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ABSTRACT

Data analysis plays an important role in our Information
Era; however, most of statistical and machine learning algo-
rithms were not developed to tackle the ubiquitous issue of
missing values. In pattern classification, several strategies
have been proposed to handle this problem, where missing
data imputation is the most used one, which can be viewed
as an optimization problem where the goal is to reduce the
bias imposed by the absence of information. Although most
imputation methods are restricted to one type of variable
only (categorical or numerical), they usually ignore infor-
mation within incomplete instances. To fill these gaps, we
propose an evolutionary missing data imputation method for
pattern classification, based on a genetic algorithm, which is
suitable for mixed-attribute datasets and takes into account
information from incomplete instances and model building
— more specifically, the classification accuracy. To assess
the performance of our method, we used three algorithms
in order to represent the three groups of classification meth-
ods: 1) rule induction learning, 2) approximate models and
3) lazy learning. Experiments have shown that the pro-
posed method outperforms some well-established missing
value treatment methods.

Categories and Subject Descriptors

H.2.8 [Database management]: Database Applications—
Data mining; 1.5.2 [Pattern Recognition]: Design method-
ology— Pattern analysis
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1. INTRODUCTION

The important role of data analysis is unquestionable in
our Information Era. Even so, most statistical and machine
learning methods are not robust enough to be unaffected by
a ubiquitous problem in data analysis: Missing Data (MD).
Missing data affects both hard and soft sciences [13] and
is a recurring problem in pattern classification. By way of
illustration, about 45% of datasets in the UCI repository
have missing values [11, 17].

In order to mitigate the harmful consequences of Missing
Data, several studies have been conducted that aim to tackle
this issue. The most accepted way to handle this problem is
by means of Missing Data Imputation (MDI), which denotes
the estimation of plausible values in order to substitute the
missing ones [28, 22]. Based on the definition, MDI can be
viewed as optimization problems, where the goal is to find
the best values to impute which will reduce the bias imposed
by the absence of information. In this context, metaheuris-
tics — such as Evolutionary Algorithms (EA) — have been
successfully applied to solve optimization problems.

Despite the paradigm in which the imputation method is
based, some restrictions that are present in these state-of-
the-art techniques should be pointed out. For instance, [33]
makes known that most of the available imputation meth-
ods are restricted to one type of variable only (categorical
or numerical). In other words, these methods handle vari-
ables of different types separately, losing possible relation-
ships between them. It is critical to remember that this
kind of correlation is usually explored by classification algo-
rithms, thus it is important to treat MD in mixed-attributes
datasets properly. Two other important restrictions are: 1)
imputation methods evaluation cannot be properly evalu-
ated apart from the modelling task [29] and 2) we should



avoid complete-case analysis, where information of instances
or attributes with missing values are removed.

Aiming to fill these gaps, we present in this paper an evo-
lutionary missing data imputation method for pattern clas-
sification called GAI, which is based on a genetic algorithm.
GALI aims to treat mixed-attributes datasets properly, con-
sidering incomplete instances and information of the gener-
ated model, more specifically, the classification accuracy ob-
tained from the three algorithms which represent the three
groups of classification methods: rule induction learning,
approximate models and lazy learning.

We compare the performance of GAI with some well- ac-
cepted methods for handling missing values in pattern clas-
sification, using benchmarking datasets obtained from the
UCI repository [17] that already have missing values. Our
results show that GAI reaches a very high performance,
moreover, our method proved to be suitable for tackling
missing values in mixed-attribute datasets.

The rest of the paper is organized as follows. In Section 2
we present a brief theoretical background about missing val-
ues, followed by an overview of related work on Missing Data
treatment in Section 3. We then describe our evolutionary
imputation method in Section 4. Section 5 discusses our
experimental methodology and results. Finally, conclusions
and some open issues are presented in Section 6.

2. THEORETICAL BACKGROUND

As said previously, missing values can be defined as the
absence of information in instances, which brings harmful
consequences to the validity of the subsequent analyzes. Ta-
ble 1 shows an example of dataset with missing values. The
instances 1-5 are commonly called “complete cases” because
they have no missing values, while instances 6-8 are called
“incomplete cases” because they have missing values, usually
represented by “?”.

Table 1: Example of a dataset with missing values.

ID Color Weight Broken Class
1 Black 80 Yes 1
2 Yellow 100 No 2
3 Yellow 120 Yes 2
4 Blue 90 No 2
5 Blue 85 No 2
6 ? 60 No 1
7  Yellow 100 ? 2
8 ? 40 ? 1

The causes of this problem are diverse and are related to
the application domain. For example, a common cause of
MD occurrence in behavioral sciences is the refusal of re-
spondents to answer certain questions; while the inability to
perform a specific exam most affects health research; and,
finally, equipment failure is frequent in areas dependent on
sensor networks, such as: traffic monitoring, industrial pro-
cesses and satellite information processing [4]. In the classi-
fication context, by way of illustration, approximately 45%
of datasets in the UCI repository have missing values [11,
17].

By means of these examples is possible to attest to the
ubiquity of this problem, which makes clear the importance
of developing treatment methods to handle it. The choice
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of a suitable way to tackle this issue depends on its causes
and can be regarded as a probabilistic phenomenon [26, 22].
A proposed mathematical device called “missingness mech-
anisms” aims to describe the missingness characteristics and
to identify possible relationships between the observed and
missing items [19]. It defines three different patterns [28]:

e Missing completely at random (MCAR): missing data
that does not depend on the observed or missing data
itself;

e Missing at random (MAR): inferences can be made
from the observed data, but are independent of the
missing variables;

e Missing not at random (MNAR): the absence of data is
not stochastic because it depends on the missing data
itself.

It is important to note that “missingness mechanism” de-
notes a statistical association between the observed and miss-
ing data, but not a causal relationship. In this sense, MCAR
and MAR are considered to be non-informative patterns be-
cause the unavailability of data does not deliver important
information about missingness. Due to this fact, these mech-
anisms are termed as “ignorable”. The importance of such
observations is that the data analyst can ignore the reasons
for the missing data, making the subsequent analysis less
laborious. On the other hand, MNAR are considered to be
informative. For example, in a classification dataset, for a
label k, the attribute j is always missing, thus it gives im-
portant clues to identify instances that belong to label k.

Due to the simplicity and frequency of occurrences, the
majority of research covers cases (or assumes that) where
missing data belongs to non-informative patterns (MAR and
MCAR). Until the 1970s, missing values were handled pri-
marily by manual edition and complete-case analysis [28],
nowadays we have a large number of treatment methods [13]
for MD. According to [11], pattern classification with miss-
ing data shows two different problems: 1) handle MD and
2) perform the classification itself. In views of this it, the
authors categorized methods for pattern classification with
missing data into four main groups:

e Case deletion;
e Missing data imputation;
e Model-based procedures;

e Machine learning methods for handling missing data.

The first method, case deletion, consists in removing ex-
amples or attributes with missing values, this is also known
as complete case analysis [27, 20]. In real cases this method
should be avoided because useful information can be lost and
consequently the method increases the data acquisition costs
in order to deliver more complete-cases. However, as stated
by [23], it is the most commonly used approach for dealing
with missing data. In the pattern classification context, this
approach has an even greater impact when associated with
unbalanced datasets, making the use of the most sophisti-
cated treatment methods necessary

In this sense, methods based on the second method, miss-
ing data imputation, should be highlighted. MDI means to
estimate plausible values in order to substitute the missing



ones. There are several ways to estimate the value to be im-
puted, from naive approaches (such as: mean and mode sub-
stitution), to machine learning and statistical based meth-
ods (such as multiple imputation [20], Bayesian imputation
[15], k-nearest neighbors imputation [3], autoenconders neu-
ral networks imputation [24]).

The third method, proposed by [11], is the Model-based
approach, where the data analysts have to make assumptions
about the joint distributions of all studied variables. One of
the most accepted model-based methods is the mixture mod-
els trained with expectation-maximization algorithm [28, 5].
The fourth method is the machine learning method for han-
dling missing data, which aims to develop machine learning
techniques that are more robust to missing data incidence.
The most prominent examples of this category are ensemble
classifiers [25], fuzzy procedures [10] and hybrid approaches
[18].

3. RELATED WORK

This section briefly reviews some recent work related to
our proposed method and it covers three main work groups:
reviews and comparison studies, research on data imputa-
tion’s impact on different data types and, finally, evolution-
ary approaches to dealing with missing values.

3.1 Reviews and comparisons studies

A recent literature review about pattern classification with
missing data is given by [11], where the missing value prob-
lem and its impact are discussed. The authors also provide
an outline about well-known methods used to tackle this
problem, from naive approaches (e.g. mean and hot-deck
imputation) to more robust classification methods. As a
conclusion, [11] gives some important research directions:

e Data imputation is widely used because data analysis
softwares cannot tackle MD;

In pattern classification with missing values, the main
goal of a treatment method is to improve the relia-
bility of classification, in other words, to enhance the
classification accuracy;

There is no unique-best solution that provides opti-
mum results for each classification domain;

The choice of treatment method for missing data is a
complex task.

In this sense, many studies have focused on the compari-
son of existing imputation methods in the classification con-
text. [31] provides a review and comparison of the possi-
ble strategies for handling missing data in a separate-and-
conquer rule learning. The imputation methods compared
are based on the most common value imputation, except the
“Predicted value strategy” which is based on k-nn imputa-
tion. In this study, the authors conclude that the strate-
gies analyzed has its particular strengths and weaknesses,
making them perform well on some datasets and poorly on
others, making hard to detect clear-cut differences.

A more detailed study about nearest neighbor-based im-
putation is given by [29], the authors studied the influences
of five nearest neighbor based imputation algorithms, tak-
ing as baseline mean and majority imputation methods. The
behavior of these imputation methods was evaluated using
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synthetic datasets, the authors concluded that the best pre-
diction results, regarding the distance between the original
and imputed values, do not necessarily yield smaller classi-
fication biases.

It is important to point out that the traditional approaches
used to evaluate imputation methods, which take into ac-
count the distance between the original and imputed values,
are not suitable due to low correlations between the distance
and the classification bias. This suggests that the best pre-
dictive accuracy results do not necessarily lead to the lowest
classification bias [14, 11, 29]. Thus, it is clear that the im-
putation methods cannot be properly evaluated apart from
the modelling task, in our case, the pattern classification.

Another important comparative study is presented by [22],
which consists of a meta-learning study about the imputa-
tion method choice. It considers three groups of classifi-
cation methods: 1) rule induction learning, 2) approximate
models and 3) lazy learning. The contributions of this study
are: the testbed used to perform the comparisons (which
is comprised of 14 imputation methods, 21 benchmarking
datasets and 23 classification methods) and the impact eval-
uation of each imputation method in relation to classifica-
tion group.

It is important to point out that some of the imputation
methods studied by [22] are specifically designed for discrete
or continuous data. In view of this fact, some studies are
dedicated to assessing the impact of the data types in the
treatment of missing values.

3.2 Data types

Missing data imputation offers a good solution to many
application domains, however most of available imputation
methods are restricted to one type of variable only: con-
tinuous or categorical [30]. So, for mixed-attribute datasets,
these sort of methods handle different data types separately.
As a result, this strategy ignores the possible relations be-
tween the variable types. This has a negative impact in the
classification context, because such relationships are usually
explored by machine learning methods.

As seen in Subsection 3.1, nearest neighbor imputation ap-
proaches are well-accepted; but, as pointed by [32], they are
usually based on Minkowsky distance or its variants, which
are generally efficient for numerical variables and do not per-
form well for categorical ones. For this reason, the authors
propose a new kNN imputation method, based on gray dis-
tance, which works better with mixed-datasets. Other stud-
ies propose different strategies under the mixed-attribute
perspective, such as [33, 30]. Through the result analysis of
these studies, it is possible to attest that mixed-attributes
approaches were proven to be more robust, since they take
into account the relationships between variables.

3.3 Evolutionary approaches

As seen previously, several data imputation methods have
been proposed, some of them utilize evolutionary approaches.
At this point, these studies can be divided into two groups:
1) methods that apply evolutionary algorithms to improve
the convergence of other imputation methods [24, 1] and 2)
the ones that use EA to perform the imputation itself. The
latter will be discussed in this subsection.

In this perspective, in [6, 7] the authors describe a miss-
ing data estimation method in time series data based on an
evolutionary algorithm, more specifically, using genetic al-



gorithms. As heuristics to guide the evolution process, the
authors use an autocorrelation function, mean and variance,
because these statistics are useful to build some well-known
linear time series models.

Despite the innovation regarding the use of genetic algo-
rithm to perform data imputation itself, this approach shows
some weaknesses considering scalability and accuracy, since
the individuals are codified into a m size vector, instead of
using subsets/partitions [2, 12]. A modified version of these
approaches was proposed for multivariate data [8] and it is
important to highlight that this method falls into complete-
case analysis, since the statistic information used in fitness
function are extracted from examples without missing val-
ues, thus, important information is lost. In addition, as
stated by [21], the covariance criterion is not related to the
classification criterion.

4. EVOLUTIONARY DATA IMPUTATION

In mixed-attribute datasets with missing data, the im-
putation process can be viewed as a Mixed-Variable Opti-
mization Problem (MVOP), which consists of a model R =
(S, 9, f), where S is the search space defined over a finite
set of both discrete and continuous decision variables; 2 is
a set of constraints among the variables; and f : S — RZ to
be minimized [16].

Many techniques have been proposed to solve optimiza-
tion problems, in which metaheuristics are well-accepted.
An example of a metaheuristic that is widely used is the
genetic algorithms, which belongs to the EA category and
draws attention due to its exploitation and exploration abil-
ities, easy adaptation to specific problems and computation
efficiency. For these reasons, this evolutionary method has
been applied successfully in many areas, including data min-
ing and machine learning [9]. In this section, we present a
genetic algorithm for missing data imputation, which con-
siders information within incomplete instances, takes into
account the model construction performance and, further-
more, is suitable for mixed-attribute datasets.

4.1 Workflow

The proposed genetic algorithm workflow is shown in Fig-
ure 1. Firstly, the dataset is divided into k* C subdatasets,
where k is a user-defined constant and C' is the number
of classes. Those subsets with missing values will undergo
the evolutionary imputation process, which follows the ba-
sic steps of a genetic algorithm: 4) population of individuals
initialization; i) fitness evaluation of each individual; éiz)
evaluation of stop criterion; and if the stop criterion is not
satisfied, then iv) apply selection, crossover and mutation
operators in order to produce a new generation of individ-
uals; back to Step i, if it is satisfied, then stop. The Steps
i to v are repeated for many generations until the stop
criterion is satisfied.

4.2 Individual encoding and genetic operators

Each subset with missing values shown in Figure 1 rep-
resents a gene that will compose the chromosome. A gene
consists of alleles which contain the value to substitute the
missing ones for each attribute (Figure 2 illustrates this de-
scription).

Two important concepts of our approach are summarized
in Figure 2, the solution pool and the gene composition. The
first one, the solution pool, consists of ordered sets of all
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Figure 1: Workflow of the proposed genetic algo-
rithm.

possible values for each attribute with missing observations
at each subdataset; it is based on these sets that the gene
is formed. The chromosome size is equal to the number
of attributes with missing values of that subset, since each
attribute is represented by one allele.

The index of the solution pool is used as the genotype and
the phenotype is the value referred by the index itself. So,
using the illustrative example of Figure 2, after imputation
process the Att3 will be = Black, White, Black, Blue, Black,
White, the rest follows the same logic. In brief, the chromo-
some is the assembly of all genes, combining the solutions of
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Figure 2: Gene codification scheme.

each subdataset and, consequently, resulting in a complete
solution.

The crossover operation is a variant of n-point crossover,
where n is the number of genes, so the genetic information
is exchanged by genes, generating new individuals. For nu-
merical attributes, the mutation is based on Gaussian dis-
tribution, where the mean is the actual index (genotype),
so a random (and feasible) number is generated accordingly
to Gaussian distribution, thus, as the values are sorted in
the solution pool, the mutation does not often cause abrupt
changes. For categorical attributes, the mutation is a ran-
dom change in value, which is chosen from the solution pool.

4.3 Fitness function and selection method

As seen in Subsection 4.2, the proposed model was de-
signed to consider information within incomplete instances
and treat mixed-attributes properly. The last feature to
cover is to take into account the model construction feed-
back, which is done by the fitness function. Therefore, to
measure the quality of a candidate imputation, the fitness
function is calculated according to Eq. 1, which represents
the average of classification accuracies.

n
1
— E ace;
n -

=1

In Eq. 1, n is the number of classifiers used and the acc;
is the accuracy of the i-th classifier. The selection of indi-
viduals to cross-over is done by tournament and the elitism
operator is also applied to generate a new population.

S. DISCUSSION

This section presents the experimental setup adopted to
assess the performance of the proposed method, followed by
the results and further discussion.

Fitness =

(1)

5.1 Experimental methodology

The tests were conducted using three classification meth-
ods: C4.5, Naive-Bayes and kKNN. These methods were se-
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lected in order to represent three categories of classifiers:
rule induction learning, approximate models and lazy learn-
ing, respectively.

The datasets used in the experiments were obtained from
the UCI repository [17]and were selected because they al-
ready have missing values; additionally, the data represent
numeric, nominal and mixed-attributes. Table 2 2 summa-
rizes some information about the datasets, where %IMD de-
notes the ratio of instances with missing values.

Table 2: Datasets description.

Dataset Acron. %IMD  Att. Type
audiology AUD 98.23% Nominal
autos AUT 22.44% Mixed
cleveland CLE 1.98%  Numeric
hepatitis HEP 48.39% Mixed
lung-cancer LUN 15.15% Nominal
mammographic MAM  13.63% Numeric

The performance of the GAI method was compared to four
well-known imputation methods: 1) Concept most common
attribute value for symbolic attribute and concept average
value for numeric attribute (CMC); 2) k-nearest neighbor
imputation (kNNI); 3) ignore missing (IM); and 4) event
covering (EC). As an evaluation criterion of the imputation
methods, the classifier accuracies were adopted. To assess
the statistical significance of obtained comparisons between
the imputation methods, the Wilcoxon signed-rank test with
a confidence level of 95% was employed.

The genetic algorithm parameters are shown in Table 3.
Due to the similarity in dataset complexity, the same pa-
rameters were adopted for all datasets, with the number of
generations as a stop criterion.

Table 3: Genetic algorithm parameters.

Parameter Value
Population Size 50
Mutation rate 10%
Cross-over rate 90%
Elitist individuals 3
Individuals per tournament 4
Number of generations 30

5.2 Results

Table 4 presents the performance of each imputation method
with respect to classifiers’ accuracy. The best results for the
combination between classification algorithm and dataset
are highlighted in bold type.

According to Table 4, the proposed method outperforms
the baseline methods in most scenarios, except Naive-Bayes
when GAI loses 50% of datasets; for the other two classifi-
cation algorithms GAI wins in 4 out of 5 datasets. For this
reason, it is possible to state that GAI overcomes the others’
imputation methods, as evidenced in the boxplot of overall
accuracies shown in Figure 3.

The results presented in Table 4 are summarized in Fig-
ure 3. The results show the robustness of GAI, since it has
the highest average and smaller variance in relation to the



Table 4: Performance of each imputation method in
terms of accuracy.

Missing Values Treatment Methods

Datasets

IM EC KNNI CMC GAI
AUD 0 78.42 78.42 7247  79.83
CLE 53.52 53.75 53.46 53.14 55.38

2| LUN  83.33 43.33 43.33 43.33 50
Eﬂ) MAM 82.32 82.84 81.17 83.04 84.76
AUT 80.93 73.52 8219 7891 84.29
HEP 82.98 83.88 T76.79 86.25 91.42
@ AUD 20 72.15 72.61 7263 74.60
2| CLE 54.91 55.46 55.46 5546  55.71
m| LUN 66.67 525 49.17 52.5 53.12
0>'J MAM 829 82.52 81.69 83.56 83.07
T AUT  72.24 68.86 69.35 69.87 58.68
Z | HEP 82.65 85.08 81.25 86.46 87.61
AUD 0 68.58 73.04 69.94 74.69
CLE 54.8 54.12 55.06 55.05 57.09

Z| LUN 31.67 31.67 31.67 31.67 50
i MAM 80.25 64.21 80.44 81.8 81.63
AUT 6534 146 65.15 64.28 72.97
HEP 82.32 79.37 81.42 8396 87.80

accuracy of the classifiers. In addition, there is no correla-
tion between the losses and attribute type, thus the GAI is
considered to be suitable for mixed-attribute datasets.

AL

EC KNNI CMC
Missing value treatment methods

100
90
80
70
60
50
40
30
20
10

0

Accuracy

IM GAI

Figure 3: Boxplot of overall accuracies for each im-
putation method.

Finally, the results shown in Figure 4 represent the num-
ber of wins, draws and losses of each imputation method
according to the Wilcoxon signed-rank test, with a confi-
dence level of 95%. For instance, CMC has one win, two
draws and one loss; while GAI has four wins and no losses
or draws. In summary, the rank presented in Figure 4 shows
that GAI is the first, followed by CMC, KNNI and IM are
tied, and EC appears in last position.

6. CONCLUSIONS AND FUTURE WORK

Missing data imputation estimates plausible values to sub-
stitute the missing ones, aiming to reduce the bias imposed
by this issue. In pattern classification, the missing data im-
putation process can be viewed as an optimization problem,
where the goal is to find the best values to impute which
will increase the accuracy of the classifier.
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Figure 4: Wilcoxon signed-rank test scoreboard.

In this paper we proposed the GAI method, a novel data
imputation method based on a genetic algorithm. GAI takes
into account information from incomplete instances and clas-
sifier building, more specifically, the classification accuracy.
The experiments were performed using six bench-marking
datasets and three classification algorithms, in order to rep-
resent the three groups of classification methods: rule induc-
tion learning, approximate models and lazy learning. The
experimental results indicate that GAI obtains results that
are significantly superior to the other missing data treat-
ment methods analyzed. Moreover, GAI has proved to be
suitable for tackling mixed-attribute datasets with missing
data.

For future research, we intend to expand the analysis to in-
clude more datasets and classification algorithms, and then
to perform sensitive analysis of the results in order to under-
stand the impact of GAI’s parameters in the final analysis.
We also plan to incorporate some statistical information into
fitness functions and, finally, adapt it to regression tasks.
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