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ABSTRACT

General-purpose optimization algorithms are often not well
suited for real-world scenarios where many instances of the
same problem class need to be repeatedly and efficiently
solved. Hyper-heuristics automate the design of algorithms
for a particular scenario, making them a good match for
real-world problem solving. For instance, hardware model
checking induced Boolean Satisfiability Problem (SAT) in-
stances have a very specific distribution which general SAT
solvers are not necessarily well targeted to. Hyper-heuristics
can automate the design of a SAT solver customized to a
specific distribution of SAT instances.

The first step in employing a hyper-heuristic is creating
a set of algorithmic primitives appropriate for tackling a
specific problem class. The second step is searching the as-
sociated algorithmic primitive space. Hyper-heuristics have
typically employed Genetic Programming (GP) to execute
the second step, but even in GP there are many alternatives.
This paper reports on an investigation of the relationship be-
tween the choice of GP type and the performance obtained
by a hyper-heuristic employing it. Results are presented
on SAT, demonstrating the existence of problems for which
there is a statistically significant performance differential be-
tween the use of different GP types.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; 1.2.2 [Artificial Intelligence]: Au-
tomatic Programming—program modification, program syn-
thesis
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INTRODUCTION

Hyper-heuristics is a field of study which aims to auto-
matically create novel algorithms designed to perform sig-
nificantly better on a specific class of problems than would
a general-purpose algorithm, trading a very high upfront
computational cost for increased savings over time as the
automatically generated custom algorithm is repeatedly ap-
plied to instances of the specified problem class. This makes
hyper-heuristics a good match for real-world problems. For
instance, hardware model checking induced Boolean Satis-
fiability Problem (SAT) instances have a very specific dis-
tribution which general SAT solvers are not necessarily well
targeted to. Hyper-heuristics can be used to automate the
design of a SAT solver customized to a specific distribution
of SAT instances.

The first step in employing a hyper-heuristic is creating
a set of algorithmic primitives appropriate for tackling a
specific problem class. The second step is searching the as-
sociated algorithmic primitive space. Hyper-heuristics have
typically employed Genetic Programming (GP) to execute
the second step, but even in GP there are many alternatives.
This paper reports on an investigation of the relationship be-
tween the choice of GP type and the performance obtained
by a hyper-heuristic employing it, with the hypothesis being
that there are problems for which there is a statistically sig-
nificant performance differential between the use of different
types of GP. Subsection 1.1 provides a summary overview of
five main types of GP, namely tree-based GP (TGP), linear
GP (LGP), Cartesian GP (CGP), Grammatical Evolution
(GE), and stack-based GP (SGP). The problem class chosen
to experiment on is SAT, being a well-studied NP-complete
problem for which it is straightforward to generate custom
problem instances. Subsection 1.2 provides a quick overview
of SAT.

The rest of the paper is organized as follows: Section 2
provides an overview of related work, Section 3 describes
our methodology for comparing hyper-heuristic performance
between the five different GP types, Section 4 presents our
results, Section 5 provides our conclusions, and Section 6
proposes the next steps in this line of inquiry.

1.



1.1 Genetic Programming

This section discusses each of the GP types explored in
this paper. Each GP is described by its origin, structure,
and characteristics relative to hyper-heuristics.

1.1.1 Tree-based GP

The use of tree-based structures in genetic algorithms was
first introduced in [1] and further explored in [2]. Koza later
introduced and popularized the use of TGP for automating
the generation of computer programs [3]. It naturally rep-
resents solutions in the form of parse trees composed of the
primitives and terminals of a program. The fact that any
search algorithm can be represented as a parse tree implies
that any search algorithm can be evolved from a tree data-
structure. This makes TGP seem like a natural choice for
use in hyper-heuristics [4].

In the tree representation, internal nodes are the pro-
gram’s primitives, while the terminal nodes are the pro-
gram’s inputs. Parent nodes take the output of child nodes
as their inputs, having as many children as their primitive’s
arity. A depth-first recursive process is used to get the val-
ues of children first, and then execute the parent nodes. The
output of the root node becomes the program’s output.

Strong-typing and the reuse of data are common elements
of computer programs, but are not expressed well in tree
representation. Normally, nodes are restricted to a single
type for inputs and outputs in order to simplify genetic op-
erations and ensure that all programs generated are valid for
execution. However, genetic operations can be implemented
to respect typing at the cost of greater implementation and
run-time complexity. The tree structure also restricts node
output to only being used once in a program. A program
that uses the same data multiple times can still be repre-
sented in TGP, but requires the same sub-tree that gener-
ates the data to be present at each reference. Koza addressed
this with automatically defined functions (ADFs), which are
program branches that can be called multiple times by the
main program and other ADFs [5].

A characteristic of tree representations is that each sub-
tree correlates to a complete sub-program; recombination
takes advantage of this to create children by swapping sub-
trees of the parents. Mutation uses it to generate children by
copying the parent and generating a new sub-tree at a ran-
dom node. These generally result in high locality between
parents and children. However, this can also result in nodes
closer to the root nodes of individuals to become common,
and potentially cause premature convergence [6].

With strong-typing methods and components like ADFs,
TGP can be used to create solutions for a great variety of
scenarios. This makes it a good fit for hyper-heuristics, but
does not mean that it is the best tool for every scenario.
In scenarios where the search space is rougher, with many
sub-optima, having high-locality during evolution and low-
diversity in the population can make finding the global op-
tima harder [7].

1.1.2 Linear GP

Linear GP (LGP) refers to any form of GP that uses a lin-
ear list of instructions for representing programs, to which
there are many variants [8, 9, 10]. The variant described in
this paper refers to a generalized form of LGP as presented
in [11]. Instead of using instructions from a specific pro-
gramming language, this generalized LGP uses user-defined
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operations for creating programs. This allows programs to
be evolved using higher-level primitives, while still maintain-
ing the linear structure.

In LGP, a program is represented as a fixed- or variable-
length list of primitives. Instead of terminal operations, reg-
isters are used for storing output and reading input, which
are pre-loaded with values at the beginning of execution.
The input and output registers for a node are defined as
part of its parameters. One or more registers are designated
as the sources of the program’s output, while the others exist
as supplementary registers.

The use of multiple registers gives LGP the ability to cre-
ate complex programs by storing data in supplementary reg-
isters where it can be reused multiple times. However, the
size of the search space and quality of programs are very sen-
sitive to the number of registers used. If too few registers
are used, it may be impossible for LGP programs to produce
good solutions that require greater complexity. As more reg-
isters are included, the search space size increases as does
the potential for intron operations, or operations that do not
contribute to the final result. Although evidence has shown
that introns can be beneficial in GP [12, 13], too many can
cause over-complication of programs and lower locality from
genetic operations [7].

Since linear representations adhere to a less rigid program
structure, the effect that crossover has on diversity and local-
ity is fairly different than that seen in tree representations.
Crossover can hinder the capability for high locality and be
fairly destructive to sub-sequences. This makes it harder for
good sub-sequences to be passed on to offspring, but it can
also result in a greater population diversity.

LGP is capable of creating programs with the same func-
tionality as those created by TGP, but the differences in
their structures and components can lead to differences in
how hard it is to evolve a particular program. Given its
lower locality during evolution, LGP may be best suited for
hyper-heuristics solving problems where the search space is
rougher so the hyper-heuristic may benefit from the lower
locality in order to escape local optima. Regardless, great
consideration should be given to the number of registers be-
ing used for any problem LGP is applied to.

1.1.3 Cartesian GP

CGP was proposed by Miller et al. in 2000 [14], which
they derived from their earlier method for evolving digi-
tal circuits [15]. It has two characteristics that separate it
from other GP types. First, CGP has a distinct separation
between genotype and phenotype representations. Second,
programs are represented as directed acyclic graphs, con-
taining input, computational, and output nodes. The graph
can be thought of as a 2-D grid with input nodes on one side,
columns of computational nodes in the middle, and output
nodes on the other side. Output nodes can be connected
to any input node or computational node. Computational
nodes can be connected to any input node and other com-
putational nodes in prior columns of the grid. In the graph,
input and computational nodes can be connected from other
nodes any number of times, or not at all. The program geno-
type is a list of genes — integers representing a primitive or
input location. Groups consisting of a function gene and
multiple input genes define the computational nodes of the
graph. At the end of the genotype are the output genes.
The program phenotype is an abstract representation of the



graph derived from the genotype via a mapping process. In-
stead of generating the graph structure, the function and
input information of necessary nodes are stored in an array
to be used by a decoding algorithm for calculating outputs.
The mapping process starts with the output genes and con-
tinues through all the referenced input locations until ending
with program inputs. Any nodes not referenced as inputs are
not included and do not contribute to outputs. The nodes
used are contained in the array in numeric order, ensuring
output is generated before it is requested as input. The
decoding algorithm uses a second array for managing in-
puts and outputs, initialized with the program inputs. Each
primitive in the program array is executed, in order, until
the program outputs have been generated.

CGP’s representation makes it easier for the output of
good sub-graphs to be reused in multiple parts of a pro-
gram, giving it the potential to find good solutions faster. It
has also been shown to benefit from a large presence of in-
trons [16]. If crossover is used at a very low rate to minimize
disruption, diversity can still be managed through neutral
drift. Neutral drift occurs when identical programs are mu-
tated, but with mutation only affecting their introns. These
programs will continue to have identical functionality, until
an active node is finally mutated, and will result in greater
diversity in the affected sub-graph. The genotype-phenotype
mapping also benefits CGP by allowing simpler genetic op-
erations to be used for evolving the graph. Although it is a
notable feature of CGP, it is not currently known if being
able to output multiple populations has any benefit in hyper-
heuristics. As with LGP, crossover operations in CGP can
be very destructive to sub-graphs. Most forms of crossover
between two gene lists are not likely to result in a child
with similar functionality. If crossover is used often, the
population may have too great of a diversity with beneficial
sub-graphs being frequently disrupted [16].

Since directed acyclic graphs can be translated into deriva-
tion trees, CGP and TGP programs should exist within sim-
ilar search spaces for the same primitive set and number
of outputs. Their ability to derive similar programs dif-
fers greatly, however. While TGP can be less restricted in
shaping derivation trees and form new sub-trees more eas-
ily, CGP can better represent derivation trees that contain
reoccurring sub-trees. CGP can also be less disruptive to
sub-trees during mutation. This implies that there could
be problems where a hyper-heuristic using CGP develops
a better search algorithm faster than one using TGP. How-
ever, the effect that genetic operators have on traversing the
search space of algorithms and wasted evaluations could still
cause CGP to be less ideal for many problems [17].

1.1.4 Grammatical Evolution

Grammatical Evolution (GE) was proposed for creating
programs in languages besides LISP, while still being able
to retain syntactic context during evolution [10]. It was
built on the work of previous grammar-based methods and
attempted to address some of their shortcomings. Like in
CGP, GE programs also have a distinct genotype and pheno-
type, using a mapping process between them. GE programs
are defined by context-free grammars using Backus-Naur
form [18] with production rules defined by the user. The
grammar’s terminal and non-terminal symbols represent the
program inputs and primitives, respectively. The genotype
is a variable-length sequence of integers which are used to
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expand the grammar and decode the phenotype derivation
tree. This is done by using the integer value to determine
which production rule to select for the current symbol.

The process continues to repeat through the sequence un-
til it either creates a complete program or hits a maximum
number of repeats. If the latter occurs, the process ends
with the worst fitness value being assigned. If a complete
mapping is successful, the result is the phenotype — an ex-
ecutable representation of the derivation tree. The use of
grammars allows users to ensure strong-typing and mean-
ingful structures in programs. This is especially important
if the user knows how the search space can be restricted to
improve the density of good solutions. Careful consideration
should be taken when defining the grammar as undesired
bias can be easily introduced.

Low locality has been a source of debate surrounding GE’s
genotype-phenotype mapping. If an integer is changed in the
genotype, all following integers are likely to be mapped to
different production rules, possibly resulting in a vastly dif-
ferent program. In other words, two neighboring genotypes
may have phenotypes with little structural similarity. This
means even small mutations could result in a more random
walk of the search space, making defining the grammar’s re-
striction of the search space more critical for finding good
solutions faster. Low locality may be a primary cause of
poor performance by GE and users are encouraged to de-
velop more localized mapping to increase performance [7].
If GE’s grammar was used to restrict the search space to
that of another GP type, it probably would not find a good
solution faster due to low locality. Also, while the wrapping
mechanic helps reduce it, GE has a chance to produce geno-
types that do not result in complete phenotypes. This can
introduce wasted population space, which is not found in
TGP, LGP, and CGP. Nevertheless, GE still may be useful
to employ in a hyper-heuristic that solves a problem class
where certain structures are known to be beneficial or detri-
mental, and the search space can be accordingly restricted.

1.1.5 Stack-based GP

SGP is a form of linear GP implemented to be simpler
and more efficient than TGP, while matching, if not sur-
passing it, in performance [9]. SGP’s unique characteris-
tic, and name, comes from its use of data-stacks instead
of registers for managing input and output of operations.
Programs are represented as linear sequences of primitives
and terminals. When a terminal operation is performed, the
terminal’s value is simply pushed onto the stack. When a
primitive operation is performed, the stack is first checked if
it has the appropriate number of inputs to match the prim-
itive’s arity. If it does, the inputs are popped off the stack
and passed to the primitive for execution, and the result
pushed onto the stack. If it does not, however, the stack is
left unchanged and the operation is skipped, effectively be-
coming an intron. Generally, the top element on the stack
after execution becomes the program’s output.

Although a derivation of linear GP, SGP actually shares
the same search space as TGP. This is due to the first-in-last-
out nature of stacks which results in the program being ex-
ecuted like a post-order tree representation. However, SGP
has features that can give it an advantage over TGP. Introns
are allowed by SGP, which had previously been mentioned
to be useful. The reuse of data can be easily accomplished
in SGP by implementing a special duplication operator in



the primitive set. Strong-typing can also be enforced by
implementing multiple stacks, each for a specific type [19].
Like LGP, crossover operations will generally result in a low-
ered locality. Again, although this makes passing good sub-
sequences to children more difficult, it also has the potential
to maintain population diversity and reduce the time spent
searching local optima. Since their programs exist in the
same search space, SGP may be the best direct alterna-
tive to TGP in hyper-heuristics. SGP has the potential to
find a good solution faster for a problem where the program
search space is found to have many sub-optimas. It may
also produce better results for a wider variety of problem
classes since it can benefit from the characteristics of other
GP types, such as introns, strong-typing, and the reuse of
data. However, these benefits may be hampered for certain
problems due to its lower locality and the possible destruc-
tion of good sub-trees caused by crossover.

1.2 Boolean Satisfiability Problem

The Boolean Satisfiability Problem (SAT) is a classic prob-
lem class in the field of computer science. It is popular as
a test problem due to its simple implementation and high
complexity, but is also notable due to its property of NP-
completeness, meaning that many other difficult problems
can be reduced to it. SAT solution instances are also par-
ticularly simple to represent. For all these reasons, it has
been chosen as the test problem on which to compare the
hyper-heuristic performance differential between the previ-
ously discussed GP types.

The SAT problem is defined as follows: given a Boolean
formula, determine if there is a set of values that the Boolean
variables can take on that will cause the function to evaluate
as true. Generally, determining this involves finding such a
set of values for the variables. Thus, in many contexts the
SAT problem is treated as simply finding those values if they
exist. A major sub-problem of SAT is called 3-SAT, which
restricts the form of the Boolean function to conjunctive
normal form with clauses of three variables: this results in
the function taking the form (z1VzaVas)A(zaVasVae)A. ..,
where x;’s can be reused or inverted. Any SAT problem can
be converted to 3-SAT in polynomial time, so solving 3-SAT
is effectively the same as solving SAT. For the purpose of this
paper, the algorithms generated by the hyper-heuristics will
be solving 3-SAT.

2. RELATED WORK

[20] provides a comparison of a number of local search al-
gorithms designed for SAT, which continually improve pro-
posed solutions using a fixed set of rules informed by under-
standing of the problem. Research has also been performed
on the use of evolutionary algorithms for solving SAT [21].
Hyper-heuristic approaches to the SAT problem have been
studied before [22, 23], but this paper is only using the SAT
problem as an environment to study different GP types in
hyper-heuristics, a subject for which there is little to no ex-
isting research, rather than attempting to improve on prior
SAT solver results.

Hyper-heuristics have typically employed GP, such as TGP
for competitively evolving Black Box Search Algorithms (BB-
SAs) [24], grammar-based LGP to find competitive tours for
the Traveling Salesman Problem [25], and GE for automat-
ically designing competitive evolutionary algorithms [26].
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Comparisons of multiple GP types on different problem
classes has not been widely explored. Perkis compares his
SGP to TGP using benchmarks by Koza in [3] for symbolic
regression, boolean majority on, and boolean even 3-parity
problems [9].

Oltean and Grosan compared different forms of linear-
style GP, including LGP and GE, on several numerical ex-
periments [27].

3. METHODOLOGY

In order to determine any difference in performance be-
tween the selected GP variants, each of the five were imple-
mented in a common framework which facilitated sharing as
much code as possible, in order to minimize differences in
performance due to implementation, rather than the intrin-
sic ability of the variants. While this does have the potential
to create bias by flattening out certain implementation de-
tails specific to individual GP types which improve their
performance, the alternative of attempting to maximize the
performance of each variant would similarly bias results by
allowing for uneven qualities of implementation. Each vari-
ant produces a representation of an individual which codes
for an algorithm that can be run against a SAT problem and
return a fitness, as well as rules for how to randomly gener-
ate, mutate, or recombine individuals of that representation
type.

3.1 SAT Problem Generation

The problems against which the variants are evaluated, as
well as a separate test set, are generated randomly by first
creating a random set of boolean variable values, and then
constructing clauses in the generated problem such that the
boolean values selected are a solution to the problem. This
guarantees that each problem is possible to solve.

3.2 Evaluating Individuals

Instead of requiring that an individual in the population
represent an entire SAT solver, it is assumed that the algo-
rithm will take the form of an iterative process which at each
step inputs and outputs a population of multiple sets of vari-
able assignments as proposed solutions to a SAT problem.
This reduces the amount of code that needs to be evolved
to just the actions to be performed during each step. In
order to evaluate an individual, its code is run against each
of a set of SAT problems several times, in order to deter-
mine that individual’s general performance rather than its
performance against a specific problem. On each run, an
initial population of SAT solutions is generated at random.
The individual’s code is then run with the initial population
as an input, which outputs a new population. This process
is then repeated with each step taking the previous step’s
output as an input. After the termination condition is met,
the fitness of the individual for that run is calculated as the
number of clauses of the SAT problem which are satisfied
by the best solution in the most recent step of the run. The
evaluated fitness of the individual is the average fitness of
all of its runs, minus a small factor of the amount of nodes
used to function as a parsimony pressure when applicable,
in order to mitigate bloat.

3.3 Meta-Evolution

Individuals are evolved through a generic GP algorithm
which after each generation evaluates the fitnesses of the



whole population by running them against several problems.
The fitnesses of the population are stored, as well as the fit-
ness of the best individual of the generation tested against
a larger test set of problems. The next generation’s popu-
lation is then generated primarily by recombination (with
parents selected through tournament selection from the pre-
vious generation), with small minorities generated by muta-
tion (also selected by tournament selection) and by trunca-
tion selection from the previous generation to ensure that the
best solutions survive to future generations. The methods
of generating the initial population and performing muta-
tion and recombination are dependent on the variant of GP
being tested.

3.4 Genetic Programming Nodes

Each GP variant employs the same set of algorithm nodes
which each take inputs and outputs of sets of SAT solutions
(except for terminal nodes which take no input). The nodes
often take parameters as well, but these are not treated as
inputs for GP in order to simplify the generated algorithms
and are instead randomly generated with values within a
certain range (1 to 100 for population sizes such as selection
operators, 0 to 1 for percentages like mutation rate) when
the nodes are first created. These values do not change af-
ter creation; mutation only affects parameters through fully
replacing the node. Each node is a self-contained algorithm
which has been extracted from existing SAT solvers. There
are no nodes for evaluation of solutions, instead they are
evaluated when their fitnesses are first required. Solution
fitness is determined by the number of clauses in the asso-
ciated MAXSAT problem which are satisfied by that solu-
tion. The selection of nodes was based on previous published
hyper-heuristic work [24].

3.4.1 Terminal Nodes

The population from the previous step in evaluation can
be input as a terminal node. Alternatively, a new randomly
generated population of a given size can also be input as a
terminal node.

3.4.2 Selection Nodes

Several options are given to select a subset of solutions
from a population: tournament selection, fitness-proportional
selection, truncation selection, and random subset. These
all have as a parameter the number of individuals to select.
Tournament selection also has the size of tournament as a
parameter. Truncation selection does not necessarily sort
the population beforehand; instead a separate sort node is
given.

3.4.3 Mutation Nodes

A number of mutation operations of varying complexity
are provided in order to allow an algorithm to modify solu-
tions. These are applied to each solution in the input pop-
ulation. A bitwise mutation operation is provided to allow
random changes to solutions at a given rate. There is also
a pair of greedy mutation operations: one checks all vari-
ables which could be flipped and flips the one which causes
the highest positive increase to solution fitness, if any, and
the other simply flips a random variable which will increase
fitness.

Also provided is a function which uses stepwise adaptation
of weights to select which variable to change: The solution
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stores a value for each clause in the problem representing
how long that clause has been unsatisfied. When the SAW
mutation node is called, it selects the clause which has been
unsatisfied for the longest time, and flips a random variable
in it. Then the counters are incremented by one for each
false clause and reset to zero for each true clause [28]. An
implementation of the related Novelty function [29, 20], a
result from studies of local search algorithms, is included as
well.

3.4.4 Other Nodes

In addition to the aforementioned sorting node, which
sorts the members of a population by number of satisfied
clauses, a set union node is also provided which will com-
bine two population sets into one. This allows for branching
in the algorithms generated. After each step in evaluation
of the algorithms, the population size is automatically trun-
cated if it exceeds a maximum size, in order to prevent slow-
down resulting from misuse of the union node.

3.5 Evolutionary Operators

Due to differences in the ways that the different genetic
programming variants represent their algorithms, different
evolutionary operators had to be used between some of the
different algorithms:

3.5.1 Tree-based GP

The TGP implementation uses the well-established ramped
half-and-half algorithm to generate individuals, which pro-
vides a combination of both full trees and smaller, more
diverse trees. Subtree mutation is used as a mutation op-
erator by replacing a random subtree with a new subtree
with depth equal to a gaussian random value centered on
the original subtree’s depth. The recombination operation
used simply replaces a random subtree on the parent with a
random subtree on a donor tree.

3.5.2 Linear GP

The LGP implementation generates individuals as a ran-
dom number of random nodes, up to a maximum size. The
mutation and recombination operators are designed in or-
der to be similar to the ones used in TGP: the mutation
operator replaces a random subsection of the program with
another one of a similar size to the original using a gaus-
sian random offset, and the recombination operator selects
a random subsection of a donor and places it randomly into
the parent, overwriting anything already using that section
and increasing the program length if necessary.

3.5.3 Cartesian GP

CGP’s unique representation does not allow for a lot of
variation in the design of operators, so individuals are cre-
ated by randomly selecting nodes to fill out the grid; muta-
tion randomly replaces nodes at a set rate, and recombina-
tion uses a uniform crossover.

3.5.4 Grammatical Evolution and Stack-based GP

GE and SGP both store their representations in a list (a
list of expansions and a list of nodes respectively), so this
implementation uses the same operations which are used for
LGP, for consistency.



3.6 Experimental Parameters

Experimental parameters were manually tuned; the high
computational cost of meta-evolution unfortunately made
a more exhaustive tuning of parameters prohibitive. The
training data set contained 3 problems, and the test set
contained 8, all of which were 3-SAT problems containing
2000 clauses of 500 variables. This problem size was chosen
so that only the highest-performing algorithms generated
would get perfect fitnesses, in order to better distinguish
the GP types. To increase result accuracy, the generated
algorithms were tested on each problem 3 times. The meta-
evolution for all GP types used a population size of 20 in-
dividuals, with future generations selected by tournament
selection with tournament size of 5. 70% of children were
generated through recombination and 20% through muta-
tion. The remaining 10% was taken by truncation selection
from the previous generation to ensure a small amount of
elitism. Runs were terminated after 40 generations. While
the small population size limits how much of the search space
can be visited, it is necessary due to the long execution time
of meta-evolution. However, with these parameters evolu-
tion generally converges within the 40 generation limit.

For the evaluation of individual algorithms generated by
the hyper-heuristic, the maximum population size was set
at 100 solutions (overly large populations were truncated),
though many algorithms used smaller sizes. These were
given 30 seconds of wall time to run on each evaluation.
The reason for the use of wall time rather than number of
evaluations was because the number of evaluations per node
did not correlate well with the actual computational cost
of executing those nodes. Thus, some nodes which were
computationally expensive, but did not make heavy use of
evaluations, might be unfairly selected for if only evaluations
were limited.

TGP used a parsimony pressure of 0.1 per node and a
soft maximum size of 20 nodes; individuals which exceeded
that maximum were heavily penalized, but otherwise treated
normally. Fitnesses recorded in the results section do not in-
clude these penalties. The initial population was generated
to a depth of 5. During mutation, a normal function with
standard deviation 2 was used to determine the change in
depth of replaced segments. LGP used 3 registers, one of
which was designated as an output register. It used a parsi-
mony pressure of 0.1 per node and had a soft maximum size
of 20 nodes. The initial population was generated with 10
nodes. During mutation, a normal function with standard
deviation 2 was used to determine the change in size of re-
placed segments. CGP individuals had 20 layers of width 3,
with the option to take input from nodes at most 5 layers
higher. Due to the fixed maximum size of individuals, no
penalties were used. The mutation rate used was 0.1. GE
used a grammar equivalent to what was allowed for TGP.
It used a parsimony pressure of 0.1 per expansion and had
a soft maximum size of 50 expansions. The initial popula-
tion was generated with 30 expansions. This approximately
corresponds to an equivalent amount of nodes as was given
for the other variants, because the expansions also encoded
parameters for the nodes. The mutation function used a
standard deviation of 5 for similar reasons. SGP used a par-
simony pressure of 0.1 per node and had a soft maximum
size of 20 nodes. The initial population was generated with
10 nodes. The mutation function used a standard deviation
of 2.
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4. RESULTS
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Figure 1: Box plot describing the average number of
clauses satisfied by the best individuals of each run,
on the test set.

Tree Linear| Cart. | Gram.| Stack | Rand.
Train. | 1995.8| 1980.9| 1991.0| 1980.0| 1996.7| n/a
S.D. | (6.81) | (29.01) (9.50) | (41.20) (3.91) | n/a
Test | 1987.9| 1962.4| 1969.4| 1928.1| 1985.5| 1750.2
S.D. | (14.78) (43.43) (23.84)| (65.03) (5.33) | (4.80)
Table 1: Average performance of algorithms on

training and test sets (out of 2000), with standard
deviations below their respective values in parenthe-
ses; Rand. indicates the average number of clauses
satisfied by random SAT solutions

After running each GP variant thirty times, the best in-
dividual from each run was evaluated three times against
the test set. The resulting average fitnesses are shown in
Figure 1, with a score of 2000 indicating that the best algo-
rithm found was able to repeatedly find satisfying solutions
to all of the test problems after 30 seconds. These results
were compared to their reported performance on the train-
ing data sets used in the course of GP. While their perfor-
mance on the training sets was somewhat inflated, as this
was the value which they were selected for, the closeness of
the algorithms’ performance on a set they were not bred to
solve (usually within 10-20 fitness points) indicates that the
fitness results are indicative of general capability.

While the fitness scores listed are out of 2000, the fact that
all solutions produced satisfied above 1800 clauses does not
indicate that the algorithms all performed well. Random
assignments of boolean variables were shown to satisfy an
average of 1750 clauses. This is due to the nature of the
problem: each clause can be satisfied in one of three ways,
and while this makes it trivial to satisfy most of the clauses,
satisfying all or close to all of them requires satisfying each
clause ways which do not conflict with each other. Thus
the amount of clauses an individual satisfies, their fitness
score, is not linearly correlated with the actual performance
of individuals on the SAT problem.

Statistical analysis of the data through the use of two-
sample t-tests for sample means (o = 0.05) shows that TGP
and SGP perform similarly to each other, as do LGP and
CGP. However, there is a statistically significant difference
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between these two pairs as well as between each of them and
GE. Thus, the choice of GP type can make a real difference
in the performance of a hyper-heuristic for the SAT problem.
TGP and SGP give the best results, followed by LGP and
CGP, followed by GE.

S. CONCLUSIONS

TGP and SGP performed very similarly to each other as
expected. This is because SGP generally functions as a lin-
early stored postorder tree, and thus with the exception of
SGP’s capacity to contain introns, have an identical search
space. Many of the generated algorithms between the two
were very similar in shape. While the mapping is less exact,
the graph-based representations of LGP and CGP also have
similar search spaces and performed similarly as expected.
The differences between TGP and both LGP and CGP’s
graph search spaces appear to be largely responsible for the
performance disparity. None of the solutions generated by
the hyper-heuristics make heavy use of branching, with most
solutions having zero or one union nodes. The solutions in
the two graph GPs were found to almost never re-use results,
which negates one of their primary advantages over the tree-
based approaches. This leaves them with a more complex set
of solutions to search through with nothing more to show for
it. GE likely failed for a similar reason: the use of a gram-
mar is intended to allow the use of prior knowledge of the
shape of solutions to constrain the search space. The use of
a generic grammar that does not constrain the search space
results in little benefit at the cost of a larger genotype whose
genes are less meaningful out of context.

These results apply specifically to the use of these GP
types as hyper-heuristics for the SAT problem, but the de-
tection of significant differences between their performance
has further-reaching implications. The existence of prob-
lems for which the choice of GP matters indicates that users
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of hyper-heuristics need to carefully select their GP type for
their problem in order to get the best results.

6. FUTURE WORK

While the purpose of this study was to determine whether
there exist problems which exhibit a significant hyper-heuristic
performance differential between different types of GP —
which was shown to be the case — a perhaps more inter-
esting question is whether this differential still holds when
all GP types are highly tuned, which is the next logical step
in the line of inquiry started in this paper.

Also, while this study was not concerned with the relative
performance of hyper-heuristic generated SAT solvers com-
pared to existing SAT solvers, this is an obvious next ques-
tion to ask. Therefore, another logical next step is to com-
pare the performance of hyper-heuristics employing highly
tuned versions of all five GP types reported here, with other
hyper-heuristic generated SAT solvers [22, 23] as well as the
state-of-the-art in SAT solvers.

The SAT problem is a simple problem which is effective
for testing hyper-heuristics on, but features of it such as the
low amount of branching that occurs in most solutions and
the lack of any obvious and useful grammatical construc-
tions mean that not all of these variants are able to show
their strengths. Testing these against each other on a larger
sampling of problems would give a better understanding of
how these variants perform in general, and may be expected
to provide insight in how to match problems to the GP types
best suited for them.

Additionally, each of these GP types were tested in a fairly
basic formulation. This was done deliberately in order to
ensure a more even comparison focused on the fundamental
properties of each GP type. However, there exist modifica-
tions and improvements to these core GP types which would
likely be used in many real-world applications and it would



be useful to see how these affect GP performance to get
results more applicable to realistic scenarios.
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