
Socially Guided XCS:
Using Teaching Signals to Boost Learning

Anis Najar
Institut des Systèmes

Intelligents et de Robotique
CNRS UMR 7222

Université Pierre et Marie
Curie

Paris, France
najar@isir.upmc.fr

Olivier Sigaud
Institut des Systèmes

Intelligents et de Robotique
CNRS UMR 7222

Université Pierre et Marie
Curie

Paris, France
sigaud@isir.upmc.fr

Mohamed Chetouani
Institut des Systèmes

Intelligents et de Robotique
CNRS UMR 7222

Université Pierre et Marie
Curie

Paris, France
chetouani@isir.upmc.fr

ABSTRACT
In this paper, we show how we can improve task learning
by using social interaction to guide the learning process of
a robot, in a Human-Robot Interaction scenario. We in-
troduce a novel method that simultaneously learns a social
reward function on the teaching signals provided by a hu-
man and uses it to bootstrap task learning. We propose a
model we call the Socially Guided XCS, based on the XCS
framework, and we evaluate it in simulation with respect
to the standard XCS algorithm. We show that our model
improves the learning speed of XCS.

CCS Concepts
•Computing methodologies → Reinforcement learn-
ing; •Computer systems organization→ External in-
terfaces for robotics;

Keywords
Human-Robot Interaction; Interactive Reinforcement Learn-
ing; Learning Classifier Systems

1. INTRODUCTION
In addition to the autonomous capacity of humans to

adapt to their physical environment, social interaction has
been demonstrated to play a major role in enhancing hu-
man learning [9]. These two different aspects of learning,
autonomous and social, have been for a while a source of in-
spiration for many works in robotics [2]. Our work aims at
studying the relationship between these two aspects in the
context of Human-Robot interactions. We consider a con-
text in which a robot is endowed with the capacity to learn
autonomously to accomplish a certain task by collecting re-
wards from its environment. In addition, the robot can get
some help from a human that would provide it with teaching

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’15 Companion, July 11 - 15, 2015, Madrid, Spain
c© 2015 ACM. ISBN 978-1-4503-3488-4/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739482.2768452

signals. Initially, the meaning of these signals would be un-
known to the robot, so it should learn to interpret them in
order to use them afterwards to learn better and faster. Our
idea is to learn a model of the human (the Social Model) that
would assign reward values for each teaching signal, by using
the rewards coming from the environment (the Task Model).
Our research question is motivated by the fact that some hu-
man feedbacks like warning, encouragement, disapproval or
consent could carry some affective values. We address the
question of how these affective values could be grounded in
the robot’s experience and how they could contribute to the
robot’s learning process.

To illustrate our idea, we draw an example inspired from
the child development literature. We consider an infant ex-
ploring its room. When alone, the infant is able to learn
to interact with its environment only by autonomous explo-
ration, by trying different actions in different situations and
by privileging actions that yield more desirable outcomes. In
some situations, a parent could intervene in order to guide
him by providing advice or warnings about desirable or dan-
gerous actions. For example, if he stands close to a power
plug, his mother would warn him about this situation to
prevent him from putting his fingers into the plug. Sup-
pose in that moment, the child walks away and does not get
any harmful outcome. On the one hand, he will be able to
update the model of his environment (Task Model) by the
information that, when he is near the power plug and de-
cides to walk away, he does not receive any bad outcomes.
On the other hand, he will also be able to incorporate the
information that, when his mother warns him and he does
the action of walking away from the power plug, he will not
get any bad outcome (Social Model). Now suppose that by
the next day, the child is facing the same situation, but this
time he is alone. If this time he decides to touch the power
plug, the negative outcome of this action will allow him not
only to update his knowledge about his environment (Task
Model) but also to get a better understanding of the mean-
ing of his mother’s warnings (Social Model), that will be
then associated to danger, even if she is not present, only by
remembering that she warned him the last day, when he was
in the same situation. So in forthcoming situations, when
the child gets warned by his mother, he will be able to ex-
ploit the meaning of his mother’s warnings (Social Model)
in a better way in order to interact with his environment
(Task Model).

1021

Starting from this intuition, we designed a system we call
the Socially Guided XCS (SGXCS), based on two distinct
models: one related to the task (Task Model) and another
related to social interaction (Social Model). These two mod-
els influence each other in the sense that the learning of
the one contributes to the learning of the other. This in-
fluence is carried out through a third model (Contingency
Model), that serves as a bridge, by representing the contin-
gency between task states and teaching signals. The Social
and Task models are based on XCS, an RL system endowed
with a generalization capability [11]. The choice for XCS
was motivated by its interesting features: the generalization
property, the possibility to interpret the learned rules which
could be of big interest for social interaction analysis, and
the possibility to use the classifier’s fitness as a confidence
criterion on the reliability of the learned rules.

In the next section, we give an overview of related work.
Then, in Section 3, we present our model. In Section 4,
we show some experimental results about the performance
of our system in simulation. In Section 5, we discuss the
mechanisms of our model. Finally, we conclude this paper
by providing some ideas for future work.

2. RELATED WORK
Reinforcement Learning (RL) [13] offers a variety of tech-

niques that allow a computational agent to autonomously
learn to achieve a task by interacting with its environment.
Compared with supervised learning, an RL agent does not
require the presence of a supervisor to provide it with the
right answers, but tries to optimize its performance by trial-
and-error while exploring its environment. However, when
applied to a real world problem, the autonomous exploration
aspect of RL raises some issues, such as slow convergence
rate and unsafe exploration [7].

In order to deal with these challenges, Interactive Learn-
ing has been proposed as a new paradigm for guiding the
learning process of an agent by employing human teaching
signals such as instructions [4], demonstrations [1], advice
[3] or feedbacks [6, 15]. In [15], an RL-based software agent
is guided by reward signals delivered by a human through a
clicking interface. The values of these rewards are fixed in
advance and added to the task rewards. [14] takes a sim-
ilar approach by associating verbal feedbacks to predeter-
mined reward values and by adding them to task rewards.
Other approaches [5, 10, 12], however, consider only the hu-
man rewards and not task rewards. In [6], human generated
rewards are used to learn a model of the the task reward
function.

All these works have in common that they consider pre-
determined scalar values for human rewards, for example 1
and −1, and do not consider the question of learning these
values. In contrast, in our work, only task rewards are pre-
determined while human rewards are learned. Furthermore,
excepting [14] which considers verbally delivered feedbacks,
all these works rely on an artificial reward interface such as
a keyboard or mouse clicks and do not consider real teach-
ing signals. In our work, we focus on the social interaction
aspects by considering raw, nonverbal teaching signals. We
find a similar approach in [4], where the system learns to
solve the task by using unlabeled teaching signals. How-
ever,in [4], teaching signals are not considered as rewards
but are rather used to infer the task reward function by
Inverse Reinforcement Learning.

An important feature of these Interactive Learning sys-
tems is the autonomy of the learning agent with respect to
the human. In [4], the learning agent is entirely dependent
upon the human teaching signals so it is able to learn the
task only when the human is present. It is also the case in
[5, 10, 12], where the agent has no access to any rewards
but those provided by the human. In contrast, in [15] and
[14], human reward signals are added to task rewards, so
the robot is able to learn autonomously beyond the human
additional rewards.

3. METHOD
Our idea is to learn a model of the human rewards as a

social reward function, that we distinguish from the task
reward function. Formally, the distinction between the two
functions lies only in the input space description. While
the task reward function RT (s, a) is defined on task states
s ∈ ST , the social reward function RS(s, a) is defined on
human teaching signals s ∈ SS .

For this purpose, we propose a model we call Socially
Guided XCS (SGXCS), based on three main components:
a Task Model, a Social Model, and a Contingency Model.
The Task and Social models are represented by two differ-
ent Markov Decision Processes (MDP) and implemented by
two different XCSs. The Task MDP serves to learn the task,
while the Social MDP is used to learn the social reward func-
tion. The Contingency Model constitutes a mapping func-
tion between task states and social states (teaching signals),
that allows to transfer the reward values from one model to
another. The social reward function is learned by associating
the rewards coming from the Task MDP to the correspond-
ing teaching signals. It is then used for bootstrapping the
learning process of the Task Model.

In the remainder of this section, we present our scenario,
we give a detailed description of the three components of
our model. Then, we present our algorithm.

3.1 Scenario
We consider a scenario (Figure 1) where a robot has to

learn to press buttons. The experimental set-up is com-
posed of a humanoid robot facing a table on top of which
there is a set of buttons with different shapes and colors.
At each moment, a screen displays the color or the shape of
the button that the robot has to press. The robot is able to
perform two kinds of action: gazing to one of the different
buttons or pressing the one it is facing. So the task is a
multi-step problem, meaning that in order to press the right
button, the robot has to look for it first, and then to per-
form the action of pressing. While the robot is learning to
perform the task, a human can sit in front of it in order to
help it, as an adult would do with a child who is trying to
solve a puzzle, by giving him some indications or feedbacks
about his actions.

3.2 Model
In this section, we present the different components of

SGXCS: the Task Model, the Social Model and the Contin-
gency Model.

3.2.1 Task Model
The Task Model relies on two different principles, the use

of the gaze as an intention device, and the use of affordances
in action selection.

1022

Figure 1: Scenario: The robot must press the button corre-
sponding to the the information displayed on the screen. A
human can help it by providing it with teaching signals.

Gazing as an intention device: Before taking an ac-
tion, the robot looks at the object upon which it intends to
act. We think that this could be a solution for the prob-
lem of random exploration by avoiding worthless and unsafe
exploration.

Affordances in action selection: Instead of consider-
ing all the actions of the robot at the same level, we adopt
a hierarchical model for actions by using the principle of
affordances. The robot acts only on the objects it sees,
and the set of possible actions is determined by this ob-
ject. This could also contribute to limiting the drawbacks
of exploration by reducing the space of possible actions in
each state.

We represent the task as a Markov Decision Process
MDPT =< ST , AT , TT , RT > where

• ST = C×S×G is the set of possible task states which
are represented by three features C, S and G, where
C ∈ {1...N} and S ∈ {1...N} are respectively the color
and the shape of the button that the robot has to press
and G ∈ {1...N} is the button the robot is looking at.

• AT ∈ {G1, ..., GN , P} is the set of possible actions in
each state where Gi is the action to gaze the button
i and P is the action of pressing the button that the
robot is gazing.

• TT : ST×AT → Pr[ST] is the task transition function.

• RT : ST ×AT → < is the task reward function.

In this preliminary work, we only consider a deterministic
environment, meaning that TT and RT are deterministic.
The action of gazing does not provide any reward. However,
the robot receives a positive reward if it presses the right
button and a negative reward if it presses a wrong button.
The problem ends when the robot presses any button and
receives a non null reward.

3.2.2 Social Model
In each state of the task problem, the human can provide

to the robot an indication about the action to perform. We
choose to use pointing and head movements as state features
for the teaching signals. The human points to the button
that the robot must press. If the robot is gazing to the right
object, the human provides it with a head nod and if the
robot is not gazing to the right object, the human provides

it with a head shake. We model this problem as single-step,
meaning that the problem ends after the robot performs any
action, regardless of the value of the received reward.

The Social Model is a Markov Decision Process
MDPS =< SS , AS , TS , RS > where

• SS = H × P is the set of possible human states which
are represented by two features H and P , where
H ∈ {nod, shake} is the information about the human
head movements, and P ∈ {1...N} is the information
about the human pointing.

• AS ∈ {G1, ..., GN , P} is the set of possible actions in
each state where Gi is the action to gaze at the button
i and P is the action of pressing the button that the
robot is gazing. Note that AT and AS are the same,
meaning that we consider the same action set for both
Task and Social models. So, in the remainder of this
paper, we note it A.

• TS : SS × AS → Pr[SS] is the social transition func-
tion. As the problem here is single-step, we do not
consider transitions between human states.

• RS : SS × AS → < is the social reward function that
we aim to learn.

3.2.3 Contingency Model
The contingency model represents the probability of ob-

serving a teaching signal in a certain task state. The model
continuously receives states from both Task and Social mod-
els and updates their joint probabilities. When the robot re-
ceives a teaching signal s while being in a task state s′, the
Contingency Model updates the joint probability P (s ∩ s′).
So, even if the human is not present, the robot can still use
the Social Model by getting the most likely teaching signal
from the Contingency Model:

ŝ = arg max
s∈SS

P (s|s′); s′ ∈ ST

3.3 Algorithm
Algorithm 1 shows the different steps of our method. First,

the robot evaluates the task state (line 1). If it receives
teaching signals from the human, it uses them with the task
state to update the Contingency Model (lines 2 to 4). Then,
the social state is retrieved from the Contingency Model as
the most likely teaching signal for the task state (line 5).
Second (lines 7 to 11), if the social state is not empty, the
Task Model is updated using the predictions of the Social
Model, which are considered as social rewards. In this step,
we rely on a minor modification of XCS, where the predic-
tion array is used also to store the prediction of the most
reliable classifier (with highest fitness). We need to do this
because the prediction, computed as a weighted average of
the predictions of all the classifiers belonging to an action
set, can be distorted by newly created classifiers with low
fitness but with high and wrong predictions; and so it can
mislead the update of the Task Model. Then (lines 13 to
15), the robot performs an action, receives a reward from
the task and uses it for updating the Task Model, like in the
standard XCS algorithm. Finally, if the social state returned
by the Contingency Model is not empty, the task reward is
also used to update the Social Model (lines 17 and 18).

1023

Algorithm 1 Socially Guided XCS

1: t state ← task environment.getState()
2: teaching signal ← social environment.getState()
3: if teaching signal 6= null then
4: contingency model.update(t state,teaching signal)

5: s state ← contingency model.getSocialState(t state)
6:
7: if s state 6= null then
8: social pred← social xcs.getPredictionArray(s state)
9: for all actions a in A do

10: social reward← social pred[a].max fit prediction
11: task xcs.update(t state,a,social reward)

12:
13: action ← task xcs.perform(state,exploration)
14: task reward ← t environment.perform(action)
15: task xcs.evaluate(t state,action,task reward)
16:
17: if s state 6= null then
18: social xcs.update(s state,action,task reward)

4. EXPERIMENTS
In order to evaluate the contribution of the Social Model

on task performance, we conducted experiments in simula-
tion by using a modified version of XCSLib [8] that allows
employing two different instances of XCS, one for the Task
Model and another for the Social Model. For these exper-
iments, the human behavior was implemented in a simple
manner, through a function in the Environment class of the
Social Model that takes as input a task state and returns the
corresponding teaching signal deterministically. The task
was instantiated with 5 buttons.

In this section, we describe the settings of the experiments
and then, we discuss the results.

4.1 Settings
In order to investigate how the Social Model contributes to

the task performance, we performed the experiments in two
different settings. In the first setting, we compare SGXCS
with the standard XCS. As a second setting, we modified
the Social Model in SGXCS so that, instead of returning
a teaching signal for a task state, it returns the task state
itself. So, here, the social MDP and the task MDP become
equivalent, aside the fact that in the first one, we consider
a single-step problem, while in the second the problem is
multi-step. This setting would be equivalent to a model-
based XCS that learns the reward function on the task states
and uses it to update its model as in Algorithm 1. We refer
to this model as RBXCS.

For both settings, we run 10 experiments of 20000 prob-
lems, by alternating learning and test trials. We use the
same XCS parameters for all models (see Table 1).

For performance evaluation, we use the following criteria:
the evolution over the test trials of: the number of steps, the
accumulated rewards and the population size at the end of
the trial. For each criterion, we report the median, the min-
imal and the maximal values over the 10 experiments. The
performance curves are smoothed by computing a moving
average over a window of 500 trials.

Table 1: Parameters used for XCS, Task Model and Social
Model within SGXCS and RBXCS

Parameter Notation Value
Population size N 2000
Learning rate β 0.2

Discount factor γ 0.7
GA threshold θGA 25

Crossover probability χ 0.8
Mutation probability µ 0.04

Accuracy criterion ε0 1
Accuracy falloff rate α 0.1
Accuracy exponent v 5
Prediction initial p0 10

Error initial ε0 0
Fitness initial f0 0.01

Deletion threshold θDel 20
GA subsumption threshold θGAsub 20

Hash probability P# 0.3
Maximum steps Ns 10

4.2 Results
Figures 3 and 4 report respectively the evolution of the

number of steps and the evolution of accumulated rewards
for XCS, RBXCS and SGXCS. We can observe that SGXCS
outperforms both XCS and RBXCS in the number of steps
and the accumulated rewards. Figure 5 reports the evolution
of the population size for the three compared models. We
can see that SGXCS and RBXCS equally outperform XCS,
finding much more compact generalizations.

Figure 2 provides statistics about the performance of the
three models over the 10 runs, in terms of number of tri-
als until convergence. The convergence of the algorithm is
considered when it reaches the optimal values in both the
number of steps and the accumulated rewards criteria. A
Mann-Whitney U test shows that the difference in perfor-
mance between XCS and RBXCS is significant for a confi-
dence level of 95%, while the difference between SGXCS and
the two other models is significant for a confidence level of
99, 9%.

Figure 2: Number of trials to convergence for 10 runs.
Mann-Whitney U test : p < 0.05(∗), p < 0.001(∗ ∗ ∗)

1024

(a) (b)

Figure 3: Number of steps: (a) XCS vs. SGXCS. (b) XCS vs. RBXCS.

(a) (b)

Figure 4: Accumulated rewards: (a) XCS vs. SGXCS. (b) XCS vs. RBXCS.

(a) (b)

Figure 5: Population size: (a) XCS vs. SGXCS. (b) XCS vs. RBXCS.

1025

Table 2 shows the learned rules in the Social Model. We
can see that the model found correct generalizations on the
teaching signals. Lines 1 to 5 predict with maximum accu-
racy a null reward on all the gazing actions, whatever the
teaching signal. Lines 6 and 9 predict with maximum ac-
curacy a reward of −1000 for pressing a button while the
teaching signal contains a head shake (01 in the first two
bits), whatever the pointing information (the last five bits).
In the same way, lines 7 and 8 predict with maximum accu-
racy a reward of 1000 for pressing a button while the teach-
ing signal contains a head nod (10 in the first two bits),
whatever the pointing information.

Table 2: Learned classifiers in the Social Model: the first two
bits represent head movement information. The remaining
bits represent the pointing information.

Cond Act Pred Err Fit Exp Num
####### 1 0 0 0.99 10312 293
####### 2 0 0 0.98 10353 283
####### 4 0 0 0.99 9962 281
####### 5 0 0 0.99 10345 278
####### 3 0 0 0.99 10290 259
0###### 0 -1000 0 0.77 6945 215
#0##### 0 1000 0 0.76 10736 215
1###### 0 1000 0 0.23 10900 67
#1##### 0 -1000 0 0.21 6811 60

5. DISCUSSION
In this section, we provide some insights about the mech-

anisms of our model and their implications for task learning.
First, we evaluate the cost of our model in terms of inter-
action load for the user. Then we discuss its complexity.
Finally, we review the rules learned by the Social Model.

5.1 Interaction load
First of all, we consider the cost of our method in terms of

human load measured as the number of interactions needed
from the human in order to reach optimal performance. In
the experiments that we performed in simulation, the Envi-
ronment class that models the human behavior in the Social
Model is designed to interact systematically with the algo-
rithm by providing teaching signals in each task state. So it
assumes that the human is able to interact with the robot
thousands of times, which is not reasonable. However, the
Contingency Model allows to relax this assumption by mem-
orizing the corresponding teaching signal to each task state.
Consequently, to achieve optimal performance, the human
needs to interact with the robot only the number of possible
task states, by giving teaching signals only in newly encoun-
tered situations. This may be done for example through a
hard-coded behavior that asks for help whenever the Con-
tingency Model provides an empty response for an unknown
situation.

So, the system does not need to receive a teaching signal
from the human in order to use it for updating the Task
Model. The Contingency Model allows to update the Task
Model with the rewards coming from the Social Model only
through the teaching signals that have been previously pro-
vided by the human. So, even if the human is absent or not
engaged with the robot, the Social Model still continues to
boost the learning process of the Task Model (lines 7 to 11

of Algorithm 1). This remark is also valid in the opposite
way, meaning that the Social Model can always be updated
with an effective task reward, without the need for an effec-
tive teaching signal as it can get one from the Contingency
Model (lines 5, 17 and 18 of Algorithm 1).

Furthermore, if the human does not interact with the
robot, it will not worsen its performance with respect to the
standard XCS algorithm. Indeed, if neither the human nor
the Contingency Model provide a teaching signal in a given
situation, the algorithm will behave normally as the stan-
dard XCS, by updating the Task Model only through effec-
tive task rewards (lines 13 to 15 of Algorithm 1). However,
the more the human provides teaching signals, the more he
improves the robot’s performance. So the robot’s learning
process will be more or less improved depending on the level
of the human engagement in teaching.

The genetic generalization mechanism provided by XCS
allows to go one step further. In fact, a teaching signal can
contribute to updating a task state even if they have never
been contingent, and even to updating states that have never
received a teaching signal. Consider two different task states
sT1 and sT2 that have in common a set of matching classifiers
MT (cf. Figure 6). Assume that sT1 has a corresponding
teaching signal sS1 in the Contingency Model and sT2 has
no corresponding teaching signal. During the update of sT1
by sS1 , the classifiers in MT are updated by the social re-
ward given by sS1 . So, sT2 is indirectly affected by sS1 even
if it has no associated teaching signal in the Contingency
Model. This property is also reciprocal, meaning that the
influence of a task state on a teaching signal through a task
reward (line 18 of Algorithm 1) can be carried out indirectly
through the generalization mechanism in the Social Model,
even if the task state and the teaching signal have never
been contingent.

Figure 6: Extended influence: The classifiers MT of the task
state sT2 are updated with the social reward coming from the
teaching signal sS1 , through the contingency of sS1 and sT1 .
Similarly, the classifiers MS of the teaching signal sS2 are
updated with the task reward coming from the task state
sS1 , through the contingency of sS1 and sT1 .

So, we can say that genetic generalization provides an ex-
tended influence to both Task and Social models, so that two
states from both sides can influence each other even if they
have never been encountered at the same moment. It also
gives another dimension to the Contingency Model that acts
beyond the state level, by reaching states at features level,
even if it is not explicitly designed in this way. Consequently,
the minimal number of interactions needed by the system to
reach optimal performance could be less than the number

1026

of task states, depending on the extent to which the Task
Model and the Social Model are generalizable.

5.2 Complexity analysis
The extended effect of rewards allowed by genetic gen-

eralization provides a better understanding of the contri-
bution of the teaching signals in SGXCS with respect to
task states in RBXCS. One could think that the same thing
happens in RBXCS as in SGXCS, meaning that there is
an extended propagation of the rewards in both directions
because of generalization. So, let us consider the same ex-
ample for RBXCS as previously, with two states sT1 and sT2
from the Task Model that share a common matching clas-
sifiers MT and a teaching signal sS1 from the Social Model
that is associated with sT1 through the Contingency Model.
The state sT2 is indirectly influenced by the social rewards of
sS1 through MT , as in the previous example. But knowing
that in RBXCS, sS1 = sT1 , the influence of sT1 on sT2 is al-
ready carried out by genetic generalization within the Task
Model. So, with RBXCS, there is no additional information
that could be provided by the extended influence of rewards,
apart from the fact that, compared to XCS, the Task Model
is updated several times in one step using the previously en-
countered rewards, whereas in the standard XCS the update
is performed only once in each step for the current situation
and the effective reward. So, we can say that teaching sig-
nals provide more information than those provided by the
extended influence of rewards.

Actually, beyond the effect of genetic generalization, the
Social Model in SGXCS provides a generalization over the
state-space of the Task Model. There are two main factors
to that: the state-space complexity of each model and the
mapping function between task states and teaching signals.

On the one hand, state-space complexity in the Task Model
is in o(n3), where n is the number of buttons. However, the
state-space complexity of the Social Model in SGXCS is in
o(n). So, the state-space of the Social Model is smaller than
the state-space of the Task Model, which means that learn-
ing in the former is faster than in the latter.

On the other hand, the mapping function between task
states and teaching signals contributes further to the re-
duction of the complexity of the Task Model. In fact, one
single teaching signal can correspond to many different task
states. This is due to the fact that teaching signals repre-
sent a global evaluation of the robot’s state and provide an
indication on the action to perform, beyond the details of
the robot’s state. For example, when the robot gazes at the
wrong button, the human will always provide it with the
same information not to press the button (through a head
shake) and the same information about the button to press
(through pointing), whatever the button that the robot is
gazing at.

So, we can say that the state-space of the Social Model
in SGXCS constitutes a certain generalization of the state-
space of the Task Model, that contributes, in addition to the
mechanisms that we mentioned above, to the acceleration of
the learning process.

5.3 Social rules
In this paragraph, we review the rules learned by the So-

cial Model and their contribution to the learning process.
In Table 2, we can see that the pointing features do not

provide any useful information for the robot’s decision mak-

ing. Indeed, the ”social rules” tell that, whatever the point-
ing, the robot has to press the button if there is a head nod
and gaze to any button if there is a head shake, without
specifying to which one. This is due to the fact that the So-
cial Model learns to predict the direct rewards of the task,
and so, it has a myopic vision of action outcomes. In other
words, the Social Model does not learn, when the robot is
gazing to the wrong button, that the pointing information
could get it in a situation in which it can get a positive
reward. It only tells not to press the button it is looking
at, but not which button it has to look at. This is because
in this model, head movements inform about the action of
pressing or not, and the pointing informs about the action
of gazing. As the action of pressing yields a direct reward
and the action of gazing yields only long-term outcomes, the
Social Model as it is designed (to predict direct rewards) has
a myopic vision that does not exploit the long term informa-
tion of pointing. One solution to that would be to use the
Social Model to learn the state-action values instead of the
reward function, so the information driven by the pointing
would be more informative.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented a method using the XCS frame-

work, for guiding an RL agent with unknown teaching sig-
nals. Our model, the Socially Guided XCS (SGXCS), is
based on three main components: a Task Model that is re-
sponsible for learning the task, a Social Model that learns
a social reward function and uses it to bootstrap the learn-
ing process of the Task Model, and a Contingency Model
that allows to associate task states with their correspond-
ing teaching signals. We showed that our model improves
the task learning speed with respect to the standard XCS
algorithm.

In the experiments we performed in simulation, we consid-
ered only a deterministic environment. So, in future work,
we propose to extend our model to the stochastic case. We
also intend to test our model on other domains, specially
domains with a sparse reward function.

Using unknown teaching signals and learning their values
online provides to our model a certain flexibility for the hu-
man in choosing its own teaching strategy. For example,
inverting head nods and head shakes would not affect the
model performance. However, we have to study to what ex-
tent our model resists to inconsistent teaching signals. This
question will also be addressed in future work.

As discussed in Section 5.1, the performance of our system
could vary depending on the number of interactions with the
human. So, we propose to study the evolution of the perfor-
mance according to the level of engagement of the human in
the teaching task. Furthermore, if we take into account the
extended effect of rewards allowed by genetic generalization,
another non-trivial question would be to find the minimal
set of interactions required by the system to reach optimal
performance.

Finally, in order to benefit from the long-term information
provided by the teaching signals, we propose to investigate
the possibility to extend our model to learn the state-action
values instead of the reward function.

7. ACKNOWLEDGMENTS
This work is funded by the Romeo2 project.

1027

8. REFERENCES
[1] B. D. Argall, S. Chernova, M. Veloso, and

B. Browning. A survey of robot learning from
demonstration. Robotics and Autonomous Systems,
57(5):469 – 483, 2009.

[2] M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro,
T. Inui, Y. Yoshikawa, M. Ogino, and C. Yoshida.
Cognitive developmental robotics: a survey.
Autonomous Mental Development, IEEE Transactions
on, 1(1):12–34, 2009.

[3] S. Griffith, K. Subramanian, J. Scholz, C. Isbell, and
A. L. Thomaz. Policy shaping: Integrating human
feedback with reinforcement learning. In Advances in
Neural Information Processing Systems, pages
2625–2633, 2013.

[4] J. Grizou, I. Iturrate, L. Montesano, P.-Y. Oudeyer,
and M. Lopes. Interactive learning from unlabeled
instructions. In Proceedings of the Thirtieth
Conference on Uncertainty in Artificial Intelligence,
2014.

[5] C. Isbell, C. R. Shelton, M. Kearns, S. Singh, and
P. Stone. A social reinforcement learning agent. In
Proceedings of the fifth international conference on
Autonomous agents, pages 377–384. ACM, 2001.

[6] W. B. Knox and P. Stone. Combining manual
feedback with subsequent mdp reward signals for
reinforcement learning. In Proc. of 9th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS
2010), May 2010.

[7] J. Kober, J. A. D. Bagnell, and J. Peters.
Reinforcement learning in robotics: A survey.
International Journal of Robotics Research, July 2013.

[8] P. L. Lanzi and D. Loiacono. Xcslib: The xcs classifier
system library, 2009.

[9] A. N. Meltzoff, P. K. Kuhl, J. Movellan, and T. J.
Sejnowski. Foundations for a new science of learning.
science, 325(5938):284–288, 2009.

[10] P. M. Pilarski, M. R. Dawson, T. Degris, F. Fahimi,
J. P. Carey, and R. S. Sutton. Online human training
of a myoelectric prosthesis controller via actor-critic
reinforcement learning. In Rehabilitation Robotics
(ICORR), 2011 IEEE International Conference on,
pages 1–7. IEEE, 2011.

[11] O. Sigaud and S. W. Wilson. Learning classifier
systems: a survey. Soft Computing, 11(11):1065–1078,
2007.

[12] H. B. Suay and S. Chernova. Effect of human
guidance and state space size on interactive
reinforcement learning. In RO-MAN, 2011 IEEE,
pages 1–6. IEEE, 2011.

[13] R. S. Sutton and A. G. Barto. Reinforcement learning:
An introduction. MIT press, 1998.

[14] A. C. Tenorio-Gonzalez, E. F. Morales, and
L. Villaseñor-Pineda. Dynamic reward shaping:
training a robot by voice. In Advances in Artificial
Intelligence–IBERAMIA 2010, pages 483–492.
Springer, 2010.

[15] A. L. Thomaz and C. Breazeal. Reinforcement
learning with human teachers: Evidence of feedback
and guidance with implications for learning
performance. In AAAI, volume 6, pages 1000–1005,
2006.

1028

