

Abstract—Software maintenance is assuming ever more a
crucial role in the lifecycle of software due to the increase of
software requirements and the high variability of software
environment. Common approaches of studying software
maintenance are to consider them as a static by-product of
software operation and only the maintenance cost is covered. In
this paper, software maintenance policies are studied with the
consideration of software reliability and risk. An optimization
model is defined to drive the choice of a maintenance schedule.
The solution of the model provides the best maintenance policy
and the choice of actual actions that will minimize the average
maintenance cost while the software reliability and risk are
acceptable. Finally, a numerical example is given to show the
analysis process of our proposed policy.

I. INTRODUCTION
With the rapid development of information technology and

the popularity of computer, software has been used in every
aspect of people's work and life which indicates a sharp rise
trend in its importance and scale. As we can see from the
lifecycle of software, before delivered to users, most of the
software will experience a relatively short time of designing
and developing. Then the software will enter the operation
and maintenance phase until the end of the whole lifecycle.
According to statistics, software maintenance accounts for
more than 70% of work in its entire lifetime typically. It is
necessary to modify and upgrade the software constantly
during the long time of the operation phase for correcting the
new coming errors, adapting to the new environment and
meeting the users’ needs. The work will take much resources
such as human, material and financial resources and bring
new errors sometimes [1].

The discipline of software maintenance began in the late
1970s. Because the early development of software itself was
not mature, most of the academic research focused on the
software development and the research about maintenance
was very rare. The proportion of maintenance cost throughout
the software lifecycle increases gradually. The method to
reduce the risk and cost effectively, make maintenance
strategy to ensure a higher reliability that has become an issue
of concern in the Software Industry increasingly. Besides
various conferences, the number of academic works and
organizations on software maintenance is also increasing.

The authors are with the School of Automation and the Key Laboratory of
Ministry of Education for Image Processing and Intelligent Control,
Huazhong University of Science and Technology, Wuhan 430074 China
(e-mail: wangxiaoping@hust.edu.cn, zf1141@163.com, yishen64
@163.com).

Some researchers focus on the basic structure of the software
and compare the impacts of different design patterns on
software maintenance [2], whereas others invest different
maintenance policies [3, 4] including the comparison and
optimization of these different maintenance policies [5, 6]. A
model is built to determine the optimal point for maintaining
a software application in [5]. Tan and Mookerjee propose a
model and operating policy that reduce the sum of
maintenance and replacement costs in the useful life of a
software system in [6].

Currently, most of the literatures on maintenance policy
focus on the maintenance cost. There are also some
researchers who take software reliability into account to make
the optimal policy. Xiong, Xie and Hui propose an optimal
maintenance policy which aims at minimizing the average
maintenance time cost in [7]. An optimization model is
defined to drive the choice of a maintenance plan (i.e. a set of
maintenance actions to be taken) in correspondence of a
certain change scenario in [8]. The solution of such model
provides the set of actions that minimize the maintenance cost
while guaranteeing software reliability. In [9], Tian, Lin and
Wu develop an approach related with the physical
programming of software to deal with the multi-objective
conditions based maintenance optimization problem which
includes maximizing reliability and minimizing maintenance
costs. The critical point is that the two main optimization
objectives are often conflicting. With the proposed approach,
the decision maker can systematically and efficiently make
good tradeoff between the cost and reliability. As we can see
from these related studies, maintenance cost is usually the
objective in the model of software maintenance policy. But in
the real maintenance work, it is far from enough for the
decision maker to take the cost into consideration only. We
also need to consider the state of the software, the
environment of the maintenance and so on. Based on the
analysis above, we set up an optimal model which considers
the reliability of software and the risk of software
maintenance in this paper. The aim of the policy is to
minimize the maintenance cost while ensuring the reliability
and risk are under the certain ranges.

The remainder of the paper is organized as follows. Section
II first introduces the scenario of software maintenance and
the model of the process of software maintenance. The
optimal software maintenance policy based on reliability and
risk is introduced in Section III in details. In Section IV we

An Optimal Software Maintenance Policy Based on

Reliability and Risk
WANG Xiaoping, ZHOU Fang, SHEN Yi

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 3043

apply our approach to an example. Section V concludes the
paper with the summary of the research and directions for
future research.

II. SOFTWARE MAINTENANCE POLICY ANALYSIS

A. The Model of Software Maintenance Process
A variety of failures may occur after the officially

operation of software. Some failures are due to the changes of
data or processing environment in the operation process. It’s
essential to modify the software to adapt to the changes. Some
users and data processing staffs often suggest improving the
existing features, adding new features and improving the
overall performance. It is necessary to modify the resource
code so as to incorporating these requirements into the
software. Others’ target is correcting the potential bugs or
design flaws which will expose under certain conditions. The
software maintenance can be divided into adaptive
maintenance, perfective maintenance, and corrective
maintenance according to the three types of the failures’
causes. The work needed in the three types of maintenance is
different. In this paper, we only focus on corrective
maintenance.

Currently, most of the models about software failure time
are based on Markov chains or non-homogeneous Poisson
process. Gokhale who unified most of the models described
the software failure process as Non-homogeneous
Continuous Time Markov Chain (NHCTMC) [10, 11]. Because
software failure time and maintenance time have similar
probability nature, so Gokhale and Lyu suppose that software
maintenance time can also be modeled with NHCTMC. In
this paper, the NHCTMC is adopted to model the behaviors of
maintenance events.

As we can see, a NHCTMC can be represented by the
transition probability uniquely. We define the maintenance
process as ()X t , the repair rate as (),n tλ , and the mean
function of maintenance process as ()m t . n is the number of
failures up to the present time t . We obtain ()m t by (1).

() () ()
0

,
t

m t E X t n s dsλ= ⎡ ⎤ =⎣ ⎦ ∫ （1）

We can get (),n tλ from historical data and use (1) to
analyze the software maintenance events. Assuming the
repair rate can be described as the non-homogeneous Poisson
process (NHPP), the G-O classic model is adopted to
calculate the repair rate in (2).

() (), expn t tλ αβ β= − （2）
The parameter α is defined as the total number of

corrected failures while β means the efficiency of the
correction. So ()m t can be expressed by (3).

() (){ }1 expm t tα β= − − （3）

The method of SLE or MLE can be adopted to estimate the
values of α and β if we have effective historical data [12, 13].

B. Software Maintenance Policy Problems
It’s necessary to spend time on finishing the corrective

maintenance. In corrective maintenance, the corresponding
errors can be tracked by the source code which is mapped and

fixed. All the resources of software systems are required for
the maintenance so the systems can not keep running until the
maintenance is finished. The service quality of system is
degraded because of the unavailable time. Once a failure
occurs, we will not construct the maintenance at once but
restore the system that is called software rejuvenation. The
system will resume the normal operation after the
rejuvenation. Maintenance will not start until the number of
failures meets a certain value or certain threshold criteria are
met [7]. The Fig.1 shows a simple example of operation and
maintenance process of software systems.

From Fig.1, maintenance will start after three failures
occurred. F1, F2, and F3 are defined as software failures
sequentially while R1, R2, and R3 represent the
corresponding maintenance actions.

An important issue of software maintenance policy in this
paper is how to determine the time point of constructing the
maintenance which also means the cumulative number of
failures in each maintenance schedule. The maintenance time
point is closely related with environment and the state of
software. With failures being resolved, the reliability of the
software is increasing continuously. But the failures
encountered in later phase will be more complex and it will
need more time and high cost to complete the maintenance.
Our goal in the paper is obtaining the time point of
maintenance.

III. SOFTWARE MAINTENANCE POLICY BASED
ON RELIABILITY AND RISK

A. Software Maintenance Cost
Software maintenance cost consists of three parts usually:

setup cost, work cost, and loss cost [14].
1) Setup cost: It incurs when arranging and preparing

maintenance resources before performing maintenance
activities. Setup cost is unavoidable in the maintenance and
very high for some large software systems. It is relatively
stable when comparing with the other two parts. Usually we
set it as a known constant. In this paper, it is a known constant
and expressed as 1C .

2) Work cost: It incurs in maintenance activities. Work cost
is mainly the cost of human resource based on the
characteristics of software maintenance. With the increase of
maintenance time, work cost will increase linearly. We set it
as 2C and calculate it by (4).

Fig. 1. Example of operation and maintenance of software systems

3044

2 2C c t= （4）
In (4), 2c represents the maintenance cost unit time and t

is the time that maintenance needs (It’s also expressed as
maintenance time in the paper).

3) Loss cost: It is caused by unavailable time in the
maintenance phase. An apparent feature of loss cost is that its
initial value is 0 and it will increase rapidly with the increase
of maintenance time. But it can not increase to infinity
because decision makers will take certain measures such as
switching to a new system before the threshold is met. Loss
cost is set as 3C and expressed with a compound
linear-exponential function as follows:

(){ }3 3 1 expC c t tγ= − − （5）

In (5), 3c is the loss coefficient, γ is the form factor, and
t is the maintenance time. As it shows in (5), the loss cost
will increase steadily when maintenance time is short and it
will increase rapidly when maintenance time is long.

From the analysis above, the total cost can be expressed as
follows:

() (){ }1 2 3 1 2 3 1 exp - tC t C C C C c t c t γ= + + = + + − （6）

We obtain the value of 1C , 2c , and 3c from the testing
records or prior releases [14, 15].

B. Software Reliability
IEEE Computer Society of United States made a clear

definition about "software reliability" in 1983. Then the
definition was accepted as the national standard by American
National Standards Institute. It was also accepted as the
national standard by China in 1989. The definition includes
two aspects of meaning [16]:

(1)The probability of that the failure won’t occur under
prescribed condition and time;

(2)The ability that procedure performs the required
function under prescribed condition and within a
predetermined time period；

The probability is a function not only of the system input
and use but also of the errors in software. The system input
will determine whether it will meet the failure (if the error
exists).

Software reliability is the nature that whether software can
meet the demand function. Software can not meet the
requirement because of the software failure caused by
software errors. Software reliability measurement refers to
the quantitative evaluation of the degree of reliability.
Software reliability index (refer to software reliability
parameter) is the basis for describing software reliability,
which is set as ()R t . ()R t represents the probability of that
the software performs the required function under prescribed
condition and time or the failure will not happen within a
specified time period. The parameter is the probability
description of the behavior of software failures and the basic
definition of software reliability. It can be identified as:

() ()R t P T t= ≤ . There are other indexs such as probability
of failure, failure strength, failure rate, mean failure time and
mean time between failures and so on.

In this paper, we choose the mean time between failures
(MTBF) to represent the reliability. The MTBF is the average
value of the failure time between two adjacent failures.
Assuming ξ is the interval time, () ()F t P tξ= ≤ is the
function which means the cumulative probability density of
software failure. So the function of reliability is

() 1 () ()R t F t P tξ= − = > , and the function of MTBF is as
follows:

0
()BFT R t dt

∞
= ∫ （7）

0(t)R R≥ （8）
In (8), 0R is the threshold value of the reliability.

C. Software Risk without Maintenance

TABLE I
THE CRITERIA TO QUANTIFY THE POSSIBILITY OF RISK

Possibility
score

Quantitative
description

Qualitative
description

1 Less than 10% Extremely low;
Do not occur under normal
circumstances.

2 10%-30% Low;
Occur only in rare cases.

3 30%-70% Medium;
Occur under certain
circumstances.

4 70%-90% High;
 Occur in many cases.

5 More than 90% Extremely high;
Often happen or almost
happen certainly.

TABLE II
THE CRITERIA TO QUANTIFY THE IMPACT OF RISK

Impact
score

Qualitative
description

 Impact on
 business

1 Very slight Unaffected;
 A user can’t use the system to construct
the business properly.

2 Slight Affected mildly;
A business stops working.

3 Medium Moderate impact;
A application system is unavailable.

4 Considerable Serious impact;
One application system have failures and
all or most of the businesses associated
with the failure system are unavailable./
All or most of the businesses are
unavailable in one area.

5 Catastrophic Significant impact;
Multiple (more than one) application
systems have failures and all or most of
the businesses associated with the failure
systems are unavailable./ All or most of
the businesses are unavailable in multiple
(more than one) areas.

3045

In this paper we analyze the risk quantitatively from two
dimensions of the possibility (M) and impact (P). The first
thing is to quantify the possibility and impact of risk
according to different levels. The criteria of score are shown
in Table I and Table II.

Software risk (F) = possibility (M) × impact (P). We build
a two-dimensional risk matrix with possibility (M) as the
abscissa and impact (P) as the vertical axis. The risk matrix is
shown in Table III.

According to the method mentioned above, we make
qualitative and quantitative analysis of risk. The risk must be
controlled within a certain range during the maintenance
phase that can be shown as follows：

0F F≤ （9）
In (9), 0F is the threshold value of the risk.

D. Model of Optimal Maintenance Policy
The aim of this research about optimal maintenance policy

is to decrease the total cost of the whole operation phase as
much as possible. The analysis about cost described above is
the cost of one maintenance schedule and it’s not a good
choice for the objective function. In order to achieve the goal,
we change the objective to maintenance cost unit time (UC).
If the maintenance cost unit time is minimal in every
maintenance schedule, the total cost throughout the entire
lifecycle is the smallest certainly. Therefore, the minimum
maintenance cost unit time is set to be the objective of the
model that can be expressed as follows:

() () /UC t C t t= （10）
Currently the cumulative failures are expressed as 1F ,
2F ,… iF . The maintenance starts when i N= ,where

N is the decision variable and a positive integer. Obviously
N is interrelated with maintenance time t .

The constraints of the model are software reliability and
risk. Software reliability will decrease gradually with failures
occurring continuously. We should ensure the reliability
within a certain range. Reliability is expressed with mean
time between failures. Assuming the interval time between
the ith failure and the ()1i th+ failure is BFit and 0BFT is
the minimum acceptable threshold, the constraint of
reliability can be expressed by (11).

1

0
1

1
1

N

BFi BF
i

t T
N

−

=

≥
− ∑ （11）

Similarly, the risk should be also kept within an acceptable
range. Assuming that the failures are independent with each
other, the possibility of the risk caused by the ith failure is

im and the impact is ip , the constraint of risk can be
expressed by (12).

() 0max ; 1,2,...i im p F i N≤ = (12)
The model of software maintenance policy can be

expressed as follows:
minimize： () () /UC t C t t=

subject to: ()m t N= （13）

1

0
1

1
1

N

BFi BF
i

t T
N

−

=

≥
− ∑

 () 0max ; 1,2,...i im p F i N≤ =
 1N ≥ , N is a positive integer.

Firstly, we let the first-order derivative of ()UC t 0. Then
the minimum value can be obtained. Because N is a positive
integer， the optimal solution can be expressed as ()m t⎢ ⎥⎣ ⎦ or

() 1m t +⎢ ⎥⎣ ⎦ , where ()m t⎢ ⎥⎣ ⎦ is the maximum positive integer
which is smaller than ()m t . Since a few constraints still exist
in the model, the smallest solution of the objective function
can not be chose as the best solution. The Fig.2 shows the
analysis process after the failure has happened.

Assuming the number of the accumulated failures is
i currently, the first thing is to analysis that whether the
values of reliability and risk are beyond the thresholds. Once
one of the thresholds is exceeded, we need to construct the
maintenance immediately and set N i= . If the values are all
under the threshold ranges, we should calculate the best
maintenance time and obtain the optimal value of
N according to NHCTMC of the maintaining process which
can be set as oN . If 0i N= , we set N i= and start the
maintenance at once. If 0i N< , we will not start the
maintenance and just wait for next failure.

TABLE III
 THE RISK LEVEL

Possibility

Impact

Low Medium High

Very low
1-1.5

Lower Medium Higher Very high
4.5-5

1.5-2 2-2.5 2.5-3 3-3.5 3.5-4 4-4.5

High

Very high 4.5-5
4-4.5
3.5-4
3-3.5
2.5-3
2-2.5
1.5-2
1-1.5

Medium
Medium
Medium
Medium
Low
Low
Low
Low

High
Medium
Medium
Medium
Medium
Low
Low
Low

High
Medium
Medium
Medium
Medium
Low
Low
Low

High
High
Medium
Medium
Medium
Medium
Low
Low

High
High
High
Medium
Medium
Medium
Medium
Low

High
High
High
Medium
Medium
Medium
Medium
Medium

High
High
High
High
Medium
Medium
Medium
Medium

High
High
High
High
High
High
Medium
Medium

Higher

Medium

Medium

Low

Lower

Very low

3046

IV. EXAMPLE OF MAINTENANCE POLICY
We obtain the best maintenance policy easily if there are

enough information and an effective model. A major problem
in quantitative analysis of maintenance policy is the lack of
information and data. It’s difficult to get maintenance cost
data of the actual company by public means. In this section,
we use the preset values of cost parameters from [7] as

1 2 3100, 10, 1000,r 0.5C c c= = = = . According to the data in
operation and maintenance phase of the Apache server, we
get the derived parameters: 66.81, 0.2139α β= = .
Maintenance cost unit time ()UC t can be calculated by (14).

() () (){ }1 2 3 1 exp
 =U

C c t c t tC t
C t

t t
γ+ + − −

=

 (){ }1 2 3/ 1 expC t c c tγ= + + − −

 ()0.5100 10 1000 1 te
t

−= + + − (14)

We get the smallest value of ()UC t by (15).
()

0UC t
t

∂
=

∂
 （15）

In this case, the value of t is 0.5078 and the theoretical
value of corresponding N can be calculated by (16).

 (){ }1 expEN tα β= − −

 ()0.213966.81 1 6.8747te−= × − = （16）

Since N is a positive integer, we get the optimal solution
of 6 or 7 without considering reliability and risk. When 6N = ,
we get the results of 0.4399t = and

() 434.72UC t = .When 7N = , we get the results of
0.5175t = and () 431.22UC t = .Finally, we obtain the

optimal solution is 7 by comparing the results calculated
above.

Assuming that the number of accumulated failures is six
currently, we should make quantitative analysis of software
reliability and risk in the current state according to the method
described previously. If the values of reliability and risk are
beyond the accepted ranges, we should construct the
maintenance immediately and set 6N = at this same time. If
the values do not exceed the threshold, we will not start the
maintenance until the 7th failure occurs.

V. CONCLUSION
In this paper, we built a model of software maintenance

policy based on reliability and risk. The target of maintenance
policy is minimizing the total cost of the entire operation and
maintenance phase while guaranteeing the software reliability
and risk within the threshold. From the model we can see that
N is the key parameter of the maintenance strategy and obtain
the optimal number of cumulative failures N in section III.
After software failure occurs, we should analyze the software
at first. If the values of the software reliability and the risk
without maintenance is within the accepted ranges, we will
not begin the maintenance until the number of accumulated
failures reaches the value of N . At this time the whole
maintenance cost is the lowest. If the value of software
reliability or risk exceeds the threshold, we should start the
maintenance immediately regardless of whether the number
of cumulative failures achieves the optimal value of N .

Results of this paper are based on certain assumptions such
as NHCTMC of the maintenance process and so on. It’s
necessary to adjust the policy according to the specific
circumstances during the actual maintenance process which is
also a point for further research. In this paper, the type of
maintenance is only corrective maintenance. We can take the
other two types of maintenance into consideration in the
future studies so as to make the research more general.
Factors we should also consider in latter work include the
maintenance order, the risk caused by the maintenance
activities and so on.

ACKNOWLEDGMENT
The authors acknowledge the valuable comments and

suggestions by the reviewers and the editors which have
created an in-depth paper.

The work is supported by National Science Foundation of
China (No.61374150, 61374171), by the State Key Program
of National Natural Science of China (No.61134012), by
National Basic Research Program of China (973 Program
2011CB710606), by the Fundamental Research Funds for
the Central Universities (2013TS126), and by the Research
Fund of Yalong River Hydropower Development Company
LTD.

REFERENCES
[1] C. McClure, “The Three R’s of Software Automation-Reengineering,

Repositor, Reusability,” New Jersey: Prentice-Hall, 1992.
[2] Schneidewind NF, “Experience report on using object-oriented design

for software maintenance, Journal of Software Maintenance and
Evolution: Research and Practice,” vol. 19, pp. 183-201, 2007.

The th failure occurs

Whether the reliability
or risk is beyond

the threshold?

Compare with ， is
the optimal solution.

Wait for the
next failure

A maintenance schedule is
closed.

, construct the
maintenance immediately

NO

YES

i

01 i N≤ < 0i N=

1i i= +

N i=

0Ni 0N

 Fig. 2. Analysis process after the failure has happened

3047

[3] Ahmed RE, “Software maintenance outsourcing: Issues and strategies,”
Computers and Electrical Engineering, vol. 32, pp. 449-453, 2006.

[4] Bhatt P, Shroff G, Anantaram C, Misra AK, “An influence model for
factors in outsourced software maintenance,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 18, pp.
385-423, 2006.

[5] Feng Q, Mookerjee VS, Sethi SP, “Optimal policies for the sizing and
timing of software maintenance projects, European Journal of
Operational Research,” vol. 173, pp. 1047-1066, 2006.

[6] Tan, Y, Mookerjee VS, “Comparing uniform and flexible policies for
software maintenance and replacement,” IEEE Transactions on
Software Engineering, vol. 31, no. 3, pp. 238-255, 2005.

[7] Cheng-Jie Xiong, Min Xie, Szu-Hui Ng, “Optimal software
maintenance policy considering unavailable time,” Journal of
Software Maintenance and Evolution: Research and Practice, vol. 23,
pp. 21-33, 2011.

[8] Vittorio Cortellessa, Raffaela Mirandola, Pasqualina Potena, “Selecting
optimal maintenance plans based on cost/reliability tradeoffs for
software subject to structural and behavioral changes,” in Conf. Rec.
2010 14th European Conference on Software Maintenance and
Reengineering, pp. 21-30.

[9] Zhigang Tian, Daming Lin, Bairong Wu, “Condition based

maintenance optimization considering multiple objectives,” J Intell
Manuf, vol. 23, pp. 333-340, 2012.

[10] Gokhale SS, Lyu MR, Trivedi KS, “Analysis of software fault removal
policies using a non homogeneous continuous time Markov chain,”
Software Quality Journal, vol. 12, pp. 211-230, 2004.

[11] Gokhale SS, Lyu MR, Trivedi KS, “Incorporating fault debugging
activities into software reliability models: A simulation approach,”
IEEE Transactions on Reliability, vol. 55, no. 2, pp. 281-292, 2006.

[12] Xie M, Software Reliability Modeling, Singapore: World Scientific
Publisher, 1991.

[13] Lyu MR, Handbook of Software Reliability Engineering, New York
NY: McGraw-Hill, 1996.

[14] Koskinen J, Salminen A, Paakki J, “Hypertext support for the
information needs of software maintainers,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 16, pp.
187-215, 2004.

[15] Zhang XM, Pham H, “Software field failure rate prediction before
software deployment, The Journal of Systems and Software,” vol. 79,
pp. 291-300, 2006.

[16] Zhao Chenggui, Pu Zhaobin, “A software reliability assessment model
and its Petri net description,” Computer Applications and Software,
vol. 29, no. 1, pp. 141-144, 2012.

3048

