
A new Unsupervised Approach to Fault Detection and

Identification

Bruno Sielly Jales Costa
Campus Natal – Zona Norte

IFRN

Natal, RN, Brazil

bruno.costa@ifrn.edu.br

Plamen Parvanov Angelov
School of Comput. and Communications

InfoLab21, Lancaster University

Lancaster, United Kingdom

p.angelov@lancaster.ac.uk

Luiz Affonso Guedes
Department of Comput. Engineering

UFRN

Natal, RN, Brazil

affonso@dca.ufrn.br

Abstract—In this paper, a new fully unsupervised approach to

fault detection and identification is proposed. It is based on a

two-stage algorithm and starts with the recursive density

estimation (RDE) in the feature space. The choice of the features

is important and in the real world process that we consider these

are control and error related variables. The basis of the proposed

approach is the fully unsupervised evolving classifier AutoClass

which can be seen as an extension of the earlier one, but is using

data clouds and data density information. It has to be stressed

that the density in the data space is not the same as the well-

known and widely used in statistics probability density function

(pdf) although it looks similar. The density in the data space, D is

pivotal and instrumental for anomaly detection. It can be

calculated recursively, which makes it very efficient in terms of

memory, computational power and, thus, applicable to on-line

applications. Importantly, the proposed method not only can

detect anomalies, but also can identify and diagnose the fault

during the second stage of the process. While the first stage is

centred around RDE, the second stage is based on the evolving

fuzzy rule-based (FRB) classifier AutoClass. A key advantage of

AutoClass is that it is fully unsupervised (there is no need to pre-

specify the fuzzy rules, number of classes) and can start learning

“from scratch”. AutoClass can be initialised with some prior

knowledge (assuming that it does exists) and evolve/develop it

further, but that is not mandatory. This new approach is generic,

but in this paper without limiting the concept it is validated on a

lab based control kit. In this particular example, the features are

the control and error signals. The results significantly

outperform alternative methods, which is in addition to the

advantages that the approach is autonomous.

Keywords—Fault detection, fault identification, recursive

density estimation, evolving classifiers, autonomous learning.

I. INTRODUCTION

Fault detection and identification (FDI) field of research has

received considerable attention in the past four decades. It has

been shown that human errors are, by far, the main reason for

accidents in industrial environments [1]. One of the main

goals in industrial research is the detection of faults while the

system is still operating in a controllable region. Early

detection is responsible for preventing or, at least, reducing

productivity losses and health risks.

 The process of abnormal event management (AEM) is

usually divided into a series of stages, which is often called

diagnosis scheme. The first stage addresses what is known as

fault or anomaly detection, and is responsible for identifying

whether the system is working properly (normal state of

operation) or is in a faulty state. The subsequent stage, known

as fault identification or classification, is reached when a fault

is detected during the first stage, and refers to the

determination of type, location and time of detection of the

fault.

Each of these stages presents its own challenges and they

are often solved independently. Many authors have addressed

FDI in the literature. We can mention, for example, the

observer-based [2], analytical redundancy-based [3], fuzzy

model-based [4], neural network-based [5], and so on.

Unfortunately, most of the above mentioned approaches

require either previous knowledge or empirical observation

about the model or behaviour of the system, need extensive

computational efforts or too many thresholds or problem-

specific parameters to be pre-defined in advance, hampering

their use in on-line applications. Ergo, these technical features

make difficult their adoption in real industrial problems.

In order to overcome these problems, in this paper we

propose an on-line and fully unsupervised two-stage FDI

algorithm, in which detection and identification are presented

as sequential and independent procedures.

The detection algorithm is based on the Recursive Density

Estimation (RDE) [6], which allows building, accumulating,

and self-learning a dynamically evolving information model

of “normality” based on the process data for particular specific

plant based on the normal/accident-free cases only. Similarly

to Statistical Process Control (SPC) [7], RDE is an on-line

statistical technique, however, it does not require that the

process parameters follow Gaussian/normal distributions nor

makes other prior assumptions.

The identification procedure, on the other hand, is based the

new self-learning fuzzy rule-based (FRB) classification

technique, called AutoClass. It builds upon the concept of

evolving FRB classifiers, such as eClass0, eClass1

Simpl_eClass [8], [9], or the evolving classifiers reported in

[10]. While the referred approaches are based on the

traditional concept of clusters, AutoClass works with the so

called data clouds, which are structures with no specific

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1557

shapes or boundaries, expanding, this way, the idea of the

AnYa FRB systems introduced in [11].

Both stages of the proposed FDI approach can start “from

scratch”, from the very first data sample acquired, with no

previous knowledge about the plant model or dynamics,

training or complex user-defined parameters or thresholds.

The generated fuzzy rules have no specific parameters or

shapes for the membership functions and the approach is

entirely data-driven.

Thus, it is fully autonomous, does not require type or

number of faults to be known beforehand or to have a

dedicated training phase. Yet it outperforms the best known

statistical process control approach

The remainder of the paper is organised as follows: in

Section II, the new fault detection algorithm is presented;

Section III details the new fault identification procedure;

Section IV addresses the experimental setup, the obtained

results and the results analysis; finally, in section V, the main

conclusions are presented.

I. FAULT DETECTION STAGE

The first stage of the FDI proposal is the fault detection.

The FD algorithm is based on the RDE approach [6], [12].

RDE is a very suitable approach for outlier detection and has

been recently used in many practical applications [13]. The

main idea of RDE is the estimation of the proximity in the n-

dimensional data space. The referred density is based on a

Cauchy function and, thus, can be calculated recursively,

which makes the FD algorithm, memory- and computational-

efficient, since it does not request the storage of previous data

samples. It is also data-driven and free of complex user-

defined parameters.

Let all measurable physical variables form the vector

 and are divided into several data clouds, . Then, for

any vector , its -th local density value is calculated for

Euclidean type distance as [6]:

∑ ‖ ‖

(1)

where describes the local density of the cluster ;

denotes the number of data samples associated with the cluster

 ; represents the data vector measured at the time instant .

According to [12], [6], the global density, D can be

derived as an exact (not approximated or learned) quantity as

 ‖ ‖
 ‖ ‖

(2)

where both, the mean, , and the scalar product, can be

updated recursively as follows:

(3)

‖ ‖

 ‖ ‖

(4)

Local density, d can also be updated similarly to the global

density, but applied to over the data points associated with the

respective data cloud only (not all the data).

The proposed FD procedure starts with the initialisation of

the step counter , which tracks total number of data

samples read so far, and the counter , which tracks the

number of iterations within the current status (“normal” or

“fault”). The status is, then, initialised with the value

“normal”, as we assume that the detection process will always

start from a fault-free state of operation.

The first data sample is read from one of the available

interfaces (data files, data bases, industrial protocols and so

on). The density is calculated and the mean, , and

scalar product, , are recursively updated by the equations

(2), (3), and (4), respectively. We, then, calculate the density

variation from the time step k-1 to k by
 . This measure will be used to

determine if there is a considerable change in the density

behaviour to update the status of the system.

The mean of the density, , is now recursively calculated

and updated as:

 (

)

(5)

The equation (5) also does not need storing any previous

values in the memory, which is appropriate for an on-line

approach. The mean of density is based on the principles of

the equation (3), although is not as conservative. This measure

is sensitive to abrupt changes, since it considers the length of

the density variation while updating the mean.

In general, three scenarios can occur:

a) IF the current status of the system is “normal” and the

density is less than the mean of density for the

last seconds, the status is changed to “fault”, or

b) ELSE if the current status of the system is “fault” and the

density is greater than the mean of density for

the last seconds, the status is changed to “normal”, or

c) ELSE, do nothing.

In both cases a) and b), the counter is re-initialised

(k). Note also, that we use two very intuitive “status

change” thresholds (2 and 8 seconds). They are used to

determine whether the system will switch from “normal” to

“fault” state, which happens when the density is below the

mean for consecutive seconds, and from “fault” to

“normal” states, which occurs when the density is above the

mean for consecutive seconds, regardless of the sampling

period of the process. Recommended values for the the

parameters and are 2 and 8 (seconds). These values

1558

represent a good trade-off between response time and

robustness of the detection system.

Finally, the process is terminated and starts from the

reading of the next data sample and the time step and

counter are incremented. The full detection algorithm is

presented in the flowchart in Figure 1.

Fig. 1. Flowchart of the proposed fault detection algorithm

II. FAULT IDENTIFICATION STAGE

Once a fault is detected by the procedure described in

Section II, the fault identification system is enabled (it remains

disabled during a normal operation). It is important to stress

that both detection and identification stages are fully

independent and can be used separately with other existing

approaches.

The proposed fault identification algorithm is based on the

self-learning and fully unsupervised evolving classifier

algorithm called AutoClass which is an AnYa-like FRB

classifier and, unlike the traditional FRB systems (e.g.

Mamdani, Takagi-Sugeno), AnYa does not require the

definition of membership functions [11]. The antecedent part

of the inference rule uses the concepts of data clouds [11] and

relative data density, representing exactly the real distribution

of the data.

A data cloud is a collection of data samples in the n-

dimensional space, similar to the well-known data clusters,

however, it is different since a data cloud is non-parametric

and it does not have a specific shape or boundary [6] instead it

follows the exact real data distribution. A given data sample

can belong to all the data clouds with a different degree

 , thus the fuzzy aspect of the model is preserved.

The consequent of the inference rule in AutoClass is a zero-

order Takagi-Sugeno crisp function, i.e. a class label
 . The inference rules follow the construct of an AnYa

FRB system [11]:

 (⃗)

where is the i-th rule, ⃗ is the input data

vector, is the i-th data cloud and denotes the fuzzy

membership expressed linguistically as “is associated with” or

“is close to”.

The inference in AutoClass is produced using the well-

known “winner takes all” rule [8]:

 (6)

where represents the degree of membership of the input

vector to the data cloud , defined as the relative local

density and recursively calculated as

 ‖ ‖
 ‖ ‖

(7)

where and are updated by equations (3) and (4).

The classification process starts with the definition of the

initial zone of influence (ZI) by the user. The concept of ZI is

similar to the radius in data clusters, although data clouds do

not have specified boundaries. Initial values of
can be recommended [6]. The time step is also initialised

().

The first data sample is then read. Since the algorithm

does not require any a priori information about the process or

any kind of training, the fuzzy rule basis and cloud set is

empty at this point. AutoClass will, then, create the first data

cloud, which will be associated with one point (the first data

sample), with its ZI equal to the initial ZI defined by the user

and its focal prototype point, FP, equal to . The newly

created data cloud is, then, added to the vector data clouds and

a label “Class 1” as the consequent part will compose the first

inference rule:

 ⃗

The time step k is, then, incremented by one and AutoClass

continues by the reading the next data sample . From

onwards, at each execution run and data sample being read,

three scenarios can occur:

a) is close to an existing data cloud:

If the current data sample is within two times the zone of

influence of an existing data cloud, will be associated with

that cloud. The focal point of th(i/e)s(e) data cloud(s) is/are

1559

updated as a weighted sum of the current focal point (mean)

and and the zone of influence of the referred cloud is

updated as the weighted sum of the current ZI and the

Euclidean distance from to the focal point of the data

cloud. Finally, the number of points, NP, associated with that

cloud is incremented by one. Note, that there is no need to

store any read data samples, since all the information about

the data cloud is recursively updated, which is a crucial

concern when developing on-line applications.

After the update of all close data clouds, the time step k is

incremented by one and the procedure continues by reading

the next data sample .

b) is not close to an existing data cloud:

In this case, the data sample is, firstly, classified as an

outlier and added to the vector of outliers. This vector is

limited in size and, thus, in stack memory, in order not to

compromise the performance of the on-line algorithm. In this

work, the maximum number of data samples to be stored is

100. When the vector reaches its full capacity, the older data

sample is removed.

After the outliers vector is updated, the procedure analyses

all potential data clouds to be created from stored outliers that

are close to each other, considering again the premise of two

times the zone of influence. Let’s define as the number of

points of the more populated potential cloud, as 15% of

the points of the less populated existing cloud , but not less

than 3. Let’s also define as the density of the more

populated potential cloud and ∑
 (where

R is the number of rules so far) the average density of all

existing clouds. If is greater than and is greater

than , a new cloud will be created. This condition

considers both the size (number of points) of the potential

cloud to be created, and its density. We consider that, in order

to form a cloud, the set needs, at least, 3 points (this value will

be increased to 15% of the less populated cloud) and density

higher than the average of all existing clouds. This way, we

try to avoid major discrepancies among the generated clouds.

If the conditions above are satisfied, the newly created

cloud will be associated with points, its ZI will be equal

to the mean of the ZIs of all existing clouds and the initial ZI,

defined by the user, and its focal point, FP, will be equal to the

mean of all data samples associated with . The newly

created cloud is, then, added to the vector clouds (and all data

samples associated with removed from the vector outliers)

and a label as the consequent part will compose the

(R+1)-th inference rule:

 ()

After the creation of the new cloud, or if the conditions of

number and density are not satisfied, the time step k is

incremented by 1 and AutoClass continues by reading the next

data sample . The full FI algorithm is presented in the

flowchart in Figure 2.

Fig. 2. Flowchart of the proposed fault identification algorithm

III. EXPERIMENT AND RESULTS

In order to validate the proposal, we developed a liquid

level control application, using a Laboratory pilot plant for

industrial process control, developed by DeLorenzo do Brasil

[14]. The plant consists of two pressurised tanks, T1 and T2,

two valves, V1 and V2, and a centrifugal pump, all connected

by a piping system, which enables the flow between the two

vessels, in both directions [15].

The plant is controlled by a multistage fuzzy controller

[16], developed in JFuzZ [17] software tool through an OPC

(OLE for Process Control) interface [18]. The behaviour

generated by the controller, when the process has reached the

regime state and the control action and error signals are

1560

stabilised (with no considerable oscillation), represent the

“normal” state of operation of the plant.

A set of 16 different faults were generated physically and

by software, is the object of study of this experiment. The

referred faults are divided in 4 groups, depending on the

nature of the fault: actuator, leakage, stuck valves and

disturbance-related.

Each group contains experiments with different patterns and

levels. In the “actuator” group, there are 6 levels of offsets in

the centrifugal pump (, , ,

 , and); in the 'leakage' group there

are 3 levels (, and) of open

drain, which simulates a physical leakage in the tank T1; in

the “stuck valves” group there are 3 levels of jamming of each

valve (, , , , and); and in the

“disturbance” group there is 1 environment disturbance ().

Both in the detection and identification stages each data

sample is a point of a n-dimensional feature space. For the

detection stage, in this application we chose to use two

features – the control action (u) and error (e), calculated by

 (reference) – (output), thus, – as they are

very representative signals and meet the basic requirement of

being constant when the plant is operating normally and

oscillatory in the presence of a fault.

For the identification stage, we also chose to use two

features – here called Feature 1 and Feature 2, thus
 – where the first one is the period

and the second one is the amplitude of the control signal. It

has been noticed that, in most generated faults, the control

signal assumes a periodic behaviour, with nearly constant

frequency. While the period is useful to distinguish between

different classes of faults, the amplitude is also important to

define the level of the fault.

We, then, divided the experiment in two separate stages: i)

detection and ii) identification/classification. In the first one,

we analysed the data collected from the operating plant,

sequentially, in the presence of the 16 types of fault. The

results obtained with the proposed detection algorithm for the

fault are shown in Figure 3.

Note, that the algorithm was able to almost immediately

detects the beginning of and the end of the fault, as seen in

Figure 3(a). A fault is detected when there is a considerable

drop in the density signal, which, in the case of fault ,

occurs around 28s of execution, as seen in Figure 3(b). The

exit of a faulty state, on the other hand, occurs when the

density signal starts to considerably rise, which means that

there is no oscillation, and is around 119s for the fault

 example.

For comparison purposes, the same experiment was

performed both with the proposed fault detection and SPC

approaches. SPC is a well-known algorithm for outlier

detection in industrial processes. The procedure details were

exhaustively presented in literature [7].

After all 16 experiments, the proposed detection algorithm

obtained a hit rate of 86.97%, considering the right

classification of faulty and normal states. The SPC technique,

on the other hand, using similar setups, obtained a hit rate of

55.37%. Individually, the proposed application resulted in 9

out of 16 experiments with a hit rate in excess of 95%, which

demonstrated the efficiency of the algorithm. The results for

all 16 experiments with the SPC and the proposed detection

algorithm are detailed in Table 1.

(a) Control behaviour chart

(b) Density chart

Fig. 3. Results for fault with the proposed fault detection application

TABLE I. RESULTS FROM FAULT DETECTION ALGORITHMS

Fault
Hit Rate Hit Rate

SPC Proposed Algorithm

 64.13 % 97.84 %

 71.46 % 98.48 %

 50.23 % 98.63 %

 56.66 % 96.7 %

 61.41 % 96.46 %

 74.76 % 98.48 %

 50.29 % 48.36 %

 45.46 % 75.59 %

 61.64 % 95.46 %

 45.78 % 98.93 %

 62.4 % 88.61 %

 52.3 % 77.14 %

 48.25 % 66.92 %

 33.62 % 90.31 %

 46.21 % 98.75 %

 61.3 % 64.86 %

In the identification/classification stage, AutoClass is

executed after a fault is detected and stops when the system

exits the faulty state. This stage is quite unique in the sense

that it autonomously and in a completely unsupervised manner

1561

(without any pre-training or prior knowledge and information)

identifies the types of faults.

For this experiment, we applied 4 sequential fault data

streams to AutoClass (, , and). The progress of

execution and behaviour of the system are illustrated in the

next charts. Similarly to the previous figures, black bars

indicate the moment when the fault is detected and grey bars

indicate the moment when the system exits a faulty state.

Figure 4 shows the status of the identification after 2,150

data samples. At that instant, the fault was already initiated

and terminated, as we can see in Figures 4(a) and 4(b), and the

fault was recently identified, as we can see in Figure 4(c).

Note, that after the very first faulty data sample read,

AutoClass created a class of fault, automatically named “Class

1”, which, in this case, represents the fault , and all

subsequent data samples from the referred stream, due to the

spatial closeness in terms of the two features, were assigned to

this class.

After the detection of the second fault, AutoClass was

instantly able to identify that the newly arrived data samples

did not belong to the existing class of fault. Until the required

conditions were satisfied, all data outside the existing data

cloud was classified as outliers, as we can see in Figure 4(c).

Once there was enough close outliers to create a new cloud,

AutoClass defined a new class of fault, automatically named

“Class 2”, which, in this case, represents the second fault

stream, fault as we can see in the same Figure.

The results obtained after reading of all 5,600 data samples,

representing the sequential reading of 4 different fault streams,

are shown in Figure 5.

As can be seen in Figures 5 (a) and 5(b), fault was

terminated around 275s, fault was initiated around 320s and

terminated around 380s, and fault was initiated around 430s

and terminated around 540s.

Also from Figure 5 we can see that Class 1 represents

Faults 1 and 2; Class 2 represents Fault 4 and Class 3 – Fault

9, but this is extracted information autonomously and there is

no need to provide this information a priory or train AutoClass

in order this to be later identified. This is the major difference

of the newly proposed fully unsupervised autonomous FDI

approach and all existing so far which is demonstrated here

based on a Laboratory based real plant with induced faults.

Note, in Figure 5(c) that the faults and , which were

not read sequentially in the experiment, were classified in the

same data cloud which after the automatic labelling becomes a

class, “Class 1”, and activated by the same inference rule. This

is entirely logical/expected, because they actually belong to

the same fault type, although with different levels/amplitudes.

Faults and , represented by the labels “Class 2” and

“Class 3”, respectively, are also clearly indicated in the same

figure.

(a) Detection stage – Input signals

(b) Detection stage – Density

(c) Identification stage – system status for k = 2,150

Fig. 4. : Fault detection and identification

1562

It is important to highlight that, even though the system was

able to distinguish faults and , which are positive offset

of the actuator, from fault , which is negative offset of the

actuator, they are still close together, because both faults

concern the actuator. Note also, that faults and are also

close to each other in terms of Feature 2, albeit one is negative

Feature 1, while the other is positive. Fault , on the other

hand, concern structural changes and, in Figure 5(c), is further

from faults and , but, since leakage is logically closer to a

negative change, is close to . The fuzzy rule based

classifier autonomously generated from the data stream which

consists of 5,600 data samples, is presented as follows:

 (⃗)

 (⃗)

 (⃗)

with

where is the focal point and is the zone of influence of

the cloud.

The fault identification procedure is quite unique in the

sense that it autonomously and in a completely unsupervised

manner (automatic labels) identifies the types of faults.

Therefore, it is difficult to compare this new approach with

any existing alternative approach directly.

IV. CONCLUSION

A two-stage FDI approach is presented in this paper. With a

detection algorithm based on RDE and an identification

procedure based on the recently introduced AutoClass, the

proposed system is able to perform FDI on-line, starting “from

scratch”, since the very first data sample acquired, in a fully

unsupervised manner. The proposed algorithm does not

require any a priori information about the plant, its

mathematical models, complex user-defined parameters or

thresholds. This proposal differs from the traditional

approaches as it works with the concept of data clouds, which

are structures with no specific shape, boundaries, centre,

parametric function to describe them and yet they are

represented by an aggregated measure (data density). A

number of experiments with different fault data streams were

performed on-line using a real industrial hydraulic pilot plant.

The results have shown a high rate of success on both

detection and classification stages, with a very limited

computational effort. When compared with a well-known fault

detection technique, the proposed algorithm demonstrated

considerable superior results, in terms of both global and

individual experiments.

(a) Detection stage – Input signals

(b) Detection stage – Density

(c) Identification stage – system status after the reading of all 5,600
data samples

Fig. 5. Fault detection and identification

1563

REFERENCES

[1] Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N., 2003.
“A review of process fault detection and diagnosis, Part I: Quantitative
model-based methods”. Computers & Chemical Engineering, vol. 27,
293 – 311.

[2] Chen, W., Saif, M., 2007. “Observer-based strategies for actuator fault
detection, isolation and estimation for certain class of uncertain
nonlinear systems”. Control Theory Applications, IET 1, 1672–1680.

[3] Anwar, S., Chen, L., 2007. “An analytical redundancy-based fault
detection and isolation algorithm for a road-wheel control subsystem in
a steer-by-wire system”. IEEE Transactions on Vehicular Technology,
vol. 56, 2859–2869.

[4] El-Shal, S., Morris, A., 2000. “A fuzzy expert system for fault detection
in statistical process control of industrial processes”. IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and Reviews,
vol. 30, 281–289.

[5] Bernieri, A., Betta, G., Liguori, C., 1996. “On-line fault detection and
diagnosis obtained by implementing neural algorithms on a digital signal
processor”. IEEE Transactions on Instrumentation and Measurement,
vol. 45, 894–899.

[6] Angelov, P., 2012. Autonomous Learning Systems: From Data to
Knowledge in Real Time. John Willey and Sons.

[7] Cook, G., Maxwell, J., Barnett, R., Strauss, A., 1997. “Statistical process
control application to weld process”. IEEE Transactions on Industry
Applications, vol. 33, 454–463.

[8] Angelov, P., Zhou, X., 2008. “Evolving fuzzy-rule-based classifiers
from data streams”, IEEE Transactions on Fuzzy Systems, vol. 16,
1462–1475.

[9] Angelov, P., Baruah, R.D., Andreu, J., 2011. “Simpl_eClass: simple
potential-free evolving fuzzy rule-based on-line classifiers”, in:
Proceedings of 2011 IEEE International Conference on Systems, Man
and Cybernetics, SMC 2011, Anchorage, Alaska, USA, 7-9 Oct, 2011,
IEEE. pp. 2249–2254.

[10] Lemos, A., Caminhas, W., Gomide, F., 2013. “Adaptive fault detection
and diagnosis using an evolving fuzzy classifier”. Information Sciences,
vol. 220, 64 – 85.

[11] Angelov, P., Yager, R., 2012. “A new type of simplified fuzzy rule-
based systems”. International Journal of General Systems, vol. 41, 163–
185.

[12] Angelov, P., 2012. “Anomalous system state identification”, patent
GB1208542.9, priority date 15 may 2012.

[13] Kolev, D., Angelov, P., Markarian, G., Suvorov, M., Lysanov, S., 2013.
“ARFA: Automated real-time flight data analysis using evolving
clustering, classifiers and recursive density estimation”, in: Proceedings
of the IEEE Symposium Series on Computational Intelligence SSCI-
2013, Singapore. pp. 91–97.

[14] DeLorenzo, 2009. DL 2314BR – “Didactic process control pilot plant”.
Catalog. DeLorenzo Italy. Italy.[12] Costa, B., Skrjanc, I., Blazic, S.,
Angelov, P., 2013. “A practical implementation of self-evolving cloud-
based control of a pilot plant”, in: Proceedings of 2013 IEEE
International Conference on Cybernetics, Lausanne, Switzerland, pp. 7–
12.

[15] Costa, B., Skrjanc, I., Blazic, S., Angelov, P., 2013. “A practical
implementation of self-evolving cloud-based control of a pilot plant”, in:
Proceedings of 2013 IEEE International Conference on Cybernetics,
Lausanne, Switzerland, pp. 7–12.

[16] Costa, B., Bezerra, C., Guedes, L., 2012. “A multistage fuzzy controller:
Toolbox for industrial applications”, in: Proceedings of the 2012 IEEE
International Conference on Industrial Technology (ICIT), pp. 1142–
1147.

[17] Costa, B., Bezerra, C.G., Guedes, L.A., 2010. “Java fuzzy logic toolbox
for industrial process control”, in: Proceedings of the 2010 Brazilian
Conference on Automatics (CBA), Brazilian Society for Automatics
(SBA), Bonito-MS, Brazil, pp. 207–214.

[18] Liu, J., Lim, K.W., Ho, W.K., Tan, K.C., Tay, A., Srinivasan, R., 2005.
“Using the OPC standard for real-time process monitoring and control”.
IEEE Software, vol. 22, 54–59.

1564

