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ABSTRACT
ExSTraCS is a powerful Michigan-style learning classifier
system (LCS) that was developed for classification, predic-
tion, modeling, and knowledge discovery in complex and/or
heterogeneous supervised learning problems with clean or
noisy signals. To date, ExSTraCS has been limited to prob-
lems with discrete endpoints (i.e. classes). Many real world
problems, however, involve endpoints with continuous val-
ues (e.g. function approximation, or quantitative trait anal-
yses). In some problems the goal is to predict a specific
continuous value with low error based on input values. In
other problems it may be more informative to predict con-
tinuous intervals (i.e. predict that an endpoint falls within
some range to define meaningful thresholds within the end-
point continuum). Thus far, there has not been a supervised
learning LCS designed to handle continuous endpoints, nor
one that incorporates interval predictions within rules. In
this paper, we propose and evaluate (1) a supervised learn-
ing approach for solving continuous endpoint problems that
connects input states to endpoint intervals within rules, (2)
a novel prediction scheme that converts interval predictions
into a specific continuous value prediction, and (3) an alter-
nate approach to rule subsumption. Following simulation
study analyses, we discuss the benefits and drawbacks of
these implementations within ExSTraCS.
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1. INTRODUCTION
Learning classifier systems (LCS) are rule-based machine

learning strategies. Their approach to data mining, end-
point/action prediction, and classification tasks are flexible
and powerful partially because they do not make assump-
tions about the underlying pattern(s) of association in a
given environment or training dataset [17]. This versatility
makes them particularly well suited to complex, heteroge-
neous, and distributed problem domains. While LCS algo-
rithms are traditionally and still widely designed for rein-
forcement learning problems (where the correct prediction
for each training instance is unknown, and rewards are typi-
cally delayed), they have increasingly been developed for ex-
clusive application to supervised learning problems (where
the correct endpoint value is available for each training in-
stance). In this paper we use the term ‘endpoint’ to refer
generally to the dependent variable, sometimes referred to as
the ‘class’, ‘action’, ‘output’, ‘trait’, or ‘phenotype’ given the
relevant context. While reinforcement learning LCS algo-
rithms such as the well-known XCS [20] can also be applied
to supervised learning tasks, they are not optimized for this
type of learning. LCS algorithms such as UCS [2], XCSCA
[7], BIOHel [1], and ExSTraCS [14, 18] perform best-action
mapping and apply exclusively to supervised learning prob-
lems that typically possess a finite training set.

ExSTraCS is an Extended Supervised Tracking and Clas-
sifying System, specifically designed to address single-step
supervised learning problems [14]. ExSTraCS is a platform
for ongoing Michigan-style LCS development, designed with
bioinformatics applications in mind. These problems are
noisy, often with a large number of potentially predictive
attributes (discrete or continuous-valued), and may involve
complex patterns of association including epistasis (i.e. non-
linear attribute interaction effects) and heterogeneity (i.e.
independent associations with the same or similar endpoint).
ExSTraCS 2.0 introduced strategies to dramatically improve
the scalability of Michigan-style LCS’s [18]. Furthermore,
ExSTraCS 2.0 was the first machine learning algorithm re-
ported to solve the extremely complex 135-bit multiplexer
benchmark problem directly.

To date, ExSTraCS implementations have only been de-
signed to accommodate discrete endpoints (i.e. binary class
or multi-class endpoints). In an effort to further expand the
applicability of ExSTraCS, the next goal is to extend the
algorithm to accommodate datasets with continuous-valued
(i.e. real-valued) endpoints, also referred to as continuous
action problems in reinforcement learning, or quantitative
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trait analysis in bioinformatics and epidemiology. This is
a critical target for development since many data mining
tasks in or outside of bioinformatics involve continuous end-
points. For example, epidemiological research in the field of
neurospychiatric disease involves the analysis of continuous
dependent variables such as MRI-estimated brain section
volumes, or scores on different tests of learning or memory.
Also consider that when learning a problem with a continu-
ous endpoint, two scenarios can exist that may impact learn-
ing: (1) it is more informative for a rule to predict a specific
continuous value with low error (as is the case with func-
tion approximation [22]), or (2) it is more informative for a
rule to predict a finite interval of continuous endpoint values
as a way to identify meaningful thresholds (i.e. underlying
unknown discretizations of continuous values within the ob-
served range of endpoint values.

Within the literature, a number of strategies have been
developed to adapt LCS to problems with a continuous end-
point. LCSs using fuzzy logic were the first to produce real-
valued outputs [19, 3]. Fuzzy systems can be applied either
as controllers requiring continuous output assignment, or
used to determine the degree of membership among a set of
discrete classes [8]. The XCS algorithm was later adapted
by Wilson to yield XCSF, which utilized reward predictions
(for reinforcement learning) that were ‘calculated’ rather
than ‘fixed scalars’ in order to perform function approxima-
tion [22, 23]. This strategy combined state values with an
adapting weight vector to compute piece-wise linear approx-
imations of a function. A single ‘dummy’ action was used
for function approximation such that the meaningful output
came from the reward prediction. Wilson later discussed
three methods for continuous action learning designed for re-
inforcement learning: Interpolating Action Listener (IAL),
Continuous Actor-Critic (CAC), and the General Classifier
System (GCS) [25]. Both IAL and CAC operate by run-
ning two LCS algorithms in tandem, with one observing
and learning from the other in order to achieve a continuous-
valued action output. Differently, GCS involves a single LCS
that includes the action as part of the rule condition. Sim-
ilar to state conditions, this action-condition can be repre-
sented by either a simple interval predicate (which would
yield a hyper-cube in problems with higher dimensions) or
more efficiently by parameters defining an ellipse (yielding
a hyperellipsoid at higher dimensions) as proposed by Butz
[4]. Wilson’s later related work dealt with continuous pay-
off functions for discrete actions in reinforcement learning
[24]. Tran et. al. expanded on the XCSF concept with
the introduction of computed continuous actions in XCS-
FCA[10]. This approach preserves the XCSF algorithm but
adds an action weight vector from which to compute real-
valued actions, and an evolutionary strategy that relies on
a similarly evolving standard deviation vector to evolve the
actions weights. More recently Iqbal et. al. developed XC-
SRCFA and XCSCFA which took XCSR [21] and XCS [20]
respectively, and replaced discrete actions in rules with code
fragments [5, 6]. Code fragments are tree-expressions simi-
lar to trees generated in genetic programming. In follow-up
work Iqbal et. al. compared their original XCSCFA to a sim-
ilar version that computed actions based on the state values
from the environment rather than from the states included
in the rule condition, noting key advantages of each.

In the present study, our main goal is to develop a con-
tinuous endpoint strategy for LCS that will function within

the ExSTraCS supervised learning specific framework. As
a data mining tool, it is just as important to preserve rule
interpretability and flexibility to handle different unknown
patterns of association as it is to achieve high prediction ac-
curacy. Unlike existing continuous endpoint LCS implemen-
tations that exist, ExSTraCS is a purely supervised learning
method. It does not include rule estimation of payoff or
reward assignment, and it replaces the action set [A] with
a correct set [C], like its predecessor UCS [2]. Given that
a correct set is impossible to define in the context of other
continuous endpoint implementations, we wanted to see if
we could design a strategy for continuous endpoint predic-
tion that preserved [C]. Additionally, we want to develop
an approach flexible enough to predict endpoint values with
low error (for applications like function approximation), as
well as uniquely capture meaningful endpoint intervals for
knowledge discovery in the case where thresholds within an
endpoint continuum were more informative than a precise
value prediction. It should be noted that while this ap-
proach uses endpoint intervals within rules as predictions,
the prediction output of the algorithm is a specific endpoint
value for each instance in a dataset.

Our proposed approach makes the following major changes
to ExSTraCS whenever a continuous endpoint is detected in
the training dataset: (1) replace the discrete class/action
value of a rule with an endpoint interval predicate; this is
inspired by the idea of action interval predicates proposed
in GCS [25], (2) the correct set [C] is defined as the set of
classifiers in the match set [M] whose endpoint interval range
includes the correct endpoint value (3) rule fitness is not only
based on accuracy defined by inclusion in correct sets, but
also on the average error in endpoint prediction (calculated
from the centroid of the prediction range), (4) mutation and
crossover within the genetic algorithm (GA) can probabilis-
tically operate on rule endpoint intervals, (5) the traditional
subsumption mechanism proposed by Wilson [20] has been
completely removed and replaced by a largely new approach,
better suited to ExSTraCS and continuous endpoints, and
(6) a new prediction array voting scheme is applied for con-
tinuous endpoints converting rule prediction intervals into
a single endpoint prediction value. We have implemented
these proposed changes into ExSTraCS and evaluate their
efficacy on a simple set of toy simulated datasets, as well
as over a spectrum of complex simulated epidemiological
datasets all with continuous-valued endpoints. As a prelim-
inary study we do not seek to conclude that our approach is
better suited than any other continuous endpoint LCS ap-
proach at solving any particular types of problems. Rather,
we seek to both demonstrate that the ExSTraCS algorithm
can be adapted to problems with a continuous endpoint
and see if a rule-based machine learning approach can solve
continuous endpoint problems by representing rule endpoint
predictions as interval predicates.

2. METHODS
In this section we introduce (1) the ExSTraCS 2.0 algo-

rithm, (2) the proposed algorithm adaptations for continu-
ous endpoint problems and (3) the simulated datasets and
evaluation strategy applied to test this proposed approach.

2.1 ExSTraCS 2.0
The ExSTraCS 2.0 algorithm [18] is a Michigan-style LCS

algorithm, more generally referred to as a rule-based evolu-
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tionary algorithm. ExSTraCS 2.0 has been expanded and
adapted to better suit the needs of real-world supervised
learning problems wherein effective and efficient classifica-
tion, prediction, data mining, and/or knowledge discovery
is the goal. The features of ExSTraCS 2.0 that most differ-
entiate it from XCS [20] or UCS [2] include: a rule specificity
limit to address scalability issues [18], built-in rapid expert
knowledge (EK) generation algorithms [14], EK guided cov-
ering and mutation for efficient learning and scalability [15,
18], attribute tracking and feedback for reusing useful at-
tribute combinations and characterizing patterns of hetero-
geneity [12], built-in rule compaction strategies [9], and the
consolidation of explore/exploit to perform both simultane-
ously [13]. For a detailed description of the ExSTraCS 2.0
algorithm see [18]. For a complete software users guide see
[11]. In this study the altered ExSTraCS 2.0 algorithm that
includes our proposed continuous endpoint learning strategy
will be referred to as ExSTraCS CE 2.0. Both versions of
this algorithm are available on sourceforge.com as ExSTraCS
versions 2.02 and 2.03 respectively.

2.2 Continuous Endpoint Strategy

2.2.1 Rule Representation
Our modified rule representation preserves the condition

representation described in [18] which only stores specified
attribute states (for discrete attributes) or specified inter-
val predicates (for continuous attributes). To promote effi-
cient computation, attributes that are generalized in a rule
(i.e. represented as a ‘don’t care’ or ‘#’ in traditional LCS
algorithms) are simply left out of the rule representation.
However, when ExSTraCS detects a continuous/real-valued
endpoint as described in [14] and [18], the predicted class
of a rule is represented as an interval predicate rather than
a single discrete class. This endpoint interval predicate is
maintained and evolved in a manner similar to the strategy
implemented for continuous attribute intervals. Identical to
discrete endpoint ExSTraCS learning, the interval predicate
endpoint does not influence rule matching.

2.2.2 Forming a Correct Set
Following the formation of a match set [M], any rule in [M]

with an interval predicate (i.e. continuous value range) that
correctly includes the true continuous endpoint value of the
current training instance is included in the correct set [C].
The formation of a [C] is an important part of the attribute
tracking and feedback mechanisms previously developed for
and implemented within ExSTraCS [12] to improve learning
and characterize patterns of heterogeneity. This is one of
the primary motivations for developing a continuous end-
point strategy that preserves the assembly of a correct set.
Another would be to preserve correct set parent selection as
a precursor for applying the GA to generate new offspring.
In this case, only parent rules with an endpoint interval con-
taining the current correct endpoint value will be utilized in
the generation of offspring rules.

2.2.3 Rule Parameters
The rule parameters maintained by ExSTraCS are up-

dated as previously described [18] with the following excep-
tions: (1) The accuracy of a rule is no longer simply the
number of times a rule has been included in a [C] divided
by the number of times that rule has been included in a

[M] as originally introduced in UCS [2]. Preliminary tri-
als indicated that in the context of continuous endpoints,
this type of rule accuracy yielded rules with large inter-
val predicates (sometimes spanning the entire range of end-
point values observed in the training dataset). This is log-
ical, since a matching rule would be considered ‘correct’ as
long as the true value fell within the specified endpoint in-
terval. If this interval included all possible values, then
such a rule would misleadingly be considered ‘correct’ ev-
ery time it was in [M]. Instead, accuracy is calculated as
(1 − sumErr)/matchCount. The matchCount parameter
is the number of times the given rule has been included in
an [M]. The parameter sumErr is updated whenever a rule
is included in a [M]. If the endpoint interval of the rule does
not include the true value (i.e. it does not get into [C]), then
a value of 1 (i.e. the maximum error) is added to sumErr.
Alternatively, if the rule is included in [C] then the error
added to sumErr is the scaled difference between the rule’s
prediction and the true continuous endpoint value RuleErr.
Since a rule doesn’t strictly have a specific prediction value,
we apply the centroid of the the predicted endpoint interval
as a surrogate prediction. The prediction error (i.e. the dif-
ference between this surrogate prediction and the true end-
point value) is then scaled by the maximum possible error
for the given rule (i.e. the distance between the centroid of
the endpoint interval and either its upper or lower bound).
This serves two purposes: (1) the error added to sumErr
is always a value between 0 and 1 (which is critical to the
calculation of rule accuracy), and (2) the range of a rule’s
endpoint interval alone does not impact error. This second
purpose seeks to avoid biasing the system unnecessarily to-
wards narrower endpoint intervals. An alternative approach
might include scaling error by the maximum error possible
given the range of endpoint values observed in the training
dataset as a whole. However, preliminary testing suggested
that this alternative scaling approach needlessly promotes
much narrower endpoint intervals in problems where larger
endpoint-value ranges define meaningful predictive patterns.
This ultimately detracts from solution interpretability in
such problems, where multiple rules would be evolved to rep-
resent a pattern that could have been captured by a single
rule. However, this alternative approach may perform bet-
ter in problems like function approximation, where a specific
endpoint value is desired for each input.

As one additional caveat to the calculation of rule error,
rules that have an endpoint prediction interval that goes be-
yond the bounds of endpoint values observed in the training
dataset have an adjusted calculation for the surrogate pre-
diction value. Specifically, if the upper or lower bound of a
rule’s prediction interval goes outside the bounds of observed
endpoint values in the training dataset, the training-set ob-
served boundary is used in the calculation of the interval
centroid (i.e. the surrogate prediction) instead of the pre-
diction interval bound. While rules are given the flexibility
to evolve interval predicates somewhat outside the range of
values observed in the training dataset, we restrict our cal-
culation of predictions and error to the range of observed
training values. This helps to avoid additional prediction
bias introduced by a rule prediction interval that spans out-
side of observed values. At the same time, this gives rules
the ability to potentially cover testing instances (i.e. in-
stances that have not yet been seen) that may fall outside
of the endpoint value extremes in the training data.
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2.2.4 Genetic Algorithm
Following parent rule selection, the GA activates crossover

with probability χ = 0.8 as applied in [18]. When crossover
is activated, if the endpoint is continuous, there is a 50%
chance that the condition will crossover between two par-
ent rules, otherwise the endpoint intervals will be crossed
over. Endpoint crossover randomly picks between swapping
the lower bounds or the upper bounds of the parent rule
endpoint intervals. During mutation, the GA has been up-
dated to include opportunity for the endpoint interval to be
mutated in the same way as was described for continuous-
valued attribute intervals [18]. Rule endpoint intervals will
mutate with probability υ = 0.04. The υ parameter is used
to determine the number of attributes to be mutated as de-
scribed in [18]. Additionally it should be noted that when
covering generates a new rule, the initial endpoint interval is
randomly generated as an attribute interval would be during
covering [18].

2.2.5 Subsumption
The traditional GA and correct set subsumption mecha-

nisms proposed by Wilson [20] were meant to apply a rule-
generalization pressure to the rule population and were de-
signed to address problems with discrete endpoints and a
clean, or nearly clean signal. Given that our target prob-
lems are generally noisy, and extend to continuous-valued
endpoints, preliminary testing unsurprisingly indicated that
the original subsumption mechanisms were not applicable in
their original conceptualization. While not the major focus
of this work, we explore the implementation of an alternative
subsumption mechanism designed explicitly for supervised
learning in ExSTraCS designed to function in the context of
continuous endpoint problems. This approach also relies on
the assumption that only a finite amount of data is available
as a training dataset (as is the case in many real-world prob-
lems). ExSTraCS CE 2.0 excludes both traditional forms of
subsumption and instead implements this newly proposed
strategy.

Our proposed strategy activates once a given rule has
had the opportunity to see all instances in the training set.
At this point the rule is designated by ExSTraCS to be
‘EpochComplete’. Every rule that is not yet ‘EpochCom-
plete’ is checked to see if it has seen all training instances
during the matching phase of the algorithm. When a rule
becomes ‘EpochComplete’ the algorithm checks to see if that
rule subsumes or can be subsumed by any other any other
’EpochComplete’ rule in the population. A rule is defined
as a subsumer if it is (1) ‘EpochComplete’, (2) has a greater
or equal accuracy than the subsumed rule, (3) specifies the
same attributes, or a subset of the attributes specified by
the subsumed rule, (4) any specified continuous attributes
have an interval that fits within the bounds of the subsumed
rule, and (5) the endpoint interval fits within the bounds
of the subsumed rule. The definition of a subsumer, along
with examples of which rules might subsume another are
given in Figure 1. We have opted for subsumers to have
continuous valued intervals that must fit within the bounds
of prospective subsumed rule. This is somewhat of a rever-
sal on the typical strategy of subsumers being more general.
While future work may reveal another approach to be bet-
ter, the logic behind this decision is based on our desire to
evolve rules that are maximally accurate, but specify the
least number of attributes, while at the same time encour-

aging a more specific range of continuous attribute values
along with a narrower endpoint intervals. We expect that
by encouraging narrower continuous value ranges, we will
promote more accurate rule predictions (since a given rule’s
prediction is based on it’s centroid surrogate). Future work
will explore other variations of this subsumption strategy.

While we have implemented this strategy exclusively for
continuous endpoint problems, this concept could be suc-
cessfully applied to discrete endpoint problems as an alter-
native to traditional subsumption mechanisms in the context
of noisy discrete problem domains. This will be another tar-
get for ongoing work.

2.2.6 Prediction Array
Possibly the most critical component in adapting ExS-

TraCS to continuous endpoint analysis is the introduction
of a new prediction array strategy for generating endpoint
predictions as output for the algorithm. We have modeled
our approach after the way that rules within the match set
vote for discrete classes in UCS and XCS. In a prelimi-
nary attempt, we tried a strategy where the centroids of
all rule endpoint intervals in [M] have a fitness/numerosity
weighted influence on the determination of an endpoint pre-
diction. However, unlike a prediction array for discrete end-
point problems, the ‘bad’ rules in [M] with a prediction that
is poor, would still impact the value of the endpoint pre-
diction. Therefore, the approach adopted here segments the
entire range of possible endpoint values based on the high
and low limits of endpoint interval predicates of rules in [M].
Figure 2 illustrates this approach. Essentially these range-
limits define unique segments (i.e. candidate intervals) that
will be treated as ‘classes’ from which we will choose the
one with the largest vote to be the best interval. Once the
candidate intervals are determined, any rule in [M] with an
endpoint interval that includes a given candidate interval
contributes a vote of numerosity∗fitness to that candidate
interval segment. The candidate interval with the highest
vote is selected to be the ‘best’ prediction interval. As was
the case with the calculation of rule accuracy, the result-
ing prediction value is the centroid of this interval. While
this centroid prediction surrogacy offers the system flexibil-
ity, this approach is expected to achieve a somewhat limited
accuracy for problems like function approximation, where a
continuous mapping between attribute inputs and endpoint
outputs is sought.

2.3 Evaluation
In order to evaluate our proposed strategy, we have gen-

erated a number of simulated datasets including a group of
simple clean-signal toy datasets exploring some basic prop-
erties of a continuous endpoint problem. We have also gen-
erated a full spectrum of complex noisy continuous endpoint
datasets based on discrete datasets used to evaluate the orig-
inal versions of ExSTraCS [14, 18]. A total of 6 toy datasets
with a clean signal were simulated (each with 20 attributes,
and 1600 instances) where only a single continuous-valued
attribute was predictive of the continuous-valued endpoint.
In three of these datasets, the non-predictive attributes were
randomly simulated discrete values, while in the other three
they were randomly simulated continuous values. For both
of these sets of three datasets, one dataset was simulated
with a linear relationship to the endpoint (as would be ex-
pected in a simple function approximation problem), and the
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How do we define 

a Subsumer? 

(1) Epoch Complete 

(2) Accuracy is >= other rule 

(3) Specifies same or subset of a!ributes 

specified in other rule 

(4) Specified con"nuous a!ributes must 

have interval that fits within bounds 

of other rule’s a!ribute interval. 

(5) Endpoint interval fits within bounds 

of other rule’s endpoint interval. 

Rule ID:  Condi"on                                           ~   Endpoint Interval    ::  Accuracy 

                A1,      A2,      A3,      A4,      A5 

 

R-1 # , [0.3,0.5],   #,        2,        #          ~   [0.3,0.5]                    ::  0.95          N/A 

R-2 1 , [0.3,0.5],   #,        2, [0.1, 0.2]   ~   [0.2,0.6]                    ::  0.90           Yes 

R-3 # , [0.2,0.6],   #,        2,        #          ~   [0.3,0.5]                    ::  0.91           Yes 

R-4 1 , [0.3,0.5],   0,        2, [0.1, 0.5]   ~   [0.3,0.7]                    ::  0.93           Yes 

R-5 1 ,        #,         0,        2, [0.1, 0.5]   ~   [0.3,0.5]                    ::  0.86           No 

R-6 # , [0.2,0.6],   #,        2,        #          ~   [0.3,0.5]                    ::  0.99           No 

R-7 # , [0.4,0.5],   #,        2,        #          ~   [0.3,0.5]                    ::  0.89           No 

R-8 # , [0.2,0.5],   #,        2,        #          ~   [0.3,0.4]                    ::  0.89           No 

Would R-1 

subsume 

this rule? 

Figure 1: A summary of the definition of a subsumer. Rule examples are provided (R-1 to R-8). Each rule
condition is defined by 5 attributes (A1 - A5). Attributes A2 and A5 are continuous-valued. Rules that can
be subsumed by ‘R-1’ are indicated on the right-hand column.

other two datasets simulated threshold relationships with
either two or four relevant endpoint intervals respectively
(corresponding to one or three relevant thresholds). In the
first threshold model, if the predictive attribute was in the
lower half of values simulated for that attribute, the instance
was assigned a random continuous endpoint value between
0 and 50. Otherwise it was assigned a value between 50 and
100. A similar pattern was constructed for the dataset with
four relevant endpoint intervals. Lastly, a version of each
dataset was generated with a permuted endpoint (i.e. the
endpoint column in the dataset was randomized in to elimi-
nate any modeled signal. All 12 of these datasets are avail-
able on sourceforge.com included with the ExSTraCS CE
2.0 implementation. For each of these 12 toy datasets, 10-
fold cross validation was performed in analyzing them with
ExSTraCS CE 2.0 for 200,000 learning iterations as well as
application of the quick rule filter (QRF) to remove clearly
poor rules. The goal of this simple toy dataset analysis was
to determine how ExSTraCS CE 2.0 would perform on func-
tion approximation-like problems vs. continuous endpoint
problems that model associations based on some relevant
number of thresholds (i.e. high vs. low endpoint value). In
this evaluation of toy datasets we compare key performance
metrics between the non-permuted and permuted versions
of these datasets to see how the algorithm functions when
there is or is not a respective underlying model. In these
toy datasets, ‘power’ refers to the proportion of cross val-
idation datasets in which the modeled predictive attribute
was correctly prioritized by the algorithm (i.e. it was the
most specified attribute in rules in the final population).

The second part of our evaluation was performed over a
set of 960 noisy complex simulated genetic datasets with 20

discrete-valued attributes generated using GAMETES [16].
Similar to [14] and [18], each dataset concurrently mod-
eled patterns of epistasis and heterogeneity, where four of
the attributes were predictive and 16 were non-predictive.
However, for this investigation, each dataset was converted
to a continuous-valued endpoint threshold problem by re-
placing discrete-valued classes of ‘0’ with a random value
between 0 and 50 and discrete-valued classes of ‘1’ with a
random value between 50 and 100. 20 replicates of each
dataset were analyzed and 10-fold cross validation (CV) was
employed to measure average testing accuracy and account
for over-fitting. As with the toy datsets, an archive of 960
datasets with permuted endpoints was also generated for
comparison. ExSTraCS CE 2.0, with and without our pro-
posed subsumption mechanism were each run on this full set
of 9600 datasets (960*10) up to 200,000 learning iterations
with QRF, as well as upon the 9600 permuted versions of
these datasets for comparison. In each analysis, default ExS-
TraCS parameters were applied as described in [18]. Similar
to our previous analyses on ExSTraCS, pair-wise statisti-
cal comparisons were made using the Wilcoxon signed-rank
tests [14, 18]. All statistical evaluations were completed us-
ing R. Comparisons were considered to be significant at p ≤
0.05. Analyses were performed using ‘Discovery’, a 2400 core
Linux cluster available to the Dartmouth research commu-
nity.

Statistical comparisons were performed over a set of key
performance metrics. Accuracy metrics were calculated as
a respective ‘balanced accuracy’ to account for any imbal-
anced datasets. ‘Both Power’ is the ability to correctly iden-
tify both two-locus heterogeneous models. ‘Single Power’ is
the ability to have found at least one. ‘Co-occur. Power’
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Range of Endpoint Values 

Observed in Training Data 

Predicted Endpoint 

Intervals from Rules 

in Match Set 

Candidate Intervals 

Interval Votes 

Best Interval: The Con!nuous-Valued 

Predic!on is the Centroid of this Interval 

Figure 2: An illustration of the proposed prediction array mechanism for determining a specific continuous
endpoint prediction value.

indicates the ability to detect the correct heterogeneous pat-
tern. Generality refers to classifier generality, or the average
proportion of unspecified attributes across the classifier pop-
ulation. Macro Population refers to the number of unique
classifiers in the classifier population. These metrics are de-
scribed in greater detail in [18].

3. RESULTS AND DISCUSSION
Tables 1 and 2 present the results of the 6 toy datasets that

include discrete or continuous non-predictive values, respec-
tively. Every metric entry in either table is the average over
10 cross validation analyses. Beginning with Table 1, we ob-
serve that ExSTraCS CE 2.0 is able to obtain a much higher
testing accuracy than for the associated permuted datasets
for each of the three models. Notably, with permutation,
testing accuracy typically ends up with a value close to 0.75
(this is approximately the best accuracy we might expect
by random chance). This finding suggests that training and
testing accuracies computed using our continuous endpoint
strategy are not directly comparable to discrete endpoint
accuracy score, where randomly picking between two classes
would yield an expected accuracy of 0.5. Further support-
ing the ability of ExSTraCS CE 2.0 to learn either linear
or threshold models, we find that the predictive attribute is
correctly identified out of the 20 attributes in the dataset for
the linear, 3-threshold, and 1-threshold models (indicated by
a power of 1.0). This is in comparison to the respective per-
muted datasets which yield a power of 0 to 0.1 in these anal-
yses. Furthermore, rule generality was much higher for each
model than when compared with the respective permuted
analysis. Macro population size, on the other hand, was
consistently (sometimes dramatically) lower for each model

than for the permuted analyses. These testing accuracy,
power, rule generality, and macro population size findings
were also consistent in the toy datasets with continuous non-
predictive attributes summarized in Table 2. Also consistent
between both tables is the observation that lower testing ac-
curacies were observed for the 1-Threshold datasets than for
the Linear or 3-Threshold models. This finding makes sense,
given that in the 1-Threshold model, we can only hope to
predict that an endpoint value is either high or low (i.e. in
the upper or lower set of endpoint values). Therefore, the
error in specific endpoint value predictions is expected to be
larger. Comparing Table 1 with Table 2, we also notice that
typically both the macro population size and the run time
are dramatically larger for the datasets that include contin-
uous non-predictive attributes. This enforces the idea that
to effectively solve problems with continuous attributes or
endpoints additional time and/or a greater number of rules
in the population may be required. As a proof of concept
these toy datasets indicate that our proposed endpoint in-
terval approach is functional, and flexible enough to handle
very different types of continuous endpoint problems from
function approximation to threshold models (where a single
threshold is the most difficult to learn). While we cannot say
definitely without statistical analysis on these toy datasets
that our results are meaningful, based on previous evalua-
tions on similarly sized datasets using the original ExSTraCS
algorithm, we believe these results to be strongly indicative
of successful modeling/prediction and a overall promising
strategy.

As a more challenging and comprehensive analysis Ta-
ble 3 summarizes the findings over our set of 960 complex
genetic simulated datasets with continuous endpoint values
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Table 1: ExSTraCS CE 2.0 Toy Dataset Analyses: Discrete Non-Predictive Attributes
200,000 Iterations +QRF

Performance Discrete Non-Predictive Attributes
Statistics Linear ⇒ Permuted 3-Threshold ⇒ Permuted 1-Threshold ⇒ Permuted

Train Accuracy .9052 .7531 .9140 .7509 .8579 .7504
Test Accuracy .8979 .7450 .9106 .7434 .8547 .7415

Power 1.0 0.1 1.0 0 1.0 0
Rule Generality .9397 .7670 .8607 .7635 .8446 .7647

Macro Population 281.5 1343.2 842.9 1326.9 1118.0 1376.2
Run Time (min) 101.73 117.77 47.54 122.28 104.05 115.59

Table 2: ExSTraCS CE 2.0 Toy Dataset Analyses: Continuous Non-Predictive Attributes
200,000 Iterations +QRF

Performance Continuous Non-Predictive Attributes
Statistics Linear ⇒ Permuted 3-Threshold ⇒ Permuted 1-Threshold ⇒ Permuted

Train Accuracy .9419 .7489 .9202 .7481 .8724 .7497
Test Accuracy .9394 .7427 .9170 .7407 .8670 .7435

Power 1.0 0 1.0 0 1.0 0
Rule Generality .8890 .6312 .7193 .6250 .6886 .6196

Macro Population 944.5 1554.9 1470.8 1548.6 1501.8 1557.5
Run Time (min) 77.42 197.39 214.83 219.11 244.21 221.62

simulated with a 1-threshold. Each metric value in the
table is the average over all 9600 cross validation runs of
ExSTraCS CE 2.0 either on the original simulated datasets,
or upon the permuted versions (in which the association with
endpoint has been obliterated). Despite the complexity of
these problems, we observe a significantly higher testing ac-
curacy, and significantly better power estimates than on the
permuted datasets. While significant, the increase in testing
accuracy is small. However we expect only a small increase
in testing accuracy given that these datasets are extremely
noisy added to the fact that they are 1-threshold models.
Notably this strategy takes about twice as long to run as
the discrete endpoint implementation of ExSTraCS 2.0 [18],
but this is to be expected considering the added complexity
of checking and evolving endpoint intervals and employing
the newly proposed subsumption mechanism.

Lastly, Table 4 summarizes the results in comparing the
performance of ExSTraCS CE 2.0 with and without our pro-
posed subsumption mechanism. While we observe a dra-
matic and highly significant reduction in macro population
size, as well as a significant rise in rule generality as would
be expected for our proposed subsumption mechanism, we
observe no significant impact on testing accuracy, and signif-
icant loses in three power metrics. Additionally, as imple-
mented, this mechanism more than doubles our run time.
These trade-offs with success will lead us to revisit sub-
sumption in future work, as the current proposed approach
is clearly not optimal.

4. CONCLUSIONS
In this study we have introduced a new approach for rule-

based supervised learning in problems with a continuous or
quantitative endpoint. This approach has been designed
particularly to expand the ExSTraCS algorithm to handle
these sorts of problems. This new strategy calls for a num-
ber of modifications to ExSTraCS, but preserves the for-
mation of correct sets. Results from this work in progress
suggest that rule endpoint intervals can effectively and flexi-
bly learn patterns in both function approximation-like prob-
lems, as well as on problems where one or more threshold

Table 3: ExSTraCS CE 2.0: Original vs. Permuted
Datasets

200,000 Iterations +QRF
Performance ExSTraCS CE 2.0

Statistics Original Permuted p

Train Accuracy .8015 .7913 ↑ ***
Test Accuracy .7453 .7284 ↑ ***

Both Power .2417 0 ↑ ***
Single Power .5844 0 ↑ ***

Both Co-Power 0 0 -
Single Co-Power .5260 0 ↑ ***
Rule Generality .8053 .7922 ↑ ***

Macro Population 984.55 1061.39 ↓ ***
Run Time (min) 136.55 149.00 ↓ ***
− No significant change

* p < 0.05 (Direction of change given by arrows)

** p < 0.001

*** p << 0.001

are meaningful to underlying patterns of association. We
also have demonstrated that our proposed prediction array
strategy can effectively make specific endpoint value predic-
tions by combining multiple rule endpoint intervals from a
given match set. However it is unlikely that this approach
would achieve better endpoint predictions on function ap-
proximation problems than other LCS computed endpoint
strategies such as XCSFCA [10] or using code fragments [5,
6]. This is primarily due to the use of a surrogate predicted
endpoint value by rules which instead learn endpoint inter-
vals. Lastly, while we report somewhat mixed results for the
proposed subsumption mechanism, we believe that this will
make an interesting target for future work. Ultimately, this
study indicates that ExSTraCS can be expanded to contin-
uous endpoint problems, however we do not claim that it
is better than any other LCS continuous endpoint strategy.
We do suspect that our rule endpoint interval strategy al-
lows for better problem handling flexibility. Future work
will seek to compare and perhaps integrate this approach
with one that adopts code fragments as proposed by [5, 6].
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Table 4: ExSTraCS CE 2.0: With vs. Without Sub-
sumption

200,000 Iterations +QRF
Performance ExSTraCS CE 2.0

Statistics With Sub. No Sub. p

Train Accuracy .8015 .8003 ↑ ***
Test Accuracy .7453 .7455 -

Both Power .2417 .2615 ↓ ***
Single Power .5844 .6490 ↓ ***

Both Co-Power 0 0 -
Single Co-Power .5260 .5490 ↓ ***
Rule Generality .8053 .7694 ↑ ***

Macro Population 984.55 1314.55 ↓ ***
Run Time (min) 136.55 51.67 ↓ ***
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