edge is added between c1 and c2 to

signify that these two codebook vectors represent similar

information. Unlike other SOM algorithms neither c2 nor

any existing neighbors of c1 are updated. This is because

LASOM is designed to handle highly variable data and

makes no assumptions about what neighboring areas might

look like. The location, Lc1
is updated along the surface of

the earth based on bearing and distance to the input.

Finally, if the distance threshold is not satisfied (Equation

3.1), f and Lf become a new codebook vector. This new

vector is connected to c1, since it is visually similar to that

codebook vector. This entire process can be seen as spatial

binning of visual information, where the bin centers do not

have to be determined a-priori, and are based on the visual

variability in a particular region (i.e. more codebooks are

dedicated to highly variable areas). The training procedure

is summarized in Algorithm 2.
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Fig. 2: Hypothetical example of merging multiple codebook

vectors when the distance threshold is 4 km. The feature

associated with the codebook vector B are closer to vectors

A and C. The feature of vectors A and C are closer to E

and D, respectively. Since the three nodes are within the

threshold of 4 km, vectors A, B and C, are merged into a

new codebook vector F.

C. Noise reduction

The above procedure generates a great number of classes,

many of which are created due to noise and others because

two or more codebook vectors were not at their appropriate

centers before a particular training sample was observed.

LASOM has two mechanisms for dealing with this. First,

a counter associated with all the edges between c1 and

its neighbors is incremented. For newly created edges this

counter is initialized at zero. For existing edges, a Hebbian

rule that resets the counter for the edge between c1 and c2
every time it is determined that f belongs to c1. An edge

denotes that the two codebook vectors connected by it are

visually similar. The counter specifies the freshness of this

relationship. If the counter reaches a value, above a threshold,

Γ, the edge is removed, signifying that the relationship is

no longer valid. A codebook vector with no neighbors is

removed. This is a form of local outliers detection. If one

node keeps winning, but its neighbor never does (or is never

a second best node), then more than likely that codebook

vector is an outlier.

The previous rule is a local noise detection rule, as the

counters are only incremented for c1’s neighbors. The second

mechanism is a global method for dealing with the ever

changing topology of the network. As nodes get added,

removed and updated, a particular spatial region may become

over-saturated with similar codebook vectors. After a pre-

specified number of rounds, λ, LASOM attempts to remove

these redundancies. Each vector in D becomes an input

vector. The list of vectors, sorted by the feature distances

to the input vector, is examined and the contiguous set of

top matches (starting from the 2nd best match) within a

distance of 0.5δ are merged. The merge process involves

connecting the new node to all the neighbors of the nodes

being combined. The counters for each edge are set to the

minimum of all counters for the connection to a target node.

The number of times a node won is updated as the total

number of times the other nodes won. Finally, all these

nodes are removed and replaced by a single node that is

the weighted average of all the merged nodes. The weights

are based on the number of times a particular node has been
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Algorithm 2: Merge Clusters

Result: G = (E, V ), AgeMatrix: Staleness of an edge,

WinningTimes: # of times v ∈ V was a

winning vector

Data: G = (E, V ), AgeMatrix,WinningT imes

1 initialize P={}, M={};

2 forall the v ∈ V do

3 forall the v′ ∈ V \ {v} do

4 Let visual distance =‖Wv −Wv′ ‖;

5 Add (v′, visual distance) to P ;

6 Sort P by visual distance;

7 forall the (v′, visual distance) ∈ P do

8 if H(Lv, L
′

v
) < 0.5× δ then

9 add v′ to M ;

10 else

11 break;

12 if M is not empty then

13 Let n be the average of all Wf and Lf ∈M ;

14 Add n to E;

15 Change all edges originating from M to

originate from n;

16 Reset AgeMatrix counters for those edges;

17 Let E = E \M ;

a winner. This process is summarized in Algorithm 2 and an

example is shown in Figure 2.

D. Querying LASOM

Algorithm 3: Query LASOM

Result: Location

Data: G = (E, V ), f : Query Feature

1 c1 ← argminc∈E ‖ f −Wc ‖;

2 Let N be all the neighbors of c1;

3 Let errors = {‖ f −Wv ‖: ∀v ∈ N
⋃
{c1}};

4 errors := (errors−mean(errors))/std(errors);
5 Let w = 1.5−(errors+min(errors));

6 w ← w/Σ(w);
7 Location = 0;

8 forall the v ∈ N
⋃
{c1} do

9 Location← Location+ wv × Lv

To assign a location to an untagged image, the best

matching node, c1, is chosen first. The codebook vector

c1 represents a region in feature space that stops half-way

toward any neighboring node, due to the winner-take-all

strategy. Therefore the location of the query feature can be

anywhere in c1’s area of influence. If this region is large

then large errors are possible. To provide better estimates, the

query feature is once again compared to c1 and all its imme-

diate neighboring nodes. These errors are then converted to a

standard Gaussian distribution by subtracting the mean and

(a) Examples of Training Images (b) Examples of Test Images

Fig. 4: The training set contains much ambiguity. The test

set was chosen such that they contain location relevant data.

dividing by the standard deviation. After shifting the error

values such that the minimum value is at 0, an exponential

function is used to calculate the weights for each node. The

weights are normalized and the location is calculated as a

weighted mean of codebook locations. Experiments showed

that using an exponential with a base of 1.5 resulted in

superior performance. This is summarized in Algorithm 3.

An example is shown in Figure 3.

IV. EXPERIMENTS

To evaluate LASOM, we downloaded a set of images

from Flickr.com and extracted a number of features. This

procedure is described in the next subsection.

A. Dataset and features
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(a) Distribution of Training Images

0 10 20 30 40     50 km10

(b) Distribution of Test Images

Fig. 5: The spatial distribution of images. The test set is

almost exclusively taken in New York City, while the training

set is noisy and contains a number of distant training samples

(Best viewed zoomed in and in color).

Our dataset was constructed by downloading 71,250

images from Flickr.com using location-specific keyword

‘NewYorkCity’. The features from all these images have

been extracted using high performance computing clusters.

3,011 images from this set were selected at random and

filtered for bad images (e.g. black and white or artistic)

to create a test set of 1,683. The remaining 2,828 images

were discarded. Further 17,508 images were removed from

the remaining collection because they were taken by the

same photographers whose photos appear in the test set. This

resulted in a training set of 49,231 images. A small number

of example images from each set are shown in Figure 4. As

can be seen, many training images do not contain location

relevant information. Although most of the images inside the

test and training sets were taken in the New York City area

(within 200 km), a number of training images originated in

remote locations. Figure 5 shows the location variance.
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(a) Test Image (b) Query Color Histogram (c) Best Matching Color Hist. (d) Matching Graph

Fig. 3: Example of LASOM matching a test image (a) based on its color histogram (b) and the color histogram stored in its

dictionary (c). (d) Example of how LASOM geotags an images. The test point is the green start at the bottom of the map.

The ranking of LASOM codebook vectors in this subgraph is denoted by the number inside the green circles. The estimated

location is represented by the cyan circle outlined in red.

Six features were extracted from each image: a 232 bin

histogram of edge lengths and edge angles, two vectors of

pixel values generated from a 5×5×3 and 16×16×3 pixel

version of the image, a 600 dimensional vector representing

the global structure, or ‘gist’ [20], of the image, a 512

bin histogram that captures the distribution of textures, or

‘textons’, and a 14×14×4 bin CIE L*a*b color histogram.

LASOM was trained on each feature independently. The

order of training image presentation was randomized for each

feature. All histograms were compared using the χ2 method.

L1 distance was used for the other 3 features.

B. Evaluation

The purpose of applying an algorithm such as LASOM to

the geotagging problem is to reduce the number of features

that need to be examined for geotagging unannotated images,

lower the human labeling burden, decrease sensitivity to

noise, and uncover inter-cluster relationships that can be

used to improve performance. For these reasons the k-NN

approach described in [5] will be used as a baseline. By

identifying similar locations, LASOM estimates locations

that do not belong to a cluster center. On-line k-means was

not considered, because it does not provide such information.

The experiments in this section serve to highlight the benefits

of LASOM over other SOM approaches, demonstrate that

the compression does not effect geolocation accuracy, and

that building a graph using an on-line method incurs less

computational cost than comparing every pair of images.

C. Comparing with other SOM algorithms.

In this section we compare LASOM to other popular

unsupervised on-line methods, ESOINN and GNG, using the

‘New York City’ dataset. When learning a distribution of

a feature we set the distance threshold, δ, to 2 km except

for color which used a δ of 3 km. The leaning rate, ǫ(t),
was set to 1

4t
. Cluster merging occurred every λ = 7, 500

trials. For ESOINN, the noise reduction step was performed

every 7,500 training samples. ESOINN performed its noise

reduction step every 7,500 training samples as well. The

density threshold parameters, c1 and c2 are used in ESOINN

determine when to delete nodes with two or one neighbors.

These parameters were set to 1e-4 and 1e-3, respectively,

to discourage node deletions. It was found, however, that

these parameters did not effect the behavior of ESOINN

significantly, as most nodes were deleted because they had

Fig. 6: Time for finding the best matching node in a LASOM

map as a function of map size.

no neighbors. For all algorithms, the edge age threshold was

set to 10,000 trials. GNG was not allowed to grow past 4,000

codebook vectors and a new vector was added every 50 trials.

Training LASOM on each feature required approximately 20

minutes of training time. Figure 6 shows the time required

per iteration as the size of the graph increases.

(a) Results of applying LASOM to
color histograms

(b) Results of applying GNG to
color histograms

(c) Results of applying ESOINN to
color histograms

Fig. 7: The spatial maps generated by different SOMs. Each

node in the graph represents a codebook vector that has

visual data associated with it. (a) The codebook vectors for

LASOM generated maps that placed most of the codebook

vectors in the New York City region. (b) GNG has distributed

the codeook vectors to areas unlikely to contain relevant

information. (c) ESOINN learns a similar map as LASOM

but looses similarity information (fewer edges).

1) Graph Building: Figure 7 shows an example of the

kind of maps different SOM algorithms learn. LASOM not

only learns a compact representation similar to ESOINN,

but also stores enough information about visual features, to

obtain good geotagging performance. Figure 8 shows some

examples of the similarities that are discovered by LASOM

when applied to a global image database.
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(a) Color Histograms: Bad Lighting

(b) Color Histograms: Trees

(c) Gist

Fig. 8: A neighborhood from LASOM maps and up to 5

images that map to different nodes. Each node represents

a set of images and each edge denotes color similarity

between different regions. (a) The images taken in poor

lighting conditions all form a global similarity network. (b)

This subgraph captures structures surrounded by trees. (c)

The gist feature describes the structural information of an

image, and is better at capturing semantic similarity than

color histograms.

According to the figure, GNG appears to be most sensitive

to outliers (e.g. the (0,0) point near South Africa). The

outliers generate large errors and GNG dedicates many

codebook vectors trying to reduce them. ESOINN is most

robust in resisting noise, capable of isolating correlated but

distant input samples into separate clusters. This can be seen

in Figure 7 by comparing how differently GNG and ESOINN

react to the images that are incorrectly geotagged as (0,0).

ESOINNs robustness is achieved by treating most input as

noise. The GPS coordinates are an easier signal to model than

the distribution of high dimensional features, therefore spatial

coordinates dominate the learning process. In other words,

the images might be spatially separate but not separated in

visual feature space (e.g. color histogram). If there exists

an edge between two distant locations that are not removed

during the noise reduction process, then it could either mean

that an image was mislabeled or that the two regions share

those features. LASOM was more likely to update and merge

existing vectors than ESOINN, which did not connect most

nodes to any other node.

Over the course of training the local noise reduction rule

removed only 581 units from the color histogram LASOM,

while the global noise reduction step merged 3,719 codebook
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Fig. 9: Comparing the performance of different SOM algo-

rithms. (a) Comparing codebook vector growth of ESOINN

and LASOM algorithms. (b) Geotagging accuracy of test im-

ages using color histograms. The discontinuities correspond

to the execution of the noise reduction step.

Alg. Color Texture 5×5 16×16 Gist

LASOM 14,032 17,613 19,144 19,144 17,803

ESOINN 6,009 6,016 4,445 4,445 4,514

TABLE I: The size of the codebook vectors used by LASOM

maps. Different features have different spatial sensitivity and

therefore require different dictionary sizes.

vectors. The low usage of the local rule is most likely due

to the high age threshold setting of 10,000. Furthermore,

every time nodes were merged those counters were reset,

allowing some nodes generated by noisy data to remain.

Figure 9a shows how the number of nodes grows as a

function of training signals. The codebook size of LASOM

is more than twice as large as ESOINN, because LASOM

does not yet have a mechanism for mass removal of nodes.

This is the reason LASOM can outperform ESOINN as more

information is preserved.

The number of codebook vectors for different maps varied

considerably. These values indicate how view-sensitive a

feature is. For example, 16×16 images appear to vary greatly

in a 2 km region and therefore many codebook vectors

are required to represent such a large area, while a single

codebook vector for texture map is able to describe more

area. Color histograms, which were trained using a larger

distance threshold, 3 km, required an even smaller dictionary.

Table I summarizes these results.

2) Geotagging Accuracy: Figure 9b shows that LASOM

learns a better representation of how visual features are

related to one another. ESOINN performed well on this

dataset and stored more codebook vectors than expected,

suggesting that ESOINN could learn a good representation

of the world if it is trained on small regions for long

periods. However, LASOM trained on 5×5 images begins

to outperform ESOINN at a distance of a little over 4 km

and the color histograms LASOM gets better at about 5

km. This difference is consistent with our expectations of

how the distance threshold should effect performance. The 2

km threshold distance used by the 5×5 LASOM should on

average introduce errors of about 2 km and can be as far as

2 km from the training sample. The 3 km threshold used in

color LASOM increase the possible error to 6 km.
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D. Discussion

Solving the geolocation problem requires compact data

structures that allow for efficient image retrieval. The more

relevant the retrieved image is to a query image the more

likely the GPS coordinates assigned to it are close to the

query image as well. One of the insights we make about this

problem is that the actual images do not need to be stored,

and a compact representation suffices as long as all the

important locations signatures are preserved. Self-Organizing

Maps is an efficient way to compress a large database to a

few discrete units.

Methods like GNG and ESOINN do not handle sparse and

highly variable data very well and require manual tuning the

weight between the feature vector and the GPS coordinates

to prevent one from dominating the other. Although ESOINN

performed quite well on this dataset, when applied to a

dataset of over one million images, it produced a small map

of a little over 700 codebook vectors spread over 52 distinct

clusters. It is also interesting to see that different features

produce about the same codebook sizes (Table 1) meaning

that ESOINN does not explain the visual feature variability

very well, while LASOM allows us to evaluate the usefulness

of different features. This reveals that ESOINN is extremely

sensitive to how it is trained. We expect bigger differences

between ESOINN and LASOM once larger datasets are used.

LASOM also performed quite well, while at the same

time achieving high compression rates, as large as 3.6. The

spatial constraints used in the experimental section define

histogram bin widths in terms of spatial distance. Within

those bins LASOM learns the distribution of features and

their likelihood. If a number of separate distributions are

similar than they are merged, otherwise, a multi-modal

distribution is stored. By examining the topology, it can be

determined how far this feature lies from the cluster center

and interpolate its coordinates. From the results it is evident

that LASOM can to handle the sparseness of the training set.

Currently, LASOM assumes that the visual features are

the only source of noise. However, as we saw in Figure 5

there can be any number of erroneously geotagged images

in our training set (the point at (0,0) near South Africa). One

way to address this problem is by comparing the number of

times a codebook vector was the best node with the number

of times it was the second best. If this difference is large, but

the best winning node to which it is connected is far away,

then that could serve as evidence that the image contains an

incorrect geotag.

V. CONCLUSION

There are a number of limitations in brute-force methods

for solving the geolocation problem, including sensitivity

to noise and high computational and storage costs. The

topological relationship between visual features and locations

provides an important source of context for the geotagging

problem. We have shown that such graphs can be constructed

using an on-line unsupervised Location Aware Self Organiz-

ing Map (LASOM). Furthermore, we demonstrated on a real-

world dataset collected from Flickr.com that this approach

can be used for solving the geolocation problem. The location

awareness provides new research opportunities. For example,

the distance between neighboring codebook vectors can be

used to build and evaluate multiple location hypotheses. We

plan to further examine this relationship between different

distance thresholds, compression performance and localiza-

tion accuracy.
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