
Synthesis of Parallel Iterative Sorts with Multi-Core
Grammatical Evolution

Gopinath Chennupati
BDS Group

CSIS Department
University of Limerick, Ireland
gopinath.chennupati@ul.ie

R. Muhammad Atif Azad
BDS Group

CSIS Department
University of Limerick, Ireland

atif.azad@ul.ie

Conor Ryan
BDS Group

CSIS Department
University of Limerick, Ireland

conor.ryan@ul.ie

ABSTRACT
Writing parallel programs is a challenging but unavoidable
proposition to take true advantage of multi-core processors.

In this paper, we extend Multi-core Grammatical Evolu-
tion for Parallel Sorting (MCGE-PS) to evolve parallel iter-
ative sorting algorithms while also optimizing their degree of
parallelism. We use evolution to optimize the performance of
these parallel programs in terms of their execution time, and
our results demonstrate a significant optimization of 11.03 in
performance when compared with various MCGE-PS varia-
tions as well as the GNU GCC compiler optimizations that
reduce the execution time through code minimization.

We then analyse the evolutionary (code growth) and non-
evolutionary (thread scheduling) factors that cause perfor-
mance implications. We address them to further optimize
the performance and report it as 12.52.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search - Heuristic methods

Keywords
Grammatical Evolution; Multi-cores; Automatic Paralleliza-
tion; Performance Optimization; OpenMP; Sorting.

1. INTRODUCTION
As the number of cores on a single chip increases, pro-

gramming those processors becomes increasingly difficult.
For example, Intel Polaris and picoChip have 80 and 200+
cores, respectively. As a result, with the so-called death of
scaling1, they need to be programmed explicitly, to fully op-
timize the performance. Such optimization often requires
the knowledge of hardware environment.

An elegant fix for this problem is to automatically gen-
erate computer programs with as little human intervention

1http://www.gotw.ca/publications/concurrency-ddj.htm

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11 - 15, 2015, Madrid, Spain

© 2015 ACM. ISBN 978-1-4503-3488-4/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739482.2768458

as possible. Recently, MCGE-PS [6] generated natively par-
allel sorting, using both Grammatical Evolution (GE) [19]
and OpenMP [15] that also solved the underlying problem.
Although these programs have reported better performance
than their sequential counterparts, little attempt was made
in analyzing their efficiency, particularly in terms of the de-
gree of parallelism and execution time of these programs.

In this paper, we extend MCGE-PS to enhance the perfor-
mance of the evolving parallel sorting programs, automat-
ically. Similar to MCGE-PS, here, we use OpenMP with
problem specific GE grammars. However, the grammars are
designed (as opposed to [6]) so as to offer greater flexibility in
evolving a parallel program. Then, this work optimizes the
performance primarily through aptly selecting an OpenMP
pragma (a pre-processor directive for parallelization) by con-
sidering execution time of an evolved program in its fitness
evaluation. We assess this on four benchmark sorting prob-
lems in C as they are suitable for parallelization.

We compare the performance among various MCGE-PS
variations and three GNU GCC compiler optimization flags
that try to reduce the execution time of a program auto-
matically. The results demonstrate a significant speed-up of
11.03 (in terms of execution time) when the evolving parallel
programs are executed on 16 cores of an Intel processor.

We then analyze the effect of code growth and OpenMP
thread scheduling on performance. We observe that the code
growth has negligible effect except for 2 cores, while schedul-
ing poses performance challenges with its load balancing.
That is, the ideal chunk size (the amount of work divided
among the threads) varies with the number of cores, amount
of work, and the number of threads under execution. We re-
solve this issue by automatically evolving the chunk size. As
a result, we further optimize the performance to 12.52.

The rest of the paper is laid out as follows: section 2 dis-
cusses the literature in the context of this paper; section 3
explains the proposed approach; section 4 describes the ex-
periments; section 5 shows the results; section 6 discusses the
performance bottlenecks; and finally, section 7 concludes.

2. BACKGROUND
We describe the evolution of sorting in section 2.1, and in

section 2.2, we review automatic parallel code generation.

2.1 Evolutionary Techniques for Sorting
In evolving sorting, Hillis [8] efficiently evolved a minimal

16-input network for the sorting network problem. O’Reilly
and Oppacher [16] initially failed to evolve sorting with ge-
netic programming (GP); however, they succeeded in [17]

1059

http://dx.doi.org/10.1145/2739482.2768458

with a swap primitive. Later, Kinnear [9, 10] generated a
bubble sort by swapping the disordered adjacent elements.

Abbott [1] used Object Oriented Genetic Programming
(OOGP) for insertion and bubble sorts. Spector et al., [21]
used PushGP for recursive sorting that had an O

(
n2
)

com-

plexity and enhanced to O
(
nlog(n)

)
by adding efficiency.

Recently, Agapitos and Lucas [2, 3] evolved efficient re-
cursive quick sort using OOGP in Java. The evolved sorting
programs were of O

(
nlogn

)
complexity. Then, O’Neill et

al. [13] applied GE for program synthesis by evolving an it-
erative (using for loops) bubble sort in Python; the evolved
programs had quadratic O

(
n2
)

complexity.
Most of these attempts belong to quadratic complexity

O
(
n2
)
, while the attempts in [2, 21] belongs to O

(
nlogn

)
.

2.2 Automatic Parallel Code Generation
In general, automatic parallel code generation can be clas-

sified as either auto-parallelization of serial code or native
parallel code generation. The former parallelizes an exist-
ing sequential program that works correctly, while the latter
generates a working program which is also parallel.

In auto-parallelization with GP, first Walsh and Ryan in-
troduced Paragen-I [18, Chapter-5] to map serial programs
onto multiprocessors. Then, Paragen-II [18, Chapter-7] dealt
transformations in Atom and Loop modes. Atom dealt sim-
ple instructions while Loop dealt loop sequences. Later,
Ryan and Ivan [20] extended Paragen-II to merge indepen-
dent tasks of different loops into a single loop.

With genetic algorithms (GA), Nisbet [12] introduced Ge-
netic Algorithm Parallelization System (GAPS) for sequence
restructuring. Then, Williams in Revolver [25] optimized the
execution time with program and loop transformations.

For the attempts in native parallel code generation, Tre-
naman [22] concurrently executed autonomous agents in the
design of controllers for virtual world using multi-tree GP.

Recently, [5] automatically evolved the parallel regression
programs on multi-cores that accelerated the program gen-
eration. Then, [6] evolved parallel sorting algorithms. How-
ever, efficiency of such programs is often questionable. To
that end, in this paper, we optimize their performance.

3. MCGE-PS
We enhance MCGE-PS, that offers greater flexibility with

the design changes in the grammars (as opposed to [6]).
That include OpenMP private, shared and scheduling clauses
in the evolving parallel programs. Then, the fitness function
reduces their execution time assuring the efficiency. How-
ever, it still uses single program multiple data (SPMD) par-
allelization.

3.1 Design of Grammars
The selection of an appropriate pragma is crucial to the

overall performance of the programs, while it is equally im-
portant for their quick generation. We achieve this auto-
matically by separating the data and task parallel pragmas.

Figure 1 shows the MCGE-PS grammars to evolve a par-
allel Odd-Even sort, that works by swapping the adjacent
elements in two phases. The non-terminal <omppragma> has
separate rules for task (<omptask>) and data parallelism
(<ompdata>); evolution selects one of them. The best evolved
programs prefer the <ompdata> pragmas.

Here, the input (<var>), index (<index>), and the size
(length) of the array are shared among all the cores. We use

〈program〉 ::= 〈for out〉 〈newline〉 〈condition〉

〈condition〉 ::= if(〈index〉 〈bop〉 〈const〉 〈lop〉 〈const〉)
‘{’ 〈ompprogram〉 ‘}’ 〈newline〉 else ‘{’
〈ompprogram〉‘}’

〈ompprogram〉 ::= 〈newline〉 〈omppragma〉
〈sharedprivate〉 〈schedule〉 〈newline〉
〈for in〉 〈newline〉

〈omppragma〉 ::= 〈ompdata〉 | 〈omptask〉

〈ompdata〉 ::= #pragma omp parallel
| #pragma omp parallel for

〈omptask〉 ::= #pragma omp parallel sections
| #pragma omp task

〈sharedprivate〉 ::= shared(〈var〉, 〈index〉, length) 〈private〉
〈newline〉 ‘{’ 〈newline〉

〈private〉 ::= private(〈index〉)
| firstprivate(〈index〉)
| lastprivate(〈index〉)

〈schedule〉 ::= schedule(〈type〉, CHUNK)

〈type〉 ::= static | dynamic | guided

〈for out〉 ::= for(i=0; i < length; i++) ‘{’

〈for in〉 ::= for(j=1; j < length-1; j+=2) ‘{’
〈newline〉 〈for in line〉 〈newline〉 ‘}’

〈for in line〉 ::= if(〈var〉[abs(〈index〉 〈bop〉 〈const〉)]
〈lop〉 〈var〉[abs(〈index〉 〈bop〉 〈const〉)])
‘{’〈newline〉 〈swap〉 ‘}’

〈swap〉 ::= temp = 〈var〉[abs(〈index〉
〈bop〉 〈const〉)]; 〈newline〉
〈var〉[abs(〈index〉 〈bop〉 〈const〉)]
= 〈var〉[abs(〈index〉 〈bop〉 〈const〉)];
〈newline〉 〈var〉[abs(〈index〉 〈bop〉
〈const〉)]=temp; 〈newline〉

〈bop〉 ::= + | -

〈lop〉 ::= > | < | == | <= |>=

〈const〉 ::= 0 | 1

〈index〉 ::= i | j | temp

〈var〉 ::= A

〈newline〉 ::= \n

Figure 1: MCGE-PS grammars that evolve a na-
tively parallel iterative Odd-Even sort algorithm.

1060

the adjacent element swap (<swap>) in solving the problem.
The temporary variable (temp in <index>) is private to the
thread under execution. The production rules of <private>
represents the three OpenMP private clauses. Of which,
private allows variable read/write operations private to the
thread, firstprivate keeps initial value of a variable irrespec-
tive of the parallel region (used to explicitly port an external
value to the parallel region), while lastprivate holds the last
change of a variable in the parallel region. However, the last
two rules of <private> generate a bad individual as temp in
<swap> holds a different element in each iteration. Hence,
evolution keeps private (<index>) clause in the best evolved
program through its fitness evaluation.

Similarly, in scheduling (<type>) the parallel (<for_in>)
loop, OpenMP offers three clauses: static, dynamic and
guided. Of which, static divides the work among threads be-
fore the loop execution; dynamic allocates the work during
the execution; guided also divides the work during the execu-
tion but, the allocation begins with the large chunk size and
decreases for the next requests. These clauses operate on a
default chunk size of 1, we use chunk=10. A study on an
ideal chunk is laid out later in section 6.1. As the time varies
with the schedule type, a program with dynamic clause is
the best fit than the ones with other schedule clauses.

The grammar also allows binary operations (<bop>, <lop>)
and constants (<const>). Since C/C++ prohibits negative
indexing of an array, we use the absolute values (abs) as
shown in <for_in_line> and <swap>. An example of a best
evolved parallel iterative Odd-Even sort is in section 6.3.

3.2 Performance Optimization
Since use of different pragmas can alter performance, the

execution time of programs vary. Thus, we take into account
the execution time to compute the fitness of a program.

Thus, the fitness function is a product of the execution
time and the program accuracy. The program accuracy is
measured in terms of mean inversions (pairs that are out of
order). For example, if a1a2a3 . . . an is a permutation of the
set 1, 2, . . . , n then the pair (ai, aj) is an inversion[11] of the
permutation iff i < j and ai > aj . Both the fitness com-
ponents are normalized in the range (0, 1) – maximization
function. Then, the fitness function (fpprog) is as follows:

fpprog =
1(

1 + t
) ∗ 1

(
1 +

N∑
i=1

n
(
I(Ai)

)
T.P

) (1)

where, t stands for the total execution time of the evolved
parallel program over all the training cases (N); n

(
I(Ai)

)
,

is the number of inversions in the ith array (Ai; total, N ar-
rays); and T.P is the total number of pairs in all the training
cases (N). Note that a training case is an array of elements.

Note, selecting a less than ideal pragma raises the execu-
tion time of the evolved parallel program. The time compo-
nent of fpprog, thus ensures to select an apt pragma. Mean-
while, normalized mean inversions assures the accuracy of
sorting. Thus, the collective aim is to obtain a correct sort-
ing program that is optimized for the multi-core processor.

4. EXPERIMENTS
We evaluate our approach on four iterative sorting algo-

rithms; Table 1 presents these problems, detailing the type

Table 1: The problems and the local variables (LV).

Problem Input LV Range

1 Bubble sort int [], int 4 [1:1000]
2 Quick sort int [], int, int 5 [1:1000]
3 Odd-Even sort int[], int 4 [1:1000]
4 Rank sort int [], int 4 [1:1000]

of input (int), number of arguments and the number of local
variables (LV) for each problem. Their solutions use condi-
tional (if), iterative (for) and variable indexing structures.
We use 100 training cases with a 1000 elements array at each
case, that are randomly generated from the range [1 : 1000].

Table 2: Parameters, experimental environment.
Algorithmic parameter settings

Parameter Value

point mutation 0.01
one point crossover 0.9

selection Roulette Wheel
replacement strategy Steady State

initialization Sensible
minimum depth 9
maximum depth 25

wrapping disabled
population size 500

generations 100
runs 50

Experimental environment
CPU Intel (R) Xeon (R) E7-4820,

16 cores
OS Debian Linux v 2.6.32,

64-bit
C++ GNU GCC v 4.4.5

libGE v 0.26
OpenMP libgomp v 3.0

Timer utility omp get wtime()

Table 2 describes the GE parameters along with the hard-
ware and software specifications on Intel processor.

We divide the experiments into two sets. The first set in-
vestigates the performance of different MCGE-PS variants.
The aim is to analyze the effect of the design of grammars,
and the fitness evaluation (eq. 1) on performance. The sec-
ond set compares the performance of the evolved parallel
programs with the compiler optimizations in terms of exe-
cution time. Therefore, this study shows the performance
of MCGE-PS evolving parallel programs. The experimental
settings in Table 2 are consistent for all the experiments.

4.1 MCGE-PS Variations
We report the speed-up of four MCGE-PS variants that

vary in the design of the grammars, and fitness evaluation.
The first variant named MCGE-PS (Unoptimized) hereafter,
does not offer any separation between the task and data
parallel pragmas; rather, the rules in <omptask> and <om-

pdata> work together under <omppragma>. Thus it is hard
for the evolution to omit task parallelism when it only re-
quires data parallelism, and normalized mean inversions for
fitness evaluation. The second variant, MCGE-PS (Gram-
mar), uses the design of the grammars shown in section 3.1,
fitness evaluation is the normalized mean inversions. The

1061

Bubble sort Quick sort Odd-Even sort Rank sort
Problem

0

2

4

6

8

10

12

14

Sp
ee

d-
up

MCGE−PS (Unoptimized)

1
2

4
8

16

Bubble sort Quick sort Odd-Even sort Rank sort
Problem

0

2

4

6

8

10

12

14

Sp
ee

d-
up

MCGE−PS (Grammar)

1
2

4
8

16

Bubble sort Quick sort Odd-Even sort Rank sort
Problem

0

2

4

6

8

10

12

14

Sp
ee

d-
up

MCGE−PS (Time)

1
2

4
8

16

Bubble sort Quick sort Odd-Even sort Rank sort
Problem

0

2

4

6

8

10

12

14

Sp
ee

d-
up

MCGE−PS (Combined)

1
2

4
8

16

Figure 2: The performance (speed-up) of all the four MCGE-PS (Unoptimized, Grammar, Time, Combined)
variants evolved parallel programs over all the four experimental problems with varying number of cores (2,
4, 8, and 16). The horizontal dashed (− −) line represents the speed-up of 1 (ideally, speed-up of uni core).

Table 3: Friedman statistical tests with
Hommel’s post-hoc analysis on the perfor-
mance (speed-up) of four MCGE-PS vari-
ants when the number of cores is 4, 8 and
16. The boldface represents the significantly
different results at α = 0.05, while asterisk
(*) indicates the best variant.

MCGE-PS Average p p
variant Rank value Hommel

4 cores
Unoptimized 3.75 0.006169 0.0166

Grammar 3.25 0.028459 0.025
Time 1.75 0.58388 0.05

Combined∗ 1.25 - -

8 and 16 cores
Unoptimized 4.0 0.001015 0.0166

Grammar 3.0 0.0204597 0.025
Time 2.0 0.2733216 0.05

Combined∗ 1.0 - -

Table 4: The mean best generation (mean ± [standard devi-
ation]) of all the MCGE-PS (Unoptimized, Grammar, Time,
Combined) variants. The lowest generation is in boldface.

#

MCGE-PS
Unoptimized Grammar Time Optimized
mean best mean best mean best mean best
generation generation generation generation

1 67.19 ± [4.16] 37.63 ± [3.19] 73.27 ± [3.31] 41.27 ± [0.81]
2 47.61 ± [3.51] 31.35 ± [3.65] 51.51 ± [3.67] 33.49 ± [2.95]
3 58.69 ± [5.86] 44.19 ± [6.43] 62.89 ±[4.15] 35.27 ± [3.46]
4 54.11 ± [3.43] 29.88 ± [4.51] 61.43 ± [5.19] 31.14 ± [3.17]

Friedman statistical tests with Hommel’s post-hoc analysis. Boldface
represents the significance at α = 0.05, while asterisk (*) shows the
best variant among all the four MCGE-PS variants.

MCGE-PS variant Average Rank p-value p-Hommel

Unoptimized 3.25 0.0284597 0.025
Grammar∗ 1.25 - -

Time 3.75 0.0061698 0.0166
Combined 1.75 0.5838824 0.05

1062

Table 5: The mean best execution time (in secs) (mean [standard deviation]) of MCGE-PS (Unoptimized,
Combined) and the optimization flags (O1, O2, O3). The boldface represents the lowest execution time.

Cores Problem
Performance

O1 O2 O3 MCGE-PS MCGE-PS
(Unoptimized) (Combined)

2

Bubble sort 3917.96 [29.91] 3592.07 [25.44] 3166.32 [23.07] 3334.08 [31.51] 3687.01 [9.17]
Quick sort 4677.91 [29.13] 4713.52 [28.49] 4623.43 [29.31] 4543.43 [18.12] 4476.79 [20.21]
Odd-Even sort 3498.46 [36.76] 3339.13 [30.19] 3431.29 [28.34] 3096.46 [22.11] 3175.78 [32.43]
Rank sort 3188.56 [23.42] 2397.19 [29.39] 2098.85 [29.17] 3158.35 [21.33] 3144.69 [26.92]

4

Bubble sort 4101.39 [21.46] 3092.11 [29.44] 2396.32 [29.25] 1285.88 [14.24] 1097.75 [16.56]
Quick sort 3987.39 [27.23] 3999.17 [29.36] 3819.36 [21.92] 1448.06 [19.17] 1535.53 [22.14]
Odd-Even sort 3219.54 [24.24] 3331.57 [31.26] 2883.71 [22.19] 2664.21 [24.28] 1032.94 [29.53]
Rank sort 2744.72 [29.59] 2234.62 [30.17] 2584.53 [29.33] 1080.97 [27.35] 1164.92 [19.44]

8

Bubble sort 2931.09 [19.59] 2763.73 [26.35] 2636.44 [28.79] 668.23 [13.18] 551.34 [15.72]
Quick sort 2795.54 [27.36] 2293.24 [25.78] 2829.57 [25.36] 768.99 [20.37] 648.08 [21.34]
Odd-Even sort 2262.54 [31.42] 3109.34 [28.27] 2396.23 [29.17] 635.23 [26.29] 511.65 [29.19]
Rank sort 2435.35 [22.34] 2319.94 [33.37] 2445.52 [29.23] 571.91 [31.11] 543.35 [27.52]

16

Bubble sort 2888.49 [11.86] 2996.78 [19.01] 2541.54 [16.45] 386.588 [19.33] 307.18 [16.93]
Quick sort 2226.29 [24.65] 2173.26 [12.31] 2123.65 [16.52] 460.59 [15.21] 367.62 [19.48]
Odd-Even sort 2347.13 [25.40] 2835.84 [27.32] 3177.11 [24.81] 339.92 [23.25] 292.27 [27.11]
Rank sort 2703.21 [35.42] 2698.76 [19.14] 2285.86 [12.61] 345.12 [29.42] 310.66 [22.62]

third variant, MCGE-PS (Time), uses the design of gram-
mars in [6], evaluates the fitness with fpprog (eq. 1). Then,
the fourth variant, MCGE-PS (Combined), combines the de-
sign of the grammars shown in section 3.1 and the fitness
function fpprog. Therefore, the objective is to show how
MCGE-PS achieves the twin objective of program correct-
ness and performance optimization.

5. RESULTS
We report the performance of MCGE-PS in terms of mean

best execution time: the total execution time of all the best
of generation programs of a run; averaged across 50 runs. In
section 4.1, we compare the speed-up (the ratio of mean best
execution time on n-cores to 1-core) of different MCGE-PS
variants. Then, section 5.1 compares the mean best execu-
tion time of MCGE-PS with that of compiler optimizations.

Figure 2 shows the speed-up of MCGE-PS (Unoptimized,
Grammar, Time, Combined) on all the four problems. On
an average over all the problems, MCGE-PS (Combined)
shows a speed-up of 11.03, a better improvement of 15.75%
over MCGE-PS (Unoptimized) that has a speed-up of 9.29.

Table 3 shows the non-parametric Friedman statistical
tests with Hommel’s post-hoc analysis [7] on performance
of MCGE-PS (Unoptimized, Grammar, Time, Combined).
The first column shows the MCGE-PS variant; second col-
umn shows the average rank; third column presents the p-
value; the fourth column shows the p-Hommel of the post-hoc
analysis. A variant with the lowest average rank is the best
variant (MCGE-PS(Combined)) and marked with an aster-
isk (*). A value is in boldface if it is significantly different
from the best variant; That is the p-value of the correspond-
ing method is less the critical p-Hommel at α = 0.05.

The results are insignificant for 2 cores2 among all the
four MCGE-PS variants (reasons are in section 6). For 4
cores, MCGE-PS (Combined) outperforms MCGE-PS (Un-
optimized) while it is insignificant from MCGE-PS (Gram-

2Note that the significance results for 2 cores are not pro-
vided in Table 3 due to space constraints.

mar, Time). For 8 and 16 cores, MCGE-PS (Combined)
outperforms MCGE-PS (Unoptimized, Grammar), and is in-
significant over MCGE-PS (Time). The reasons are better
justified with the program generating ability of MCGE-PS.

We now compare the mean best generation of MCGE-
PS (Unoptimized, Grammar, Time, Combined). Mean best
generation is the number of generations taken by MCGE-
PS in evolving the best parallel program, that is averaged
across 50 runs. Table 4 shows the mean best generation
of MCGE-PS (Unoptimized, Grammar, Time, Combined)
and their statistical significance results. The results indicate
that MCGE-PS (Grammar) outperforms MCGE-PS (Un-
optimized, Time) while it is insignificant over MCGE-PS
(Combined). In other words, MCGE-PS (Grammar) (the
changes in the design of grammars alone) produces paral-
lel iterative sorting programs in fewer generations, while
MCGE-PS (Time) takes more generations. It is because
of the alterations in the design of the grammars among
MCGE-PS variants, a phenomenon similar to [24], effects
the evolution of the programs. However, MCGE-PS (Com-
bined) evolves efficient parallel sorting with an insignificant
difference with MCGE-PS (Grammar). Hence, MCGE-PS
(Combined) is the best variant for the automatic evolution
of efficient parallel sorting programs.

5.1 Compiler Optimizations
Compiler optimizations3 (–O1, –O2, –O3) try to minimize

the code, and reduce the execution time. Of these flags, O1,
optimizes the source code with conditional branching, copy
propagations, etc and moderately reduces the time with no
changes in compile time. O2, along with O1, offers alias-
ing, cross jumps, etc to fully reduce the time with a slight
increase in compile time. O3, along with O2, offers auto-
vectorization, function in-lining, etc to fully reduce the exe-
cution time. To that end, GE evolves serial programs4 with

3https://gcc.gnu.org/onlinedocs/gcc-4.4.5/gcc/Optimize-
Options.html
4Neglecting parallelism exerting non-terminals from Fig-
ure 1 evolves the serial sorting programs.

1063

these flags. We then compare their execution time with that
of MCGE-PS (Unoptimized, Combined).

Table 5 compares the performance among the two MCGE-
PS variants and the three optimization flags for 2, 4, 8, and
16 cores. The lowest execution time is in boldface for the
corresponding method on a given problem. Although the
programs evolved with optimization flags reduce the execu-
tion time, MCGE-PS variants exhibit better optimization.

Table 6: Significance of performance of MCGE-PS
(Unoptimized, Combined) and optimization flags
(O1, O2, O3) at α = 0.05. The best method is high-
lighted with asterisk (*), while the methods that are
significantly different from the best are in boldface.

Cores Method Average p p
Rank value Hommel

4

O1 4.5 0.00729 0.0125
O2 4.5 0.00729 0.0166
O3 2.75 0.02357 0.025
Unoptimized 2.15 0.02306 0.05
Combined∗ 1.5 - -

8

O1 5.0 3.65E-3 0.0025
O2 4.0 0.00961 0.0196
O3 2.5 0.0107 0.020
Unoptimized 2.25 0.01952 0.025
Combined∗ 1.75 - -

16

O1 4.85 7.32E-4 0.0012
O2 4.15 0.00254 0.0107
O3 2.5 0.00134 0.020
Unoptimized 1.95 0.02012 0.025
Combined∗ 1.15 - -

Table 6 shows the non-parametric Friedman statistical
tests with Hommel’s post-hoc analysis on performance. The
best approach (MCGE-PS (Combined)) is marked with an
asterisk (*). A value is in boldface if it is significantly differ-
ent from the best method. The results indicate that MCGE-
PS (Combined) outperforms all its counterparts except for
1, and 2 cores. Although it is expected that increasing
the number of cores should reduce the time to execute a
parallel program, that is not true for all these results. In-
stead, MCGE-PS (Combined) outperforms MCGE-PS (Un-
optimized) when the number of cores is greater than 2.

Finally, MCGE-PS (Combined) evolving parallel sorting
programs record better performance over the GE evolving
optimized serial sorting programs. Next, we analyze the
factors that influence the performance.

6. DISCUSSION
In this section, we discuss two major factors that impact

the performance of the evolved programs, that is, OpenMP
scheduling (section 6.1) and code growth (section 6.2).

6.1 Performance Bottlenecks
The non-evolutionary factors such as OpenMP schedul-

ing play a vital role in optimizing the performance. Inter-
estingly, OpenMP hides these details from the developer,
which makes it easy to use, at the same time hard to real-
ize its full potential. Load balancing by parallel threads is
a serious concern on shared memory processors. OpenMP
scheduling strategies (static, dynamic, guided) (described

earlier in section 3.1) answer these performance issues effec-
tively. However, it becomes complicated in setting the op-
tional chunk size (chunk) explicitly, as the ideal value often
requires the problem specific knowledge. That is, it changes
with respect to the amount of work (loop iterations), num-
ber of cores and the threads under execution.

We overcome this by evolving an appropriate chunk size
irrespective of the problem and the number of cores that it
executes. We adopt the digit concatenation grammars that
are used in solving the symbolic regression problems.

〈schedule〉 ::= schedule(〈type〉, CHUNK)

is modified to appear as

〈schedule〉 ::= schedule(〈type〉, 〈const1 〉)

〈const1 〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
| 〈const1 〉 〈const1 〉

Figure 3: Enhanced MCGE-PS grammars that gen-
erate an adaptable chunk size for thread scheduling.

Figure 3 shows the modified MCGE-PS grammar that
automatically generates a sequence of digits. The evolved
chunk size adapts to the number of cores, amount of load,
and the number of threads under execution. As a result, the
evolved constant for chunk size balances the load effectively,
thus, improves the performance. We report the speed-up of
the enhancements, termed as MCGE-PS (Chunk), hereafter.

Figure 4 shows the speed-up of MCGE-PS (Chunk) evolved
programs. It shows an average speed-up of 12.52 for 16 cores,
a better improvement of 11.91% over MCGE-PS (Combined),
an improvement of 25.79% over MCGE-PS (Unoptimized).

Table 7 represents the Wilcoxon statistical significance
tests between MCGE-PS (Chunk) and MCGE-PS (Com-
bined) at α = 0.05. It contains the p-value for the cor-
responding problem while “Yes” states that the difference
between the results of both the methods is significant; i.e.,
p < 0.05. Vargha-Delaney [23] A measure states how of-
ten that MCGE-PS (Chunk) outperforms MCGE-PS (Com-
bined). A measure lies in between 0 and 1: when it is above
0.5, MCGE-PS (Chunk) is better than MCGE-PS (Com-

Bubble sort Quick sort Odd-Even sort Rank sort
Problem

0

2

4

6

8

10

12

14

16

Sp
ee

d
up

MCGE−PS (Chunk)

1
2

4
8

16

Figure 4: Performance of MCGE-PS (Chunk)

1064

Table 7: Significance tests (at α = 0.05) show that
MCGE-PS (Chunk) outperforms MCGE-PS (Com-
bined) for 8 and 16 cores. Note that “Yes” states the
results are significant (p-value < 0.05). A measure
shows the probability at which, MCGE-PS (Chunk)
is better over MCGE-PS (Combined).

Cores #
Wilcoxon Signed Rank Sum Test

A
Rank p

Significant measure
Sum value

8

1 2089 0.00632 Yes 0.6183
2 2798 0.03183 Yes 0.3917
3 3321 0.01119 Yes 0.7392
4 2479 0.04178 Yes 0.2851

16

1 2250 0.04261 Yes 0.3545
2 2701 0.00018 Yes 0.8751
3 3253 0.00461 Yes 0.6559
4 2221 0.03516 Yes 0.5215

bined); when it is 0.5, then both are equal; when it is less
than 0.5 MCGE-PS (Combined) is better than MCGE-PS
(Chunk); if it is close to 0.5 then the difference between
them is small, otherwise the difference is large. For example,
on Bubble sort with 16 cores, 35% of the time, MCGE-PS
(Chunk) performs better than MCGE-PS (Combined). In
other words, 65% of the time, MCGE-PS (Combined) per-
forms better than MCGE-PS (Chunk). Overall, MCGE-PS
(Chunk) performs better than MCGE-PS (Combined).

Table 8: MCGE-PS (Chunk) evolved chunk size
(mean ± [standard deviation]), averaged across 50
runs for all the four experimental problems.

Cores Problem chunk size (CHUNK)

8

Bubble sort 135.17 ± [18.39]
Quick sort 159.34 ± [22.71]
Odd-Even sort 166.81 ± [17.33]
Rank sort 142.53 ± [21.45]

16

Bubble sort 55.43 ± [10.62]
Quick sort 67.91 ± [13.37]
Odd-Even sort 80.15 ± [12.59]
Rank sort 74.58 ± [11.11]

Table 8 shows the MCGE-PS (Chunk) evolved chunk size.
It is the average of the evolved best of run programs averaged
across 50 runs. The chunk results are reported for 8 and 16
cores. They showed significant performance optimization
while, 2 and 4 are insignificant, hence, neglected.

Although the reduction in the execution time is signif-
icant, it does not reach ideal, owing to the Linux kernel
scalability issues.

6.2 Code Growth
Given the importance of efficient code in parallel pro-

grams, the sort of code growth often associated with GP
becomes more important, as it can impact the end product
(parallel program), and the process to produce the code.

0 20 40 60 80 100

Generation

0

50

100

150

200

250

300

350

400

450

A
ve

ra
ge

G
en

om
e

Le
ng

th

Odd− Even sort

GE-actual
MCGE-PS (Unoptimized)-actual
MCGE-PS (Combined)-actual

GE-effective
MCGE-PS (Unoptimized)-effective
MCGE-PS (Combined)-effective

Figure 5: The actual and effective lengths of GE,
MCGE-PS (Unoptimized, Combined) for Odd-Even
sort. They are similar for the remaining problems
and are not shown due to space constraints.

We compare the size of the evolving individuals of MCGE-
PS (Unoptimized, Combined) and GE. A GE individual
has two different lengths [14]: actual, effective. The actual
length is the total size of the genotype, while effective length
is the part of the total size used in mapping into a program.

Figure 5 shows the lengths of GE, MCGE-PS. As is typical
to GE [14], both the lengths differ significantly (Wilcoxon
Signed Rank tests at α = 0.05) in a given approach.

Surprisingly, there is no significant difference between the
actual lengths of GE and MCGE-PS. We hypothesis this as,
GE generates larger genotypes than the required, that are
unaffected even with the parallelization pragmas. Rather,
a part of the genotype generates a parallel program, as a
result, the effective length increases. The effective lengths of
GE and MCGE-PS differ significantly at α = 0.05 due to the
fact that MCGE-PS requires extra number of mappings to
evolve a parallel program. However, the effective size differs
insignificantly on both the MCGE-PS variants at α = 0.05.

Although, the effective lengths increase significantly, the
difference is only marginal; it may offset the gains for 1 to 2
cores. However, for 4 cores and above, this increase is not
much of an issue given the power of the processing elements.

However, we find that GE does not bloat as much as GP,
a happening in [4] also. The reasons for such nature requires
further analysis, a matter of future research.

6.3 Evolved Program
This section presents the evolved best parallel iterative

sorting program, and its time complexity. Figure 6 presents
the MCGE-PS (Chunk) evolved parallel iterative Odd-Even
sort algorithm. Note, the program has two different chunk
values (89, 87) as it operates in two phases (odd and even).

The empirical analysis on time complexity is performed
in terms of the amount of time taken by the best evolved
program for sorting an input. Paralleling an algorithm does
not alter the complexity, nevertheless, it optimizes the time.

The results are abstracted out due to space restrictions.
However, the complexity of these programs is competitive
with the evolutionary attempts. Overall, Quick sort has the

1065

f o r (i =0; i < l ength ; i++) { i f (i%2 == 0) {
#pragma omp p a r a l l e l f o r shared (A, l ength)\
pr i v a t e (j , temp) schedu le (dynamic , 89)
f o r (j =1; j < l ength −1; j +=2) {

i f (A[abs (j −1)]<A[abs (j −0)]) {
temp=A[abs (j −1)] ;A[abs (j −1)]=A[abs (j −0)] ;
A[abs (j −0)]=temp ; } } } e l s e {

#pragma omp p a r a l l e l f o r shared (A, l ength)\
pr i v a t e (j , temp) schedu le (dynamic , 87)
f o r (j =1; j < l ength −1; j +=2) {

i f (A[abs (j)] > A[abs (j +1)]) {
temp=A[abs (j +1)] ;A[abs (j +1)]=A[abs (j +0)] ;
A[abs (j +0)] = temp ; } } } }

Figure 6: Best evolved Odd-Even parallel sorting.

best complexity of O
(
nlogn

)
, while it is quadratic (O

(
n2
)
)

in nature for the remaining problems.

7. CONCLUSION
We have presented the automatic evolution of efficient

parallel iterative sorting that showed an improvement of
25.79% in execution time over preliminary attempt [6].

We attained this both by increasing the flexibility in the
design of grammars, and fitness evaluation as opposed to
the preliminary investigations that only guarantee program
correctness. The efficiency comes from these two alterations.

The most interesting contribution is the automatic load
balancing that adapts to the experimental hardware envi-
ronment, with which, the system has further improved the
performance of the evolving programs. However, the anal-
ysis shows that code growth has negligible effect except for
2 cores. Finally, we noted that the time complexity of the
programs is competing with the attempts in literature.

8. REFERENCES
[1] R. Abbott and J. G. B. Parviz. Guided genetic

programming. In H. R. Arabnia and E. B. Kozerenko,
editors, Proceedings of the International Conference
on Machine Learning; Models, Technologies and
Applications, pages 28–34. CSREA Press, 2003.

[2] A. Agapitos and S. M. Lucas. Evolving efficient
recursive sorting algorithms. In IEEE Congress on
Evolutionary Computation, pages 2677–2684, 2006.

[3] A. Agapitos and S. M. Lucas. Evolving modular
recursive sorting algorithms. In M. Ebner et.al.,
editor, EuroGP 2007, volume 4445 of LNCS, pages
301–310. Springer, Heidelberg, 2007.

[4] R. M. A. Azad and C. Ryan. The best things don’t
always come in small packages: Constant creation in
grammatical evolution. In EuroGP 2014, volume 8599
of LNCS, pages 186–197. Springer, Heidelberg, 2014.

[5] G. Chennupati, R. M. A. Azad, and C. Ryan.
Multi-core GE: automatic evolution of CPU based
multi-core parallel programs. In Proceedings of the
Genetic and Evolutionary Computation Conference
Companion, pages 1041–1044. ACM, 2014.

[6] G. Chennupati, R. M. A. Azad, and C. Ryan.
Automatic evolution of parallel sorting programs on
multi-cores. In A. M. Mora and G. Squillero, editors,
EvoApplications 2015, volume 9028 of LNCS, pages
706–717. Springer, Heidelberg, 2015.

[7] S. Garćıa and F. Herrera. An extension on ”statistical
comparisons of classifiers over multiple data sets” for

all pairwise comparisons. Journal of Machine Learning
Research, 9:2677–2694, 2008.

[8] W. D. Hillis. Co-evolving parasites improve simulated
evolution as an optimization procedure. Physica D:
Nonlinear Phenomena, 42(1):228–234, 1990.

[9] K. E. Kinnear Jr. Evolving a sort: Lessons in genetic
programming. In IEEE International Conference on
Neural Networks, pages 881–888. IEEE, 1993.

[10] K. E. Kinnear Jr. Generality and difficulty in genetic
programming: Evolving a sort. In S. Forrest, editor,
Proceedings of International Conference on Genetic
Algorithms, pages 287–294. Morgan Kaufmann, 1993.

[11] D. E. Knuth. The Art of Computer Programming,
Volume 3: (2nd Ed.) Sorting and Searching. Addison
Wesley Longman Publishing Co., Inc., Redwood City,
CA, USA, 1998.

[12] A. Nisbet. GAPS: A compiler framework for genetic
algorithm (ga) optimised parallelisation. In
P. Sloot et. al., editor, High-Performance Computing
and Networking, volume 1401 of LNCS, pages
987–989. Springer, 1998.

[13] M. O’Neill, M. Nicolau, and A. Agapitos. Experiments
in program synthesis with grammatical evolution: A
focus on integer sorting. In IEEE Congress on
Evolutionary Computation, pages 1504–1511, 2014.

[14] M. O’Neill and C. Ryan. Grammatical Evolution:
Evolutionary Automatic Programming in an Arbitrary
Language. Kluwer Academic Publishers, Norwell, MA,
USA, 2003.

[15] OpenMP Architecture Review Board. OpenMP
application program interface version 3.0.
http://www.openmp.org/mp-documents/spec30.pdf,
May 2008.

[16] U.-M. O’Reilly and F. Oppacher. An experimental
perspective on genetic programming. In R. Manner
and B. Manderick, editors, Parallel Problem Solving
from Nature 2, pages 331–340. Elsevier Science, 1992.

[17] U.-M. O’Reilly and F. Oppacher. A comparative
analysis of genetic programming. In P. J. Angeline et.
al, editor, Advances in Genetic Programming 2,
chapter 2, pages 23–44. MIT Press, 1996.

[18] C. Ryan. Automatic Re-engineering of Software Using
Genetic Programming, volume 2 of Genetic
Programming. Springer, 1999.

[19] C. Ryan, J. J. Collins, and M. O’Neill. Grammatical
evolution: Evolving programs for an arbitrary
language. In W. Banzhaf et. al., editor, EuroGP 1998,
volume 1391 of LNCS, pages 83–95. Springer,
Heidelberg, 1998.

[20] C. Ryan and L. Ivan. Automatic parallelization of
arbitrary programs. In R. Poli et. al., editor, EuroGP
1999, volume 1598 of LNCS, pages 244–254. Springer,
Heidelberg, 1999.

[21] L. Spector, J. Klein, and M. Keijzer. The push3
execution stack and the evolution of control. In
Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1689–1696, 2005.

[22] A. Trenaman. Concurrent genetic programming,
tartarus and dancing agents. In R. Poli et. al., editor,
EuroGP 1999, volume 1598 of LNCS, pages 270–282.
Springer, Heidelberg, 1999.

[23] A. Vargha and H. D. Delaney. A critique and
improvement of the “cl” common language effect size
statistics of mcgraw and wong. Journal of Educational
and Behavioral Statistics, 25(2):101–132, 2000.

[24] P. A. Whigham. Grammatical Bias for Evolutionary
Learning. PhD thesis, University of New South Wales,
1996.

[25] K. P. Williams. Evolutionary algorithms for automatic
parallelization. PhD thesis, University of Reading,
1998.

1066

	Introduction
	Background
	Evolutionary Techniques for Sorting
	Automatic Parallel Code Generation

	MCGE-PS
	Design of Grammars
	Performance Optimization

	Experiments
	MCGE-PS Variations

	Results
	Compiler Optimizations

	Discussion
	Performance Bottlenecks
	Code Growth
	Evolved Program

	Conclusion
	References

