
Hyper-Heuristics: A Study On Increasing Primitive-Space

Matthew A. Martin
Natural Computation Laboratory

Department of Computer Science
Missouri University of Science and Technology

Rolla, Missouri, U.S.A.
mam446@mst.edu

Daniel R. Tauritz
Natural Computation Laboratory

Department of Computer Science
Missouri University of Science and Technology

Rolla, Missouri, U.S.A.
dtauritz@acm.org

ABSTRACT
Practitioners often need to solve real world problems for
which no custom search algorithms exist. In these cases
they tend to use general-purpose solvers that have no guar-
antee to perform well on their specific problem. The rela-
tively new field of hyper-heuristics provides an alternative
to the potential pit-falls of general-purpose solvers, by al-
lowing practitioners to generate a custom algorithm opti-
mized for their problem of interest. Hyper-heuristics are
meta-heuristics operating on algorithm space employing tar-
geted primitives to compose algorithms. This paper explores
the advantages and disadvantages of expanding a hyper-
heuristic’s primitive-space with additional primitives. This
should allow for an increase in quality of evolved algorithms.
However, increasing the search space of a meta-heuristic
almost always results in longer time to convergence and
lower quality results for the same amount of computational
time, but also all too often lower quality results at conver-
gence, potentially making a problem impractical to solve for
a practitioner. This paper explores the scalability of hyper-
heuristics as the primitive-space is increased, demonstrating
significantly increased quality solutions at convergence with
a corresponding increase in convergence time. Additionally,
this paper explores the impact that the nature of the added
primitives have on the performance of the hyper-heuristic.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; I.2.2 [Artificial Intelligence]: Au-
tomatic Programming

Keywords
Hyper-Heuristics, Black-Box Search Algorithms, Evolution-
ary Algorithms, Genetic Programming, Scalability

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11 - 15, 2015, Madrid, Spain
c© 2015 ACM. ISBN 978-1-4503-3488-4/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739482.2768457

1. INTRODUCTION
Practitioners are frequently faced with increasingly com-

plex problems for which no polynomial time, guaranteed op-
timal solvers exist and for which off-the-shelf general-purpose
solvers, whether they be deterministic or stochastic, do not
provide satisfactory performance. When these problems need
to be repeatedly solved, it may be cost-effective to create
a custom algorithm which, unlike general-purpose solvers,
does not trade off performance on specific problems for gen-
erality. Hyper-heuristics are meta-heuristic algorithms which
search algorithm-space employing primitives typically de-
rived from existing algorithms, automating the creation of
custom algorithms. The highest possible level primitives
are complete algorithms, while the lowest possible level are
a Turing-complete set of primitives. The former translates
into automated algorithm selection, while the latter results
in an intractable search of complete algorithm space (which
grows exponentially with the number of operations). In or-
der to minimize the search space, the highest primitive level
which is sufficient to represent the optimal custom algorithm
is ideal. However, determining that level is an open prob-
lem in hyper-heuristics. Additionally, adding primitives to
an existing level increases the search space, thus increasing
coverage at the expense of computational time.

This paper explores the advantages and disadvantages of
increasing the search space of a hyper-heuristic by expand-
ing its primitive space. The study reported here analyzes the
performance of a hyper-heuristic, which has been previously
demonstrated to produce high-quality Black-Box Search Al-
gorithms (BBSAs) for the Deceptive Trap Problem [11, 13],
on a more complex benchmark which has the necessary char-
acteristics in order to reveal nuances in the trade-off between
search space size (smaller is preferable) and coverage (larger
is preferable).

This paper also examines how the nature of the added
primitives impacts the performance of the evolved BBSAs.
Two distinct sets of primitives are added to the previously
employed set of primitives. One set comprises low-level
“statement primitives” in the form of a set of “auxiliary”
nodes that control program flow, such as loops and branch-
ing statements. The second set comprises “derived primi-
tives” extracted from existing algorithms such as Simulated
Annealing and Steepest Ascent Hill-Climber. How the na-
ture of the primitives affects the trade-off between increased
search space and higher quality BBSAs is explored.

The goal of this research is to demonstrate that while
adding primitives to a hyper-heuristic’s primitive space in-
creases the search space, which requires additional time to

1051

convergence, it also increases the total number of high-quality
algorithms produced, as well as increasing the quality of the
best evolvable algorithms.

2. RELATED WORK
Recent efforts have applied hyper-heuristics to problems

such as the Timetabling Problem [19], bio-informatics [20],
and multi-objective optimization [9]. Much of the previ-
ous work on employing evolutionary computing to create
improved BBSAs has focused on tuning parameters [18] or
adaptively selecting which of a pre-defined set of primitives
to use and in which order [16]. The latter employed Multi
Expression Programming to evolve how, and in what or-
der, the Evolutionary Algorithm (EA) used selection, muta-
tion, and recombination. This approach used four high level
primitives: Initialize, Select, Crossover, and Mutate. These
primitives were combined in various ways to evolve a better
performing EA. Later this approach was also attempted em-
ploying Linear Genetic Programming [2, 3, 15]. While this
allowed the EA to identify the best combination of available
selection, recombination, and mutation primitives to use for
a given problem, it was limited to a predefined structure.

A more recent approach to evolving BBSAs employed
Grammatical Evolution (GE) [7] which uses a grammar to
describe structure, but was constrained to the primitives of
the canonical EA model. In later work [8], due to the com-
putational load necessary for evaluating algorithms, a study
was presented on how restricting the computational time for
evaluating the evolved algorithms affects the structure.

Burke et al. described a high-level approach to evolving
heuristics [1]. That approach was extended to evolve en-
tire BBSAs of indiscriminate type [11, 12]. The research in
this paper builds upon this work by analyzing the advan-
tages and disadvantages of increasing the primitive-space
the hyper-heuristic has access to. This paper will also look
at how the nature of the added primitives affects the perfor-
mance of the hyper-heuristic. This analysis is similar to an
effort to determine the effect of varying primitive sets has
on the performance of selection hyper-heuristics [14], though
expanded to a generic hyper-heuristic.

3. METHODOLOGY
The focus of the research reported in this paper is to

demonstrate the ability of hyper-heuristics to scale as the
number of primitives available is increased. Increasing the
number of primitives available to a hyper-heuristic poten-
tially allows it to create higher quality algorithms and tackle
more difficult problems. This section will discuss the base
hyper-heuristic employed in the reported experiments along
with the expanded set of primitives given to the hyper-
heuristic to show its scalability.

3.1 Parse Tree
In order to condense the quantity of code needed to be

evolved, the common iterative nature of BBSAs is exploited
by representing a single iteration of a BBSA rather than the
entirety of the algorithm. A parse tree is used to represent
the iteration for the evolutionary process such that standard
Genetic Programming (GP) primitives will work effectively.

Each non-terminal node will take one or more sets of so-
lutions (including the empty set or a singleton set) from its
child node(s), perform a primitive on the sets(s) and then

return a single set of solutions. The parse tree is evaluated
in a post-order fashion and the set that the root node re-
turns will be stored as the ‘Last’ set which can be accessed in
future iterations to facilitate population-based BBSAs. The
terminal nodes can either be sets of previous solutions or a
set of randomly generated solutions. The sets include the
‘Last’ set as well as auxiliary sets which will be explained
in Section 3.2.6. Examples of a BBSA represented both as
a parse tree and as source code are shown in Figure 1 and
Figure 2 respectively.

3.2 Nodes
The trees’ non-terminal nodes are primitives extracted

from existing algorithms such as Evolutionary Algorithms,
Simulated Annealing (SA), and Steepest Ascent Hill-Climbing
(SAHC). The nodes are broken down into selection, vari-
ation, set-manipulation, terminal, and utility nodes. The
following subsections describe the primitives of each type
employed in the experiments reported in this paper.

3.2.1 Typing
Many BBSA primitives were designed to perform on a

specified number of solutions. Typically in EAs, only two
solutions are used for recombination. To allow for nodes
to have requirements on the number of solutions that are
passed, typing was added to the GP. In addition to the reg-
ular sets that have been employed previously, a singleton
set type has been added. While the regular set type may
be a singleton in some cases, the singleton set type must
be a singleton set. Thus if a node needed two solutions, it
would have two child nodes that each have the requirement
to return the singleton set type. Some nodes can return
either the regular set type or the singleton set type depend-
ing on which is needed. These situations are described in
Section 3.3. In addition to the added flexibility that typ-
ing allows, it can also be used to limit the solution set size.
Certain primitives can cause the size of the solution sets to
increase exponentially if they were applied to a non-singleton
set. For instance, if multiple ‘Generate Neighborhood’ prim-
itives were chained together without a selection primitive
between them, the resulting set would grow exponentially.
By forcing the ‘Generate Neighborhood’ node to take a sin-
gleton set, the size of the resulting set is limited.

3.2.2 Selection Nodes
Three principal selection primitives were employed in the

experiments. The first of these is k-tournament selection
with replacement. This node has two parameters, namely k,
the tournament size, and count which designates the number
of solutions passed to the next node. The second selection
primitive employed is truncation selection. This primitive
takes the count best solutions from the set passed to it.
The third selection primitive employed is the random subset
primitive which takes count random solutions from the set
passed to it. All of the selection nodes take the regular
set type and can either return the singleton set type or the
regular set type.

3.2.3 Variation Nodes
The original hyper-heuristic used only three types of vari-

ation primitives. The first of which is standard bit-flip mu-
tation. This primitive has a single argument, rate, which
is the probability that a given bit is flipped. The second

1052

Figure 1: Example Parse Tree

Last = [initialize population]
evaluate(Last)
A = []
while termination condition not met do

X = kTournament(Last, k = 5,count =25)
A = X
Y = randInd(count = 5)
Y = A + Y
Y = kTournament(Y,k = 10, count = 15)
Y = uniformRecombination(Y, count = 15)
Z = X+Y
Z = mutate(Z, rate = 5%)
evaluate(Z)
Last = truncate(Z, 24)

end while
evaluate(Last)

Figure 2: Example Parse Tree Generated Code

original variation primitive is diagonal crossover [4], which
returns the same number of solutions as are passed in. This
variation node has one parameter, n, which determines the
number of points used by the crossover primitive. The third
original variation primitive is standard uniform recombina-
tion, which has one child node and returns a regular set
type. It has a single argument, count, which is the number
of solutions that it creates by randomly selecting a parent’s
gene for each position in the bit string.

The new version of the hyper-heuristic reported in this pa-
per, employs all three the original variation primitives, and
adds a fourth one, namely a second uniform recombination
primitive which has two child nodes and requires that each
of them return a singleton set type. This primitive creates
two new solutions using the standard two-parent uniform re-
combination. Both uniform recombination primitives return
a regular set type. The second uniform recombination prim-
itive was added to determine if a typed variation primitive
would be more useful than a generic variation primitive.

Additional primitives were added to the set of primitives
to analyze how increasing the number of primitives from ex-
isting BBSAs affects the performance of the hyper-heuristic.
From the SA algorithm two primitives were extracted. The
first is the ‘tempChange’ primitive, which modifies the tem-
perature parameter for the SA algorithm. The temperature
parameter is stored at the global level such that all nodes
have access to the same temperature. This primitive has a
single parameter, change, which dictates how the temper-
ature is changed when the node is called. This parameter
is a floating point number which is added to, or subtracted
from, the current temperature. The initial temperature is
set to a constant value for each run of the BBSA. The second
primitive from the SA algorithm is named ‘tempFlip’ which
performs the SA variation primitive based on the current
global temperature. Both of these nodes can take either a
singleton or regular set and return the same set that they
are passed. There were also two primitives taken from the
SAHC algorithm. The first is the ‘greedyFlip’ primitive.
This primitive takes a singleton set and performs one step
of SAHC by generating the neighborhood of the solution
passed in and selecting the best solution from the neighbor-
hood or the original individual and returns it as a singleton
set. The second primitive is the ‘Generate Neighborhood’
function. This function takes a singleton set and generates
the neighborhood of that individual and then returns the
neighborhood and the original solution as a regular set. The
neighborhood is defined by all solutions that vary by exactly
one bit.

3.2.4 Utility Nodes
The original hyper-heuristic used only one utility primi-

tive. This was the evaluation node which evaluates all of the
solutions that are passed into it. This node can take either
a singleton set type or a regular set type and returns the
same type that was passed to it.

The following primitives are added to the set of primitives
to analyze how increasing the number of utility primitives
affects the performance of the hyper-heuristic. The first is
the ‘for’ loop which runs its sub-tree n times, n being one of
its parameters, and returns the combination of the results
from those iterations. This node requires that its sub-tree
return a singleton set type and it returns a regular set type.
The second utility primitive is a conditional node called “if

1053

converged”. If the current run of the BBSA has not found
a better solution in conv iterations, conv being one of its
parameters, it will run its right sub-tree, else it will run its
left sub-tree. This node also has the option to reset the
convergence counter to zero giving it the option to be run
a single time at convergence. This node can take either
the regular set type or the singleton set type and returns
a regular set type. The final utility primitive is another
conditional node that runs its right sub-tree chance percent
of the time, chance being one of its parameters, and its left
sub-tree 1 − chance percent of the time. This node can
take either the regular set type or the singleton set type and
returns a regular set type.

3.2.5 Set-Manipulation Nodes
The experiments reported in this paper employ two dis-

tinct set primitives. The first is the union primitive. This
node combines the two sets of solutions passed into it and
returns it. This node can take either the regular set type
or the singleton set type. It always returns a regular set
type. The other primitive is the save primitive called “Make
Set”. This primitives saves either copies or pointers to the
solutions passed into it. This set can be used elsewhere in
the algorithm as explained in Section 3.2.6. This node can
take either the regular set type or the singleton set type and
returns the same type that it was passed.

3.2.6 Terminal Nodes
The terminal nodes in this representation are sets of so-

lutions. They can either be the ‘Last’ set returned by the
previous iteration, a set that was created by the save primi-
tive, or a set of randomly created solutions. The saved sets
persist from iteration to iteration such that if a set is refer-
enced before it has been saved in a given iteration, it will
use the save from the previous iteration. At the beginning
of each run, the saved sets are set to the empty set and the
‘Last’ set is set to a randomly generated population of so-
lutions. Both of these terminal nodes return a regular set
type. The terminal that generates a random set of solutions
creates a set of n solutions, n being one of its parameters,
and returns that to its parent node. This terminal node can
return either a singleton set type or a regular set type.

3.3 Meta-Algorithm
GP is employed to meta-evolve the BBSAs. The two pri-

mary variation primitives employed are the sub-tree crossover
and mutation, altered to make the maximum number of
nodes being added a user defined value. Both of these prim-
itives had to be modified to account for the typing that was
introduced into the GP. The sub-tree crossover was modified
to ensure that the two sub-trees that were crossed over both
returned the same type of set. In the rare situation that one
tree used only the singleton set type and the other tree used
only the regular set type, the alternate mutation described
below is used on one of the trees chosen randomly. The sub-
tree mutation was altered to ensure that when a node was
added that it was guaranteed to have the return type that
its parent node needed. Another mutation primitive was
added to this algorithm that with equal chance randomizes
the size of the initial ‘Last’ set or selects a random node
from the parse-tree and randomizes the parameters if it has
any; if the node does not have any parameters, the muta-
tion is executed again. The alternate mutation primitive is

guaranteed not to change the type of a node that returns a
singleton set type.

The evaluation time of the evolved BBSAs is tied to the
certainty in the fitness of the BBSA as well as the generality
of the BBSA. To increase the certainty in the fitness of the
BBSA the number of runs must be increased. To reduce
the probability of a BBSA over-fitting during evolution, the
BBSA must be trained using multiple problem configura-
tions. Thus, to create a better BBSA, more time must be
invested in the evaluation of the BBSAs.

This large evaluation time can cause the hyper-heuristic
to run extremely slow. To remedy this problem, a Paral-
lel Evolutionary Algorithm (PEA) strategy was adopted to
allow for the evaluations to be distributed across multiple
machines. To ensure the most efficient use of the comput-
ing resources, an Asynchronous PEA was used [10]. The
Asynchronous PEA uses a master-slave model in which the
master node generates new BBSAs to be evaluated and the
slave nodes evaluate those BBSAs. Using this Asynchronous
PEA the speed-up granted from the additional CPUs is near
linear [10].

3.3.1 Black-Box Search Algorithm
Each individual in the GP population encodes a BBSA.

To evaluate the fitness of an individual, its encoded BBSA
is run for a user-defined number of times on each of a set of
problem configurations. Each run of the BBSA begins with
population initialization, followed by the parse-tree being
repeatedly evaluated until one of the termination criteria
is met. Once a run of the BBSA is completed, the ‘Last’
set and all saved sets are evaluated to ensure that the fi-
nal fitness value is representative of the final population.
Logging is performed during these runs to track when the
BBSA converges and what the average solution quality and
best current solution is. The fitness of a BBSA is estimated
by computing the fitness function that it employs on the
solutions it evolves averaged over all of the runs.

Learning conditions were added to terminate poor solu-
tions before they are fully evaluated in order to amelio-
rate the very computationally intensive nature of hyper-
heuristics. This is accomplished by applying four limiting
factors. First of all, if a BBSA exceeds the maximum num-
ber of evaluations, then it will automatically be terminated
mid-run. Secondly, there is a maximum number of itera-
tions that the BBSA may perform before it will halt. If this
iteration limit were not put in place, it would take BBSAs
with very low evaluations per iteration much longer to be
evaluated. The third method terminates algorithms which
have converged based on not having improved in i iterations.
Finally, if the algorithm requires more than t seconds it is
terminated and given no fitness. This is done to help en-
sure that algorithms evolved complete their execution in a
reasonable amount of time.

3.4 External Verification
To ensure that the performance of the evolved BBSA is

consistent with its performance reported during evolution,
executable code is generated to represent the parse tree as
a stand-alone BBSA. This is done to verify external to the
hyper-heuristic system employed, that the performance that
the GP reports for a given BBSA is accurate. The generated
code is used in all of the experiments to ensure unbiased
execution of the BBSAs. An example of a parse tree and

1054

Table 1: Primitive Breakdown
Base Primitives +Algorithms +Utility Full

Bit-Flip Mutation Base Primitives Base Primitives Base Primitives
Uniform Recombination Change Temperature For Loop +Algorithms

Uniform Recombination(Typed) SA Variation If Converge +Utility
Diagonal Recombination Greedy Flip Left or Right

Union Generate Neighborhood
Make Set

k-Tournament Selection
Truncation Selection

Random Subset
Evaluation Node

Random Individual Terminal
‘Last’ set Terminal

Persistent set Terminal

Table 2: Problem Configurations
Problem Set N K

Set 1 30 5
Set 2 40 5
Set 3 50 5

pseudo-code generated can be found in Figure 1 and Figure 2
respectively. This verification was employed for the testing
of the BBSAs in all experiments.

4. EXPERIMENTS
To analyze how the addition of more primitives affects the

performance of the hyper-heuristic, four sets of experiments
were performed. The first ran the base hyper-heuristic with-
out the addition of any primitives. The second ran the
hyper-heuristic with the addition of the nodes extracted
from the SA and SAHC algorithms. The third ran the
hyper-heuristic with the addition of the utility primitives.
The fourth ran the hyper-heuristic with the addition of all
of the new primitives. A summary of the primitives that are
included in each of the experiments can be seen in Table 1

The data used to determine the presence of these char-
acteristics was gathered from running the single and multi-
objective algorithms 30 times each. All four sets of experi-
ments were run using three different sets of three instances
of the NK-Landscapes benchmark problem [6] each. The
parameters of these three sets can be seen in Table 2. These
parameters were chosen to be consistent with a recent pub-
lication using NK-Landscapes [5]. The data used to analyze
the scalability of this hyper-heuristic was gathered by run-
ning each problem configuration 10 times. Once all 10 runs
were completed, external verification was run on the best
BBSA produced by each run. During the external verifica-
tion, each BBSA was run 30 times for 100,000 evaluations
or until convergence.

All of the experiments were conducted under the same
settings. The meta-algorithm was run for 5000 evaluations.
The initial population consisted of 100 individuals and each
generation 50 new individuals were created. k-tournament
selection with replacement and k = 8 was employed for par-
ent selection. The sub-tree crossover and mutation primi-

Table 3: GP Configurations
Parameter Value
Evaluations 5000

Runs per Problem Instance 5
Initial Population 100

Children per Generation 50
k-Tournament 8

Sub-Tree Crossover Probability 47.5%
Sub-Tree Mutation Probability 47.5%
Alternate Mutation Probability 5%

Alternate Mutation Depth 5
Maximum Time(sec) 90
Maximum Iterations 10,000

Maximum Evaluations in BBSA 100,000

tives had 30% chance of being used while the alternate mu-
tation had a probability of 40%. The maximum time for the
evaluation of a BBSA was 90 seconds, the maximum num-
ber of iterations was 10,000, and the maximum number of
evaluations in the BBSA was 100,000. The meta-algorithm
parameter settings are summarized in Table 3. Due to the
high computational cost of running hyper-heuristics, only
minimal tuning of the meta-algorithm was feasible.

The BBSAs had certain parameters that related to the
ranges of the parameters that some nodes have. Each of
the integer parameters ranged from 1 to 25, except for the
convergence conditional node which ranged from 5 to 25.
The bit-flip mutation nodes parameter rate ranged from 0
to 1.0. The floating point parameter on the ‘tempChange’
node ranged from -3.0 to 3.0. The initial population ranged
from 1 to 50 solutions. A detailed list of all of the parameter
ranges is shown in Table 4.

5. RESULTS
The first results gathered were to determine if there was a

significant improvement in fitness of the BBSAs when addi-
tional operations were added to the hyper-heuristic. To de-
termine this, the Wilcoxon signed-rank test was performed
to determine if a statistical difference existed. In all of these
tests α was set to be 0.05. The results of these tests can

1055

Table 4: Black-Box Search Algorithm Settings
Node Parameter Range
N/A Initial Population [1,50]

k-Tournament k [1,25]
* count [1,25]

Random Subset count [1,25]
Truncation count [1,25]

Bit-Flip rate [0,1]
Uniform Recombination count [1,25]
Diagonal Recombination points [1,25]

Change Temperature change ,[-3,3]
If Converge conv [25,50]

Left or Right rate [0,1]
For loop iterations [1,25]

Random Individuals count [1,25]

Table 5: Rank-Sum Results of Experiment Compar-
ison

Base +Utility +Algorithm
+Utility (∼,∼,+) X X

+Algorithm (+,+,+) (+,+,∼) X
+Full (+,+,+) (+,+,∼) (+,∼,∼)

be seen in Table 5. This table shows how a given set of
primitives compared to another. Each entry is a tuple of
symbols that convey the relationship between the perfor-
mance of the experiments on the three problem configura-
tions (N = 30, N = 40, N = 50). A + symbol indicates
that the experiment on the row performed statistically bet-
ter than the experiment in the column on a given problem
configuration. A − symbol indicates that the experiment on
the row performed statistically worse than the experiment
in the column on a given problem configuration. A ∼ sym-
bol indicates that there was no statistical difference between
how the two experiments performed. A X indicates that this
entry is duplicate information found elsewhere on the table.

The box-plots in figures 3 through 5 provide a visual com-
parison of the experiments. The impact of the difficulty of
the problem configuration on the different experiments is vi-
sualized in Figure 6. The performance of the hyper-heuristic
decreases as N is increased, which is to be expected as in-
creasing N increases the difficulty of the problem configura-
tion.

6. DISCUSSION
An important trade-off, when analyzing the increase in

genetic material of a hyper-heuristic, is that between the
average performance of the BBSAs and the size of the search
space. The size of the search space can be approximated
by the variance of the distribution of BBSA fitnesses. The
larger the variance is, typically the larger the search space
is. Obviously, the larger the mean fitness is, the better the
hyper-heuristic can perform; however, if the variance of the
distribution of BBSAs is large, this indicates that the search
space may be much too large to easily traverse.

This assumption can be reinforced by analyzing the dif-
fering results between adding utility primitives versus al-

Figure 3: This figure shows a box-plot of the four
experiments with n = 30, where the labels along the
x axis correspond to the experiments described in 1

Figure 4: This figure shows a box-plot of the four
experiments with n = 40, where the labels along the
x axis correspond to the experiments described in 1

Figure 5: This figure shows a box-plot of the four
experiments with n = 50, where the labels along the
x axis correspond to the experiments described in 1

1056

Figure 6: Graph of the trend of the four experiments
as the problem configurations increases in difficulty

gorithmic primitives. The algorithmic primitives that were
included were all unary primitives, and two of the three util-
ity primitives were binary primitives. This means that the
increase in search space caused by adding the utility prim-
itives was much more significant than the increase caused
by adding the algorithmic primitives. This is supported
when analyzing the results of the experiments in figures 3
through 5. The best BBSA found in the ‘+Utility’ experi-
ments were on par with the best BBSAs found in the ‘+Al-
gorithm’ experiments. However, the difference between best
and worst BBSAs is much larger in the ‘+Utility’ exper-
iments likely due to the greater increase in search space.
This is reinforced when including the ‘Full’ experiments in
this analysis. The ‘Full’ experiments had a larger difference
between best and worst BBSAs

While the increase in search space caused by the increase
in genetic material does increase the difficulty in finding
good BBSAs, the quality of the best BBSA found does in-
crease when using more genetic material compared to the
‘Base’ experiment. In all problem configurations, the best
BBSA found in experiments ran with more genetic material
performed better than the best BBSA found in the ‘Base’
experiment. This helps the argument that increasing the
genetic material does indeed allow for the hyper-heuristic to
find better BBSAs.

The difficulty of the problem configuration did not uni-
formly affect the performance of the hyper-heuristic. As can
be seen in Figure 6, as the difficulty of the problem config-
uration was increased, the performance of each experiment
decreased which was expected. However, the performance of
the ‘+Util’ experiment did drastically increase in relation-
ship to the other three experiments. This result, however,
could not be explained and may be caused solely by the
inherent randomness in hyper-heuristics.

7. CONCLUSIONS
This paper is a first investigation of the effects that the

amount and nature of genetic material has on the perfor-
mance of hyper-heuristics. Expanding the amount of genetic
material increases the chance that the genetic material of the
global optimal solution can be represented. However, this
also enlarges the search space which makes it more difficult

to find the most optimal representable solution. In the cases
examined, this trade-off was beneficial as the hyper-heuristic
was able to find more optimal solutions when provided with
additional genetic material. If at some point this trade-off
no longer is beneficial, then reducing/partitioning the prim-
itives may become useful [17]. It was also found that the
arity of the genetic material can have a large impact on the
increase in search space. It was seen that when primitives
with an arity of two were added, they caused a much larger
increase in search space compared to primitives with an arity
of one.

The research reported in this paper does show that ex-
panding the amount of genetic material can cause scalability
issues for hyper-heuristics, as additional run-time is needed
to converge. However, these experiments were run for only
5,000 evaluations, which is very short compared to the typ-
ical maximum number of evaluations employed by evolu-
tionary algorithms. This restriction is driven by the high
computational cost of evaluating a BBSA. The use of paral-
lel evolutionary algorithms can drastically reduce the total
run time, allowing for experimentation with higher numbers
of evaluations.

8. FUTURE WORK
This paper has demonstrated the limitations of scaling the

genetic material in hyper-heuristics. The next step to bet-
ter analyze these limitations is to do an in depth study on
how much longer hyper-heuristics need to be run to yield
converging results. However, if the results converge on non-
optimal solutions, then the focus should shift to increasing
diversity. Other paths of research include a methodology for
creating lower level primitives from existing primitives. In
this paper, primitives were extracted from EAs, Simulated
Annealing, and Steepest Ascent Hill-Climbers. The same
process of extracting primitives can be applied to other al-
gorithms as well as the primitives that we have already ex-
tracted. This process could be continued until it yielded a
Turing-Complete set of primitives which could then create
all BBSAs. However, the research in this paper shows that
as the primitive set gets larger, it becomes more difficult to
find high quality BBSAs. The goal then would be to identify
the set of primitives with the optimal balance between cov-
erage of high quality BBSAs and minimizing the primitive
search space.

Acknowledgment
This work was generously supported by Sandia National
Laboratories.

9. REFERENCES
[1] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa,

E. Ozcan, and J. R. Woodward. Exploring
Hyper-heuristic Methodologies with Genetic
Programming. In C. Mumford and L. Jain, editors,
Computational Intelligence, volume 1 of Intelligent
Systems Reference Library, pages 177–201. Springer,
2009.

[2] L. Dioşan and M. Oltean. Evolutionary Design of
Evolutionary Algorithms. Genetic Programming and
Evolvable Machines, 10(3):263–306, Sept. 2009.

[3] L. S. Diosan and M. Oltean. Evolving Evolutionary
Algorithms Using Evolutionary Algorithms. In

1057

Proceedings of GECCO 2007 - Genetic And
Evolutionary Computation Conference, GECCO ’07,
pages 2442–2449, New York, NY, USA, 2007. ACM.

[4] A. E. Eiben and C. H. van Kemenade. Diagonal
Crossover in Genetic Algorithms for Numerical
Optimization. Journal of Control and Cybernetics,
26(3):447–465, 1997.

[5] B. W. Goldman and D. R. Tauritz. Supportive
Coevolution. In Proceedings of GECCO 2012
Companion - Genetic And Evolutionary Computation
Conference, GECCO Companion ’12, pages 59–66,
New York, NY, USA, 2012. ACM.

[6] S. A. Kauffman and E. D. Weinberger. The NK model
of rugged fitness landscapes and its application to
maturation of the immune response. Journal of
theoretical biology, 141(2):211–245, 1989.

[7] N. Lourenço, F. Pereira, and E. Costa. Evolving
Evolutionary Algorithms. In Proceedings of GECCO
2012 - Genetic And Evolutionary Computation
Conference, GECCO Companion ’12, pages 51–58,
New York, NY, USA, 2012. ACM.

[8] N. Lourenço, F. B. Pereira, and E. Costa. The
Importance of the Learning Conditions in
Hyper-heuristics. In Proceeding of the Fifteenth
Annual Conference on Genetic and Evolutionary
Computation Conference, GECCO ’13, pages
1525–1532, New York, NY, USA, 2013. ACM.

[9] M. Maashi, G. Kendall, and E. Özcan. Choice
function based hyper-heuristics for multi-objective
optimization. Applied Soft Computing, 28:312–326,
Mar. 2015.

[10] M. A. Martin, A. R. Bertels, and D. R. Tauritz.
Asynchronous Parallel Evolutionary Algorithms:
Leveraging Heterogeneous Fitness Evaluation Times
for Scalability and Elitist Parsimony Pressure. In
Proceeding of the Seventeenth Annual Conference
Companion on Genetic and Evolutionary
Computation, GECCO ’14 Companion. ACM, 2015.

[11] M. A. Martin and D. R. Tauritz. Evolving Black-box
Search Algorithms Employing Genetic Programming.
In Proceeding of the Fifteenth Annual Conference
Companion on Genetic and Evolutionary Computation
Conference Companion, GECCO ’13 Companion,
pages 1497–1504, New York, NY, USA, 2013. ACM.

[12] M. A. Martin and D. R. Tauritz. A Problem
Configuration Study of the Robustness of a Black-box
Search Algorithm Hyper-heuristic. In Proceedings of
the 2014 Conference Companion on Genetic and
Evolutionary Computation, GECCO Comp ’14, pages
1389–1396. ACM, 2014.

[13] M. A. Martin and D. R. Tauritz. Multi-Sample
Evolution of Robust Black-Box Search Algorithms. In
Proceeding of the Sixteenth Annual Conference
Companion on Genetic and Evolutionary Computation
Conference Companion, GECCO ’14 Companion, New
York, NY, USA, 2014. ACM.

[14] M. Mısır, K. Verbeeck, P. De Causmaecker, and G. V.
Berghe. The effect of the set of low-level heuristics on
the performance of selection hyper-heuristics. In
Parallel Problem Solving from Nature-PPSN XII,
pages 408–417. Springer, 2012.

[15] M. Oltean. Evolving Evolutionary Algorithms Using
Linear Genetic Programming. Evol. Comput.,
13(3):387–410, Sept. 2005.

[16] M. Oltean and C. Grosan. Evolving Evolutionary
Algorithms Using Multi Expression Programming. In
Proceedings of The 7th European Conference on
Artificial Life, pages 651–658. Springer-Verlag, 2003.

[17] S. Remde, P. Cowling, K. Dahal, N. Colledge, and
E. Selensky. An empirical study of hyperheuristics for
managing very large sets of low level heuristics.
Journal of the operational research society,
63(3):392–405, 2012.

[18] S. Smit and A. Eiben. Comparing Parameter Tuning
Methods for Evolutionary Algorithms. In IEEE
Congress on Evolutionary Computation, 2009. CEC
’09, pages 399–406, May 2009.

[19] J. A. Soria-Alcaraz, G. Ochoa, J. Swan, M. Carpio,
H. Puga, and E. K. Burke. Effective learning
hyper-heuristics for the course timetabling problem.
European Journal of Operational Research,
238(1):77–86, 2014.

[20] A. Swiercz, E. K. Burke, M. Cichenski, G. Pawlak,
S. Petrovic, T. Zurkowski, and J. Blazewicz. Unified
encoding for hyper-heuristics with application to
bioinformatics. Central European Journal of
Operations Research, 22(3):567–589, 2014.

1058

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150518110140
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 7
 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20150518110140
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 23.8320
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 7
 8
 7
 8

 1

 HistoryList_V1
 qi2base

