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Abstract—In this paper, a new fully unsupervised approach to 

fault detection and identification is proposed. It is based on a 

two-stage algorithm and starts with the recursive density 

estimation (RDE) in the feature space. The choice of the features 

is important and in the real world process that we consider these 

are control and error related variables. The basis of the proposed 

approach is the fully unsupervised evolving classifier AutoClass 

which can be seen as an extension of the earlier one, but is using 

data clouds and data density information. It has to be stressed 

that the density in the data space is not the same as the well-

known and widely used in statistics probability density function 

(pdf) although it looks similar. The density in the data space, D is 

pivotal and instrumental for anomaly detection. It can be 

calculated recursively, which makes it very efficient in terms of 

memory, computational power and, thus, applicable to on-line 

applications. Importantly, the proposed method not only can 

detect anomalies, but also can identify and diagnose the fault 

during the second stage of the process. While the first stage is 

centred around RDE, the second stage is based on the evolving 

fuzzy rule-based (FRB) classifier AutoClass. A key advantage of 

AutoClass is that it is fully unsupervised (there is no need to pre-

specify the fuzzy rules, number of classes) and can start learning 

“from scratch”. AutoClass can be initialised with some prior 

knowledge (assuming that it does exists) and evolve/develop it 

further, but that is not mandatory. This new approach is generic, 

but in this paper without limiting the concept it is validated on a 

lab based control kit. In this particular example, the features are 

the control and error signals. The results significantly 

outperform alternative methods, which is in addition to the 

advantages that the approach is autonomous. 

Keywords—Fault detection, fault identification, recursive 

density estimation, evolving classifiers, autonomous learning. 

 

I. INTRODUCTION 

Fault detection and identification (FDI) field of research has 

received considerable attention in the past four decades. It has 

been shown that human errors are, by far, the main reason for 

accidents in industrial environments [1]. One of the main 

goals in industrial research is the detection of faults while the 

system is still operating in a controllable region. Early 

detection is responsible for preventing or, at least, reducing 

productivity losses and health risks. 

 The process of abnormal event management (AEM) is 

usually divided into a series of stages, which is often called 

diagnosis scheme. The first stage addresses what is known as 

fault or anomaly detection, and is responsible for identifying 

whether the system is working properly (normal state of 

operation) or is in a faulty state. The subsequent stage, known 

as fault identification or classification, is reached when a fault 

is detected during the first stage, and refers to the 

determination of type, location and time of detection of the 

fault. 

Each of these stages presents its own challenges and they 

are often solved independently. Many authors have addressed 

FDI in the literature. We can mention, for example, the 

observer-based [2], analytical redundancy-based [3], fuzzy 

model-based [4], neural network-based [5], and so on. 

Unfortunately, most of the above mentioned approaches 

require either previous knowledge or empirical observation 

about the model or behaviour of the system, need extensive 

computational efforts or too many thresholds or problem-

specific parameters to be pre-defined in advance, hampering 

their use in on-line applications. Ergo, these technical features 

make difficult their adoption in real industrial problems. 

In order to overcome these problems, in this paper we 

propose an on-line and fully unsupervised two-stage FDI 

algorithm, in which detection and identification are presented 

as sequential and independent procedures. 

The detection algorithm is based on the Recursive Density 

Estimation (RDE) [6], which allows building, accumulating, 

and self-learning a dynamically evolving information model 

of “normality” based on the process data for particular specific 

plant based on the normal/accident-free cases only. Similarly 

to Statistical Process Control (SPC) [7], RDE is an on-line 

statistical technique, however, it does not require that the 

process parameters follow Gaussian/normal distributions nor 

makes other prior assumptions. 

The identification procedure, on the other hand, is based the 

new self-learning fuzzy rule-based (FRB) classification 

technique, called AutoClass. It builds upon the concept of 

evolving FRB classifiers, such as eClass0, eClass1 

Simpl_eClass [8], [9], or the evolving classifiers reported in  

[10]. While the referred approaches are based on the 

traditional concept of clusters, AutoClass works with the so 

called data clouds, which are structures with no specific 
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shapes or boundaries, expanding, this way, the idea of the 

AnYa FRB systems introduced in [11]. 

Both stages of the proposed FDI approach can start “from 

scratch”, from the very first data sample acquired, with no 

previous knowledge about the plant model or dynamics, 

training or complex user-defined parameters or thresholds. 

The generated fuzzy rules have no specific parameters or 

shapes for the membership functions and the approach is 

entirely data-driven. 

Thus, it is fully autonomous, does not require type or 

number of faults to be known beforehand or to have a 

dedicated training phase. Yet it outperforms the best known 

statistical process control approach  

The remainder of the paper is organised as follows: in 

Section II, the new fault detection algorithm is presented; 

Section III details the new fault identification procedure; 

Section IV addresses the experimental setup, the obtained 

results and the results analysis; finally, in section V, the main 

conclusions are presented. 

I. FAULT DETECTION STAGE 

The first stage of the FDI proposal is the fault detection. 

The FD algorithm is based on the RDE approach [6], [12]. 

RDE is a very suitable approach for outlier detection and has 

been recently used in many practical applications [13]. The 

main idea of RDE is the estimation of the proximity in the n-

dimensional data space. The referred density is based on a 

Cauchy function and, thus, can be calculated recursively, 

which makes the FD algorithm, memory- and computational-

efficient, since it does not request the storage of previous data 

samples. It is also data-driven and free of complex user-

defined parameters. 

Let all measurable physical variables form the vector 

     and are divided into several data clouds, . Then, for 

any vector     , its  -th local density value is calculated for 

Euclidean type distance as [6]: 
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where   describes the local density of the cluster  ;    

denotes the number of data samples associated with the cluster 

 ;    represents the data vector measured at the time instant  . 

According to [12], [6], the global density, D can be 

derived as an exact (not approximated or learned) quantity as 
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where both, the mean,   , and the scalar product,    can be 

updated recursively as follows: 

 

    
   

 
      

 

 
                

 

(3) 

    
   

 
      

 

 
‖  ‖

            ‖  ‖
  

(4) 

 

Local density, d can also be updated similarly to the global 

density, but applied to over the data points associated with the 

respective data cloud only (not all the data).  

The proposed FD procedure starts with the initialisation of 

the step counter    , which tracks total number of data 

samples read so far, and the counter     , which tracks the 

number of iterations within the current status (“normal” or 

“fault”). The status is, then, initialised with the value 

“normal”, as we assume that the detection process will always 

start from a fault-free state of operation.  

The first data sample    is read from one of the available 

interfaces (data files, data bases, industrial protocols and so 

on). The density       is calculated and the mean,   , and 

scalar product,   , are recursively updated by the equations 

(2), (3), and (4), respectively. We, then, calculate the density 

variation    from the time step k-1 to k by    
                   . This measure will be used to 

determine if there is a considerable change in the density 

behaviour to update the status of the system. 

The mean of the density,   , is now recursively calculated 

and updated as: 
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The equation (5) also does not need storing any previous 

values in the memory, which is appropriate for an on-line 

approach. The mean of density is based on the principles of 

the equation (3), although is not as conservative. This measure 

is sensitive to abrupt changes, since it considers the length of 

the density variation while updating the mean. 

In general, three scenarios can occur: 

 

a) IF the current status of the system is “normal” and the 

density       is less than the mean of density    for the 

last    seconds, the status is changed to “fault”, or 

b) ELSE if the current status of the system is “fault” and the 

density       is greater than the mean of density    for 

the last    seconds, the status is changed to “normal”, or 

c) ELSE, do nothing. 

 

In both cases a) and b), the counter    is re-initialised 

(k   ). Note also, that we use two very intuitive “status 

change” thresholds (2 and 8 seconds). They are used to 

determine whether the system will switch from “normal” to 

“fault” state, which happens when the density is below the 

mean for    consecutive seconds, and from “fault” to 

“normal” states, which occurs when the density is above the 

mean for    consecutive seconds, regardless of the sampling 

period of the process. Recommended values for the the 

parameters   and    are 2 and 8 (seconds). These values 
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represent a good trade-off between response time and 

robustness of the detection system. 

Finally, the process is terminated and starts from the 

reading of the next data sample and the time step   and 

counter    are incremented. The full detection algorithm is 

presented in the flowchart in Figure 1. 

 

 
 

Fig. 1.  Flowchart of the proposed fault detection algorithm 

II. FAULT IDENTIFICATION STAGE 

Once a fault is detected by the procedure described in 

Section II, the fault identification system is enabled (it remains 

disabled during a normal operation). It is important to stress 

that both detection and identification stages are fully 

independent and can be used separately with other existing 

approaches. 

The proposed fault identification algorithm is based on the 

self-learning and fully unsupervised evolving classifier 

algorithm called AutoClass which is an AnYa-like FRB 

classifier and, unlike the traditional FRB systems (e.g. 

Mamdani, Takagi-Sugeno), AnYa does not require the 

definition of membership functions [11]. The antecedent part 

of the inference rule uses the concepts of data clouds [11] and 

relative data density, representing exactly the real distribution 

of the data. 

A data cloud is a collection of data samples in the n-

dimensional space, similar to the well-known data clusters, 

however, it is different since a data cloud is non-parametric 

and it does not have a specific shape or boundary [6] instead it 

follows the exact real data distribution. A given data sample 

can belong to all the data clouds with a different degree 

       , thus the fuzzy aspect of the model is preserved. 

The consequent of the inference rule in AutoClass is a zero-

order Takagi-Sugeno crisp function, i.e. a class label    
     . The inference rules follow the construct of an AnYa 

FRB system [11]: 

 

      ( ⃗     )           

 

where    is the i-th rule,  ⃗                 is the input data 

vector,       is the i-th data cloud and   denotes the fuzzy 

membership expressed linguistically as “is associated with” or 

“is close to”. 

The inference in AutoClass is produced using the well-

known “winner takes all” rule [8]: 
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where    represents the degree of membership of the input 

vector    to the data cloud   , defined as the relative local 

density and recursively calculated as 
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where    and    are updated by equations (3) and (4). 

The classification process starts with the definition of the 

initial zone of influence (ZI) by the user. The concept of ZI is 

similar to the radius in data clusters, although data clouds do 

not have specified boundaries. Initial values of              
can be recommended [6]. The time step   is also initialised 

(   ). 

The first data sample    is then read. Since the algorithm 

does not require any a priori information about the process or 

any kind of training, the fuzzy rule basis and cloud set is 

empty at this point. AutoClass will, then, create the first data 

cloud, which will be associated with one point (the first data 

sample), with its ZI equal to the initial ZI defined by the user 

and its focal prototype point, FP, equal to   . The newly 

created data cloud is, then, added to the vector data clouds and 

a label “Class 1” as the consequent part will compose the first 

inference rule: 

 

        ⃗                            

 

The time step k is, then, incremented by one and AutoClass 

continues by the reading the next data sample   . From     

onwards, at each execution run and data sample    being read, 

three scenarios can occur: 

 

a)    is close to an existing data cloud: 

 

If the current data sample is within two times the zone of 

influence of an existing data cloud,    will be associated with 

that cloud. The focal point of th(i/e)s(e) data cloud(s) is/are 
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updated as a weighted sum of the current focal point (mean) 

and    and the zone of influence of the referred cloud is 

updated as the weighted sum of the current ZI and the 

Euclidean distance from    to the focal point of the data 

cloud. Finally, the number of points, NP, associated with that 

cloud is incremented by one. Note, that there is no need to 

store any read data samples, since all the information about 

the data cloud is recursively updated, which is a crucial 

concern when developing on-line applications. 

After the update of all close data clouds, the time step k is 

incremented by one and the procedure continues by reading 

the next data sample   . 

 

b)    is not close to an existing data cloud: 

 

In this case, the data sample    is, firstly, classified as an 

outlier and added to the vector of outliers. This vector is 

limited in size and, thus, in stack memory, in order not to 

compromise the performance of the on-line algorithm. In this 

work, the maximum number of data samples to be stored is 

100. When the vector reaches its full capacity, the older data 

sample is removed. 

After the outliers vector is updated, the procedure analyses 

all potential data clouds to be created from stored outliers that 

are close to each other, considering again the premise of two 

times the zone of influence. Let’s define    as the number of 

points of the more populated potential cloud,      as 15% of 

the points of the less populated existing cloud , but not less 

than 3. Let’s also define    as the density of the more 

populated potential cloud and        ∑    
       (where 

R is the number of rules so far) the average density of all 

existing clouds. If    is greater than      and    is greater 

than      , a new cloud    will be created. This condition 

considers both the size (number of points) of the potential 

cloud to be created, and its density. We consider that, in order 

to form a cloud, the set needs, at least, 3 points (this value will 

be increased to 15% of the less populated cloud) and density 

higher than the average of all existing clouds. This way, we 

try to avoid major discrepancies among the generated clouds. 

If the conditions above are satisfied, the newly created 

cloud    will be associated with    points, its ZI will be equal 

to the mean of the ZIs of all existing clouds and the initial ZI, 

defined by the user, and its focal point, FP, will be equal to the 

mean of all data samples associated with   . The newly 

created cloud is, then, added to the vector clouds (and all data 

samples associated with    removed from the vector outliers) 

and a label      as the consequent part will compose the 

(R+1)-th inference rule: 

 

        (         )             

 

After the creation of the new cloud, or if the conditions of 

number and density are not satisfied, the time step k is 

incremented by 1 and AutoClass continues by reading the next 

data sample   . The full FI algorithm is presented in the 

flowchart in Figure 2. 

 
 

Fig. 2. Flowchart of the proposed fault identification algorithm 

III. EXPERIMENT AND RESULTS 

In order to validate the proposal, we developed a liquid 

level control application, using a Laboratory pilot plant for 

industrial process control, developed by DeLorenzo do Brasil 

[14]. The plant consists of two pressurised tanks, T1 and T2, 

two valves, V1 and V2, and a centrifugal pump, all connected 

by a piping system, which enables the flow between the two 

vessels, in both directions [15]. 

The plant is controlled by a multistage fuzzy controller 

[16], developed in JFuzZ [17] software tool through an OPC 

(OLE for Process Control) interface [18]. The behaviour 

generated by the controller, when the process has reached the 

regime state and the control action and error signals are 
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stabilised (with no considerable oscillation), represent the 

“normal” state of operation of the plant. 

A set of 16 different faults were generated physically and 

by software, is the object of study of this experiment. The 

referred faults are divided in 4 groups, depending on the 

nature of the fault: actuator, leakage, stuck valves and 

disturbance-related. 

Each group contains experiments with different patterns and 

levels. In the “actuator” group, there are 6 levels of offsets in 

the centrifugal pump (       ,       ,       , 

     ,       and      ); in the 'leakage' group there 

are 3 levels (      ,        and        ) of open 

drain, which simulates a physical leakage in the tank T1; in 

the “stuck valves” group there are 3 levels of jamming of each 

valve (    ,    ,    ,    ,     and    ); and in the 

“disturbance” group there is 1 environment disturbance (   ). 

Both in the detection and identification stages each data 

sample   is a point of a n-dimensional feature space. For the 

detection stage, in this application we chose to use two 

features – the control action (u) and error (e), calculated by 

    (reference) –    (output), thus,         – as they are 

very representative signals and meet the basic requirement of 

being constant when the plant is operating normally and 

oscillatory in the presence of a fault. 

For the identification stage, we also chose to use two 

features – here called Feature 1 and Feature 2, thus   
                      – where the first one is the period 

and the second one is the amplitude of the control signal. It 

has been noticed that, in most generated faults, the control 

signal assumes a periodic behaviour, with nearly constant 

frequency. While the period is useful to distinguish between 

different classes of faults, the amplitude is also important to 

define the level of the fault. 

We, then, divided the experiment in two separate stages: i) 

detection and ii) identification/classification. In the first one, 

we analysed the data collected from the operating plant, 

sequentially, in the presence of the 16 types of fault. The 

results obtained with the proposed detection algorithm for the 

fault     are shown in Figure 3.  

Note, that the algorithm was able to almost immediately 

detects the beginning of and the end of the fault, as seen in 

Figure 3(a). A fault is detected when there is a considerable 

drop in the density signal, which, in the case of fault    , 

occurs around 28s of execution, as seen in Figure 3(b). The 

exit of a faulty state, on the other hand, occurs when the 

density signal starts to considerably rise, which means that 

there is no oscillation, and is around 119s for the fault 

   example. 

For comparison purposes, the same experiment was 

performed both with the proposed fault detection and SPC 

approaches. SPC is a well-known algorithm for outlier 

detection in industrial processes. The procedure details were 

exhaustively presented in literature [7]. 

After all 16 experiments, the proposed detection algorithm 

obtained a hit rate of 86.97%, considering the right 

classification of faulty and normal states. The SPC technique, 

on the other hand, using similar setups, obtained a hit rate of 

55.37%. Individually, the proposed application resulted in 9 

out of 16 experiments with a hit rate in excess of 95%, which 

demonstrated the efficiency of the algorithm. The results for 

all 16 experiments with the SPC and the proposed detection 

algorithm are detailed in Table 1. 

 

 
 

(a) Control behaviour chart 
 

 
 

(b) Density chart 

 
Fig. 3. Results for fault    with the proposed fault detection application 

 
TABLE I. RESULTS FROM FAULT DETECTION ALGORITHMS 

Fault 
Hit Rate Hit Rate 

SPC Proposed Algorithm 

   64.13 % 97.84 % 

   71.46 % 98.48 % 

   50.23 % 98.63 % 

   56.66 % 96.7 % 

   61.41 % 96.46 % 

   74.76 % 98.48 % 

   50.29 % 48.36 % 

   45.46 % 75.59 % 

   61.64 % 95.46 % 

    45.78 % 98.93 % 

    62.4 % 88.61 % 

    52.3 % 77.14 % 

    48.25 % 66.92 % 

    33.62 % 90.31 % 

    46.21 % 98.75 % 

    61.3 % 64.86 % 

 

In the identification/classification stage, AutoClass is 

executed after a fault is detected and stops when the system 

exits the faulty state. This stage is quite unique in the sense 

that it autonomously and in a completely unsupervised manner 
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(without any pre-training or prior knowledge and information) 

identifies the types of faults. 

For this experiment, we applied 4 sequential fault data 

streams to AutoClass (  ,   ,    and   ). The progress of 

execution and behaviour of the system are illustrated in the 

next charts. Similarly to the previous figures, black bars 

indicate the moment when the fault is detected and grey bars 

indicate the moment when the system exits a faulty state. 

Figure 4 shows the status of the identification after 2,150 

data samples. At that instant, the fault   was already initiated 

and terminated, as we can see in Figures 4(a) and 4(b), and the 

fault    was recently identified, as we can see in Figure 4(c).  

Note, that after the very first faulty data sample read, 

AutoClass created a class of fault, automatically named “Class 

1”, which, in this case, represents the fault   , and all 

subsequent data samples from the referred stream, due to the 

spatial closeness in terms of the two features, were assigned to 

this class. 

After the detection of the second fault, AutoClass was 

instantly able to identify that the newly arrived data samples 

did not belong to the existing class of fault. Until the required 

conditions were satisfied, all data outside the existing data 

cloud was classified as outliers, as we can see in Figure 4(c). 

Once there was enough close outliers to create a new cloud, 

AutoClass defined a new class of fault, automatically named 

“Class 2”, which, in this case, represents the second fault 

stream, fault   as we can see in the same Figure. 

The results obtained after reading of all 5,600 data samples, 

representing the sequential reading of 4 different fault streams, 

are shown in Figure 5. 

As can be seen in Figures 5 (a) and 5(b), fault    was 

terminated around 275s, fault    was initiated around 320s and 

terminated around 380s, and fault    was initiated around 430s 

and terminated around 540s. 

Also from Figure 5 we can see that Class 1 represents 

Faults 1 and 2; Class 2 represents Fault 4 and Class 3 – Fault 

9, but this is extracted information autonomously and there is 

no need to provide this information a priory or train AutoClass 

in order this to be later identified. This is the major difference 

of the newly proposed fully unsupervised autonomous FDI 

approach and all existing so far which is demonstrated here 

based on a Laboratory based real plant with induced faults.  

Note, in Figure 5(c) that the faults    and   , which were 

not read sequentially in the experiment, were classified in the 

same data cloud which after the automatic labelling becomes a 

class, “Class 1”, and activated by the same inference rule. This 

is entirely logical/expected, because they actually belong to 

the same fault type, although with different levels/amplitudes. 

Faults    and   , represented by the labels “Class 2” and 

“Class 3”, respectively, are also clearly indicated in the same 

figure. 

 

 

 

 

 

 

 
 

(a) Detection stage – Input signals 

 

 
 

(b) Detection stage – Density 

 

 
 

(c) Identification stage – system status for k = 2,150 

 
Fig. 4. : Fault detection and identification  
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It is important to highlight that, even though the system was 

able to distinguish faults    and   , which are positive offset 

of the actuator, from fault   , which is negative offset of the 

actuator, they are still close together, because both faults 

concern the actuator. Note also, that faults    and    are also 

close to each other in terms of Feature 2, albeit one is negative 

Feature 1, while the other is positive. Fault   , on the other 

hand, concern structural changes and, in Figure 5(c), is further 

from faults    and   , but, since leakage is logically closer to a 

negative change,    is close to   . The fuzzy rule based 

classifier autonomously generated from the data stream  which 

consists of 5,600 data samples, is presented as follows: 

 

      ( ⃗     )                  

      ( ⃗     )                  

      ( ⃗     )                  

 

with 

                                           

                                            

                                            
 

where    is the focal point and    is the zone of influence of 

the cloud. 

The fault identification procedure is quite unique in the 

sense that it autonomously and in a completely unsupervised 

manner (automatic labels) identifies the types of faults. 

Therefore, it is difficult to compare this new approach with 

any existing alternative approach directly. 

IV. CONCLUSION 

A two-stage FDI approach is presented in this paper. With a 

detection algorithm based on RDE and an identification 

procedure based on the recently introduced AutoClass, the 

proposed system is able to perform FDI on-line, starting “from 

scratch”, since the very first data sample acquired, in a fully 

unsupervised manner. The proposed algorithm does not 

require any a priori information about the plant, its 

mathematical models, complex user-defined parameters or 

thresholds. This proposal differs from the traditional 

approaches as it works with the concept of data clouds, which 

are structures with no specific shape, boundaries, centre, 

parametric function to describe them and yet they are 

represented by an aggregated measure (data density). A 

number of experiments with different fault data streams were 

performed on-line using a real industrial hydraulic pilot plant. 

The results have shown a high rate of success on both 

detection and classification stages, with a very limited 

computational effort. When compared with a well-known fault 

detection technique, the proposed algorithm demonstrated 

considerable superior results, in terms of both global and 

individual experiments. 

 

 

 
 

(a) Detection stage – Input signals 

 

 
 

(b) Detection stage – Density 

 

 
 

(c) Identification stage – system status after the reading of all 5,600 
data samples 

 
Fig. 5. Fault detection and identification   
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