
Generating Human-readable Algorithms for the Travelling
Salesman Problem using Hyper-Heuristics

Patricia Ryser-Welch
University of York

York Road
York

Patricia.Ryser-Welch@York.ac.uk

Julian F. Miller
University of York

York Road
York

Julian.Miller@York.ac.uk

Shahriar Asta
Notthingham University

Wollaton Road
Nottingham

sba@cs.nott.ac.uk

ABSTRACT
Hyper-heuristics search the space of heuristics and meta-
heuristics, so that it can generate high-quality algorithms. It
is a growing area of interest in the research community. Al-
gorithms have been constructed iteratively using “templates
of operations”based on well-known heuristic and metaheuris-
tic methods (i.e. Iterated Local Search and Memetic algo-
rithms). These hyper-heuristic algorithms choose sequences
of problem-specific heuristics that can find good solutions
in the problem domain. Such “adaptive algorithms” have
solved several well-established combinatorial problems, with
a high level of generality. However, the evolved sequences
of heuristic operations are often very long and defy human
comprehension. In this paper, we focus on evolving a fixed
sequence of operators inside the loop of a metaheuristic, us-
ing an innovative automatic algorithm creation method. We
have extracted and hard-coded these evolved algorithms in
new independent solvers for Travelling Salesman Problems.

Categories and Subject Descriptors
I.2.2 [ARTIFICIAL INTELLIGENCE]: Evolutionary Al-
gorithm; D.1.2 [Software]: Automatic Programming

Keywords
Hyper-heuristics; Cartesian Genetic Programming; Travel-
ling Salesman Problem

1. INTRODUCTION
Designing effective algorithms to solve computational prob-

lems is difficult and time-consuming. The standard method-
ology for designing such algorithms is “top-down”. This pro-
cess breaks down large problems into more understood com-
ponents and eventually identifies problem-specific operators
that algorithms need to use to solve the given problem. Of-
ten, restrictive assumptions have to be made about the use of
operators within an algorithm. Indeed, investigating every
possible combination of such operators is infeasible when the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
GECCO’15 Companion, July 11–15, 2015, Madrid, Spain
Copyright c© 2015 ACM 978-1-4503-3488-4/15/07 .̇.$15.00.
DOI: http://dx.doi.org/10.1145/2739482.2768459.

number of operators grows larger. In general, the constraint
of having a tractable system of rules limits the human de-
sign space to a small subsets of combinations of instructions
[28]. The higher degree of freedom allowed in the automated
design of algorithms has the capability to discover unusual
orders of operations. It is argued here that by employing
the simple idea of “assemble-and-test” together with an evo-
lutionary algorithm, a much larger collection of algorithms
than humans have considered can be searched over. Some
of these algorithms can be classified as “human-readable”
and coded again within a programming language. Compu-
tation replaces human labour so that powerful optimisation
techniques determine what works best in a given context.
However, some discovered algorithms are likely to challenge
human intelligence, as they can be unnecessarily long and
difficult to understand.

The Travelling Salesman Problem (TSP) has been widely
studied, despite having a deceptively simple goal; it seeks
the shortest tour of a number of cities visiting each city
only once. A complete weighted graph naturally models
this combinatorial optimisation problem. Each vertex of a
graph represents a city, each edge a road and the weight the
length of the route between two cities.

More formally, let G = (V,E) define a graph, where V =
{1, 2, ..., n} is a vertex set and E the set of edges. Denote,
C = ci,j to represent a “weight” matrix associated with E,
that models the distance from city i to city j. When a tour is
represented as a permutation (i1, i2, ..., in), the“cost matrix”
becomes an essential element to calculate its overall distance.
The quantity to minimise becomes ci1,i2 + ci2,i3 + ...+ cin,i1

[21, 11, 10].
This paper is concerned with the evolution of metaheuris-

tics, to solve instances of the Travelling Salesman Problem.
This hard combinatorial problem is a well-established test-
bed for new algorithms. The contributions of the work pre-
sented in are four-fold.

1. Cartesian Genetic Programming (CGP) is used to gen-
erate and evolve metaheuristics; we are focusing on
evolving either a Memetic Algorithm or an Iterated
Local Search. We hope to not only evolve algorithms
that can reach near-optimal TSP solutions, but also
TSP solvers that are human-readable and can easily be
coded and used again with a programming language.

1067

2. For this work CGP has been adapted to provide a flow
chart; i.e. the order of instructions within another
algorithm. Previously CGP has encoded as data-flow
diagram, in which data flow through the links of the
graphs to the output.

3. The aim is to generate existing and new orders of in-
structions inside the loop of a metaheuristic to solve
instances the Travelling Salesman Problem, to demon-
strate the potential of combining a Cross-domain Hyper-
Heuristics framework with a form of Genetic Program-
ming. We call this evolutionary cross-domain hyper-
hyperheuristics.

4. The concept of evolving Evolutionary Algorithms with
a form of Genetic Programming, is extended to the
evolution of Memetic Algorithm and Iterated Local
Search. Such evolved Memetic Algorithms will be re-
ferred as hybrid MAs and hybrid ILS.

2. CLASSICAL ALGORITHMS FOR TSP
Exhaustive search can solve the Travelling Salesman Prob-

lem, but quickly become prohibitive when the number of
cities increases. On the other hand heuristic algorithms con-
struct feasible solutions quickly for any TSP instances, by
compromising accuracy and precision for speed. The most
studied method for solving the TSP are the Lin-Kernighan
heuristics. In these, k edges are deleted and subsequently
re-assembled to construct the sub-paths of a new tour with
a lower minimum weight [22, 10]. Traditionally those are
often referred as k-opt heuristics. When k = 2, edges be-
tween two pairs of cities are reconnected in a different way
to obtain a new shorter tour.

The standard k-opt heuristics have been improved with
the Stem-and-Cycle method, so that different permutations
can be generated. In this method, an Hamiltonian cycle
is formed by a sub-tour, when the edges are re-arranged.
All the nodes of the graph are now represented in a tree-
shape, with a“stem”and a root that attaches the cycle to the
trunk. Then an alternative path is produced by attempting
to connect the tip of the stem to the each node of the cyclic
sub-path, this is continued until a lowest weight is found[5,
37].

These heuristics have lead to the development of the Iter-
ated Lin-Kernighan algorithm [15, 14]. This Iterated Local
Search specialises in solving instances of the TSP problems;
it “jumps” from a local optima to nearby one. A perturba-
tion alters the permutation of a tour t, to escape the local
optima; these changes need to be big enough though. Read-
ers who wish to read further about Iterated Local Search in
general will find [23, 18] very informative.

In this paper, the best2-Opt-Local-Search() and 2-Opt-
Local-Search() implements a Stem-and-Cycle method, while
the 3-OptLocalSearch() has an additional level of sophisti-
cation. Finally, the Simple Inversion mutation applies a
standard 2-opt heuristic (see Table 1).

3. POPULATION-BASED ALGORITHMS
Inspired from natural evolution, Evolutionary Algorithms

maintain a population of solutions over a number of genera-
tions; these individuals compete for resources and the better
solutions are more likely to survive. A population of TSP so-
lutions is first initialised and the quality of each permutation

is determined using a fitness function. The selected parents
reproduce by applying some genetic operators; these could
be a crossover and/or a mutation operator. The crossover
operator should increase the average quality of the popula-
tion; some of the genes are exchanged between individuals
to create one or two offspring. Mutation should prevent a lo-
cal optima by adding some perturbations to the candidates.
Then the offspring are evaluated before being considered for
survival to the next generation using a “replacement opera-
tor” [12].

The crossover and mutation operators discussed below
have been specialised for the TSP problem. This is so that
invalid tours are prevented. Quite recently, an innovative
technique known as a stem-and-cycle ejection chain method
was applied in a new crossover operator, with promising re-
sults [16].

• Order Based Crossover (OX) chooses a subtour in one
parent and imposes the relative order of the cities of
the other parent [3].

• Partially-Mapped Crossover (PMX) copies an arbitrary
chosen subtour from the first parent into the second
parent, before applying minimal changes to construct
a valid tour [6, 7].

• Voting Recombination Crossover (VR) uses a random-
ized Boolean voting mechanism to decide from which
parents each city is copied from [26].

• Subtour-Exchange Crossover (SEC) preserves randomly
selected subtours from both parents to construct one
new offspring [17].

• Insertion Mutation (IM) moves a randomly chosen city
in a tour to randomly selected place [4].

• Exchange Mutation (EM) swaps two randomly selected
cities[1].

• Scramble Mutation (SM) rearranges a random subtour
of cities [3]. Hyflex applies this mutation operator on
a subtour and on the whole tour.

• Simple Inversion Mutation (SIM) implements a 2-opt
heuristics.

A Memetic Algorithm couples an evolutionary algorithms
with Local Search, to mimic cultural evolution. First, the ge-
netic operators generate the genetic code of a TSP solution,
but it remains unchanged during its life. Then, the Local
Search mechanism performs individual learning by refining
the quality of the TSP solutions. These metaheuristics have
solved well-established instances of the TSP with cities up
to 1000 cities, however, their performance can decrease with
the larger tours [31, 19, 9].

4. HYPER-HEURISTICS
The techniques described in the previous section are the

product of human ingenuity. We argue that it is desirable
to automate the design of algorithms. A wider of range of
possible algorithms can be generated automatically and new
TSP solvers could be discovered, in a reasonable amount of
time and without the restrictions imposed by the human
mind. Hyper-heuristics is one of the techniques that could
contribute to this aim.

1068

This extension of metaheuristics searches the space of
heuristics and metaheuristics, so that it can generate high-
quality algorithms for a problem.

For example, in Figure 5 this approach has two distinct
searches: the search space of all possible Memetic Algo-
rithms (feasible and infeasible) and the search space of solu-
tions to the TSP problem[33, 36]. The achievements, current
challenges and suggestions for future research of this branch
of artificial intelligence are well-documented in [39, 38, 2,
35].

Cross-Domain Hyper-Heuristics guides the constructions
of algorithms, using a general-purpose “template of types of
instructions”. Instead of referring to a specific TSP primi-
tives, the template randomly chooses a TSP operator from a
specific subset. These subsets can include mutation, crossover
or even a Local Search operator. The results of the CHeSCs
2011 competition represent the state-of-the art in the auto-
matic selection of algorithms for optimisation problems. It
was made possible by the use of the HyFlex framework [32]1,
which includes several test problems together with their spe-
cific heuristics. For the TSP, this framework includes 10
benchmarks and 13 low-level heuristics for the Travelling
Salesman Problem. The operators discussed in Sections 2
and 3 have been grouped in four subsets (crossover, muta-
tion, local search and ruin-recreate); all of them only pro-
duce one TSP candidate-solution and evaluate the length of
its associated tour.

The advantage of Cross-Domain hyper-heuristics lies in
letting the programmers develop an automatic algorithm
creation method, without any extensive knowledge of the
problems to solve. For example, Adaptive Hyper-Heuristics
(AdaptiveHH) can efficiently solve combinatorial optimisa-
tion problems; it applies a randomly-selected operator to a
problem-domain solution and either accepts or rejects the
new solution. This hill-climbing process is repeated until
a good solution has been found. One of these templates
has been loosely modelled on evolution. At each iteration,
a new algorithm-solution is initialised; a randomly selected
crossover, mutation or ruin-and-recreate heuristics are in-
serted between two randomly chosen Local Search heuristic
[25, 30, 20].

In most cases, the generated algorithms are not algorithms
that programmers would be familiar with. They are contin-
uous sequences of problem-specific operations (each of them
represented by a number), without any normal algorithms
structure (i.e. iterations). They are generally not human-
readable and very long.

Algorithm-Portfolio Hyper-Heuristics configure existing com-
puter programs by adapting them to a given context. The
performance of the algorithms stored in a portfolio is tested
in a given context. Their performance is then improved by
tuning their parameters. This technique improves the qual-
ity of programs, without requiring costly human activity.
However, these techniques rarely generate a metaheuristic
from evolution and the outcomes tend to be merely tuned
parameters, instead of a full algorithm [8, 13, 29].

1Details of the challenge and the results can be found at
http://www.asap. cs.nott.ac.uk/external/chesc2011/ and
http://www.hyflex.org/chesc2014/

It is not common yet to view an actual algorithm as the
product of hyper-heuristics, but rare exceptions can be found
[34, 24]. These published algorithms have been created with
very little human intervention; a stochastic search improves
a randomly-generated sequence of heuristics using a stochas-
tic evolutionary process.

5. THE PROPOSED METHOD
We are proposing to use evolution to automatically design

a high-quality solver. At the end of this process, a generated
algorithm can then be extracted, and if desired, coded with
a programming language. Subsequently, the algorithm solu-
tions are analysed in an independent process, to determine
the quality of the order of the operations. Not only the
algorithm fitness obtained from the hyper evaluation (see
below) is taken into account, but also the way the algorithm
is constructed (i.e. “the grammar”). This independent hu-
man process prevents applying algorithms that are known
to be non-functional (i.e. algorithms with only replacement
operators).

Figure 1: Process used to calculate the fitness value
of an algorithm during evolution.

Chosen problem domain: Solutions of the Travelling
Salesman Problem are searched for using a hybrid Memetic
Algorithm; this is shown in the pink component in Figure
1. A TSP-candidate solution is obtained with a TSP-specific
fitness function; the length of a tour. We will be using all the
TSP problem instances and some of the heuristics offered by
Hyflex, a cross-domain Hyper-Heuristics framework. These
benchmarks include problems with various numbers of cities
ranging from 299 to 13509. The names of these instances
are: PR299, PR439, RAT575, U724, RAT783, PCB1173,
D1291,U2152, USA13509, and D18512. Hyflex parameters
were set to to 0.89 for the depth of the local search, increas-
ing the number of maximum number of iterations to 40 for
any local search. The mutation was set to 0.8, to increase of
the effect of the Simple Inversion and Scramble mutation.

The instructions can call heuristics that alter a temporary
population t; these heuristics are labelled no. 0-12 in table 1
have been introduced in Section 2. These TSP operators can
be crossover, mutation and Local Search operators. Each of
these genetic and cultural operators evaluate the new TSP
solution they have created.

Another type of instructions manages a population p over
time; they can replace older individuals of the population
p by the offspring in t (heuristic no. 13 and 14 table 1).
The population p can also be restarted (heuristic no. 15
in table 1). Only sequences of heuristics with at least one
replacement operator are considered as valid.

1069

• Generate Initialise Population randomly generate a
population of TSP solutions.
• Select Parents identify the best problem-solutions of

the population p; these individual solutions are se-
lected for reproduction and initialise the temporary
population t. A minimum of two problem-solutions
must be selected. When the size of both population p
and t is the same, they both become identical.
• Replace Random repeatedly randomly select an indi-

vidual in the population p and replaces it with a solu-
tion from the temporary population t until all t have
replaced a member of p.
• Replace least-fit selects the longest tour of the popu-

lation p and replaces it with a equal or better TSP
solutions from the temporary solution t. This process
is repeated for each member of solution t.
• Restart population initialises again the whole popula-

tion, if no solutions have improved enough after a cer-
tain number of iterations (i.e. the current minimum
needs to improved by at least 2% every 200 iterations).

Table 1: Heuristics provided by Hyflex that will be
used as the primitive function set in the CGP graph
for generating two types of evolving metaheuristics.
The operations highlighted in bold forms the CGP
function set for theEvolving Iterated Local Search.
The entire list of operators in the table define the
CGP function set for the Evolving Memetic Algo-
rithms.

CGP node TSP Hyflex heuristics
function

0 InsertionMutation()
1 ExchangeMutation()
2 ScrambleWholeTourMutation()
3 ScrambleSubtourMutation()
4 SimpleInversionMutation()
6 2-OptLocalSearch()
7 Best2-OptLocalSearch()
8 3-OptLocalSearch()
9 OrderBasedCrossover()

10 PartiallyMapCrossover()
11 VotingRecombinationCrossover()
12 SubtourExchangeCrossover()
13 ReplaceLeastFit()
14 ReplaceRandom()
15 RestartPopulation()

Metaheuristics: Our hybrid metaheuristic (the green
component in Figure 1) applies the template described in al-
gorithm 1. The body of the loop of a population-based meta-
heuristic is generated by the evolutionary Hyper-Heuristic
algorithm (CGP) (see the instructions in bold blue text in
Algorithm 1). This template prevents having an invalid al-
gorithm.

Hyper-Heuristics algorithms : Cartesian Genetic Pro-
gramming (CGP) automatically generates the sequence of
instructions; the natural features of the directed acyclic graphs
are applied to produce a flow chart. Each node represents a
TSP operator and the edges connects the nodes together(see
example in Figure 2). The evolution assembles and tests
part of the algorithm (in blue in Figure 1 and the bold blue

Algorithm 1 : The template of a population-based meta-
heuristic, with its core being evolved (in blue and bold text)
by an evolved Hyper-Heuristic algorithm (the green circle in
Figure 1.

p0 ← GenerateInitialSolution()
p← Apply a Local Search(p0)
while Not optimum and EvalCount < MaxEvals do
t ← SelectParents(p)
NumEvals = 0
while Not end of evolved sequence of operations
do

Apply current operation to t or p
if current operation is applied on t then

NumEvals = NumEvals + 1
end if

end while
EvalCount = EvalCount + NumEvals

end while

Algorithm 2 : Memetic Algorithm generated by CGP. The
larger TSP operators set described in Table 1 was used.

p0 ← GenerateInitialSolution()
p ← 3-Opt Local Search(p0)
while InstanceMinima has not been found or
number of evaluations left > 0 do
t ← SelectParents(p)
t ← InsertionMutation()
t ← OrderBasedCrossover()
t ← 3-OptLocalSearch()
p ← ReplaceLeastFit(t)

end while

text in Algorithm 1) to construct an ordered sequences of
TSP operations.

We use a one-dimensional CGP geometry for this as rec-
ommended in [27]. The genotype is a collection of integers
that encodes a directed acyclic graph. The links in the CGP
graph define a variable length ordering of instructions. An
example showing how a CGP graph encodes an algorithm is
shown in Figure 2 and discussed in Section6. As usual with
CGP when a genotype is decoded, it can happen that some
nodes are not referenced. This means that the size of the
algorithms (number of nodes/operations) can be anything
from zero to the maximum number nodes defined in the
CGP genotype. Nodes take their inputs in a feed-forward
manner from either the output of nodes or from an input.
To search the algorithm space, we use a 1 + 1 Evolutionary
Strategy (see Algorithm 3). The reasons why such a sim-
ple evolutionary strategy works well is primarily due to the
presence of non-coding genes and the 1+1 strategy can only
move forwards, improving the quality of the algorithms. In
our case, this means that the applying simple mutations can
explore a wide distribution of evolved metaheuristics. This
allows continual exploration of the algorithm space even if
the algorithm fitness (performance measure) is fixed [27].

For example, the CGP graph in Figure 2 encodes the
algorithm 2. The first node encodes InsertationMutation
heuristic, the second node the OrderBasedCrossover(), the
third node the 3-OptLocalSearch() and the last node Re-
placeLeastFit(). All these heuristics are discussed in the
next subsection.

1070

Figure 2: : A CGP graph encoding a metaheuristic

Algorithm 3 The (1 + 1) evolutionary strategy

Randomly generate individual i
Select the fittest individual, which is promoted as the par-
ent (algorithm)
while solution is not found or the generation limit is not
reached do

Mutate the parent to generate offspring
if offspring fitness >= the parent then

offspring replaces parent
end if

end while

Hyper evaluations: The fitness of an algorithm is ob-
tained by applying the method in Figure 1. Our hybrid
metaheuristics finds solutions to the Travelling Salesman
Problem. There is intrinsic relationship between the fitness
of the TSP solutions (i.e. the length of a tour) and the fitness
of the algorithm candidates. Its quality measurement should
be a fair reflection of its ability to solve the TSP. The hy-
brid metaheuristic applies the encoded algorithm a number
of times, to calculate the average length of the tours found.
The function also penalises sequences of heuristics without
any replacement operators by setting the length of the tour
to a very large value. This is to decrease the likelihood that
such encoded algorithms survive to the next generation.

6. EXPERIMENTAL RESULTS
Algorithm solutions: Algorithms [6, 2, 5] show the

best hybrid metaheuristics evolved by CGP with 100 unary-
nodes, with µ = 1,λ = 1, a maximum number of allowed
iterations set to 1200 (1202 hyper evaluations), and finally
a mutation rate of 5%. Our chosen learning instances were
PR299, PR439, and U724. The computer cluster N8 HPC2

hosted our evolutionary cross-domain hyper-heuristics to gen-
erate the algorithms and test their performance. Early ex-
periments have discovered again the most effective TSP op-
erators provided by Hyflex includes the Lin-Kerninghan heuris-
tics (i.e. the three k-opt Local Search and the simple inver-
sion mutation operators) and then the exchange mutation
operators. The two Iterated Local Search algorithms ap-
ply these powerful TSP heuristics. Also we have written
a Memetic Algorithm (see alg 4), so that we can compare
the performance of a human-written algorithm against one
generated automatically.

2N8 HPC provided and funded by the N8 consortium
and EPSRC (Grant No.EP/K000225/1), The Centre is co-
ordinated by the Universities of Leeds and Manchester.

Algorithm 4 : Humanly-written Memetic Algorithm.

1: p0 ← GenerateInitialSolution()
2: p← Apply a Local Search(p0)
3: while Not optimum and EvalCount < MaxEvals do
4: t ← SelectParents(p)
5: t ← OrderBasedCrossover()
6: t ← 3-Opt Local Search()
7: t ← ExchangeMutation()
8: t ← 3-Opt Local Search()
9: p ← ReplaceLeastFit(t)

10: p ← RestartPopulation(p)
11: end while

Algorithm 5 : A rediscovered Iterated Local Search. This
algorithm was human-written and also generated using both
sets TSP operations provided by Hyflex (see Table 1).

1: p0 ← GenerateInitialSolution()
2: p← Apply a Local Search(p0)
3: while Not optimum and EvalCount < MaxEvals do
4: t ← SelectParents(p)
5: t ← ExchangeMutation()
6: t ← 3-Opt Local Search()
7: p ← ReplaceLeastFit(t)
8: end while

Algorithm 6 : A Iterated Local Search generated by CGP,
using all the TSP operations in bold in Table 1.

1: p0 ← GenerateInitialSolution()
2: p← Apply a Local Search(p0)
3: while Not optimum and EvalCount < MaxEvals do
4: t ← SelectParents(p)
5: t ← ExchangeMutation()
6: t ← Best2-OptLocalSearch()
7: t ← ExchangeMutation()
8: t ← 3-OptLocalSearch()
9: p ← ReplaceLeastFit(t)

10: end while

The sequence of instructions of algorithms [6, 2, 5] were
translated from their CGP graphs to be hard-coded in three
unique TSP solvers; another TSP solver was created for al-
gorithm 4. These solvers were programmed with the pro-
gramming language Java and used again all the primitives
and the benchmarks D1291, U2152, USA13509, and D18512
of our chosen problem domain.

Performance of the algorithms solutions: The rela-
tive error was obtained using the formulae:
tour length− known optimum

known optimum
. Figures [5-8] compare statisti-

cally the solutions found by the four aforementioned algo-
rithms. Overall, the algorithms no 5 and no 2 have found
the best solutions. Set side by side the biggest effects of
the two generated algorithms no 2 and no 5 occurred the
longest instances (i.e. U2152, USA13509 and D18512); the
Mann-Whitney statistical tests consistently rejected the null
hypothesis H0 when p = 0.05. For the instance D1291, the
Mann-Whitney statistical test rejected the null hypothesis
H0, when p = 0.05, only for the Algorithm no 5. Otherwise,
the null hypothesis was accepted. Figures 3 and 4 shows the
descent towards a minima during the search, when the four
new solvers are applied.

1071

Figure 3: Comparison of the fitness solutions during
an MA search with a maximum 3000 evaluations
were applied to the problem D18512.

Figure 4: Comparison of the fitness solutions dur-
ing an ILS search with a maximum 3000 evaluations
applied problem D18512.

Figure 5: Statistical comparison of solutions of the
TSP problem D1291 (1291 cities) found over 20
runs.

Figure 6: Statistical comparison of solutions of the
TSP problem U2152 (2152 cities) found over 20
runs.

Figure 7: Statistical comparison of solutions of the
TSP problem USA13509 (13509 cities) found over
20 runs.

Figure 8: Statistical comparison of solutions of the
TSP problem D18512 (18512 cities) found over 20
runs.

1072

7. DISCUSSIONS AND CONCLUSIONS
We have presented a new approach to the evolution of

metaheuristics; our variants have created four new TSP solvers
and were applied to benchmark instances of the Travelling
Salesman Problem. We show that not only can the method
can produce human-readable, but also rediscover effective
algorithms and generate new ones. Our sequence of opera-
tions were hard-coded in four new TSP solvers using Hyflex.
However, since they are small and fairly simple they could be
programmed outside Hyflex using other programming plat-
forms and tested against a wider range of TSP instances. In-
teresting new variants of metaheuristics have been generated
by our method. The results of our experiments are promis-
ing. Close solutions to the actual known optima have been
found for the TSP benchmarks. We would have preferred to
have established new global optima though. However, this
could be just a matter of more evaluations. Nonetheless, we
believe evolutionary cross-domain hyper-heuristics needs to
be applied to other problems, such the personal scheduling
and the vehicle routing problems to generate new hybrid
metaheuristics. Then the full potential of this technique
can be fully evaluated. These new hybrids of metaheuristics
could have more freedom if the template used to safeguard
the validity of the hybrid metaheuristic could be relaxed.
Perhaps encoding iteration in a form of GP, could generate
more complex human-readable algorithms, that have yet to
be thought by humans.

In the future we intend to investigate less restrictive pat-
terns of instructions, in order to learn new possible sequences
of operations that humans have not yet though of, but which
still remain readable and understandable. Perhaps these
new algorithms could lower the known minima of these in-
stances. It would also be interesting to use an encoding
scheme that is expressive enough to encode more challeng-
ing programming structure (i.e. iterations). It has recently
been shown that CGP can easily encode repeated loops with
good results [40]. With such approaches the level of com-
plexity of the algorithm could increase without losing its
“human readability”.

8. ACKNOWLEDGMENTS
Thanks to Ender Ozcan and Gabriela Ochoa for kindly

answering to all our requests. This work made use of the
facilities of N8 HPC provided and funded by the N8 consor-
tium and EPSRC (Grant No.EP/K000225/1). The Centre
is co-ordinated by the Universities of Leeds and Manchester.

9. REFERENCES
[1] Wolfgang Banzhaf. The “molecular” traveling

salesman. Biological Cybernetics, 64(1):7–14, 1990.

[2] Edmund K Burke, Michel Gendreau, Matthew Hyde,
Graham Kendall, Gabriela Ochoa, Ender Özcan, and
Rong Qu. Hyper-heuristics: A survey of the state of
the art. Journal of the Operational Research Society,
64(12):1695–1724, 2013.

[3] Lawrence Davis et al. Handbook of genetic algorithms,
volume 115. Van Nostrand Reinhold New York, 1991.

[4] David B Fogel. An evolutionary approach to the
traveling salesman problem. Biological Cybernetics,
60(2):139–144, 1988.

[5] Fred Glover. Ejection chains, reference structures and
alternating path methods for traveling salesman

problems. Discrete Applied Mathematics,
65(1):223–253, 1996.

[6] David E Goldberg and Robert Lingle. Alleles, loci,
and the traveling salesman problem. In Proceedings of
an International Conference on Genetic Algorithms
and Their Applications, volume 154. Lawrence
Erlbaum, Hillsdale, NJ, 1985.

[7] John J Grefenstette. Incorporating problem specific
knowledge into genetic algorithms. Genetic algorithms
and simulated annealing, 4:42–60, 1987.

[8] Aldy Gunawan, Hoong Chuin Lau, and Mustafa Mısır.
Designing a portfolio of parameter configurations for
online algorithm selection. 2015.

[9] Gregory Gutin and Daniel Karapetyan. A memetic
algorithm for the generalized traveling salesman
problem. Natural Computing, 9(1):47–60, 2010.

[10] Keld Helsgaun. An effective implementation of the
lin–kernighan traveling salesman heuristic. European
Journal of Operational Research, 126(1):106–130, 2000.

[11] Karla L Hoffman, Manfred Padberg, and Giovanni
Rinaldi. Traveling salesman problem. In Encyclopedia
of Operations Research and Management Science,
pages 1573–1578. Springer, 2013.

[12] John H Holland. Genetic algorithms and the optimal
allocation of trials. SIAM Journal on Computing,
2(2):88–105, 1973.

[13] Holger H Hoos. Programming by optimization.
Communications of the ACM, 55(2):70–80, 2012.

[14] David S Johnson. Local optimization and the traveling
salesman problem. In Automata, languages and
programming, pages 446–461. Springer, 1990.

[15] David S Johnson and Lyle A McGeoch. The traveling
salesman problem: A case study in local optimization.
Local search in combinatorial optimization, 1:215–310,
1997.

[16] E Kasturi and S Lakshmi Narayanan. A novel
approach to hybrid genetic algorithms to solve
symmetric tsp. International Journal, 2(2), 2014.

[17] K Katayama, H Sakamoto, and H Narihisa. The
efficiency of hybrid mutation genetic algorithm for the
travelling salesman problem. Mathematical and
Computer Modelling, 31(10):197–203, 2000.

[18] Oliver Kramer. Iterated local search. In A Brief
Introduction to Continuous Evolutionary
Optimization, pages 45–54. Springer, 2014.

[19] Natalio Krasnogor, Jim Smith, et al. A memetic
algorithm with self-adaptive local search: Tsp as a
case study. In GECCO, pages 987–994, 2000.

[20] Jǐŕı Kubaĺık. Hyper-heuristic based on iterated local
search driven by evolutionary algorithm. In
Evolutionary Computation in Combinatorial
Optimization, pages 148–159. Springer, 2012.

[21] Gilbert Laporte. The traveling salesman problem: An
overview of exact and approximate algorithms.
European Journal of Operational Research,
59(2):231–247, 1992.

[22] S Lin and BW Kernighan. An effective heuristic
algorithm for the traveling-salesman problem.
Operations Research, 21(2):498–516, 1973.

[23] Helena R Lourenço, Olivier C Martin, and Thomas
Stützle. Iterated local search: Framework and

1073

applications. In Handbook of Metaheuristics, pages
363–397. Springer, 2010.

[24] Nuno Lourenco, Francisco Pereira, Ernesto Costa,
Gisele L Pappa, and John Woodward. Evolving
evolutionary algorithms. In GECCO 2012 2nd
Workshop on Evolutionary Computation, pages 51–58.
ACM, 2012.

[25] Richard J Marshall, Mark Johnston, and Mengjie
Zhang. Hyper-heuristic operator selection and
acceptance criteria. In Evolutionary Computation in
Combinatorial Optimization, pages 99–113. Springer,
2015.

[26] H Miihlenbein and J Kindermann. The dynamics of
evolution and learning-towards genetic neural
networks. Connectionism in perspective, pages
173–197, 1989.

[27] J. F. Miller, editor. Cartesian Genetic Programming.
Natural Computing Series. Springer, 2011.

[28] Julian F Miller, Dominic Job, and Vesselin K Vassilev.
Principles in the evolutionary design of digital
circuits—part i. Genetic programming and evolvable
machines, 1(1-2):7–35, 2000.

[29] Mustafa Mısır, Stephanus Daniel Handoko, and
Hoong Chuin Lau. Oscar: Online selection of
algorithm portfolios with case study on memetic
algorithms.

[30] Mustafa Misir, Katja Verbeeck, Patrick
De Causmaecker, and Greet Vanden Berghe. A new
hyper-heuristic as a general problem solver: an
implementation in hyflex. Journal of Scheduling,
16(3):291–311, 2013.

[31] Pablo Moscato et al. On evolution, search,
optimization, genetic algorithms and martial arts:
Towards memetic algorithms. Caltech concurrent
computation program, C3P Report, 826:1989, 1989.

[32] Gabriela Ochoa, Matthew Hyde, Tim Curtois, Jose A
Vazquez-Rodriguez, James Walker, Michel Gendreau,
Graham Kendall, Barry McCollum, Andrew J Parkes,
Sanja Petrovic, et al. Hyflex: A benchmark framework
for cross-domain heuristic search. In Evolutionary
Computation in Combinatorial Optimization, pages
136–147. Springer, 2012.

[33] Gabriela Ochoa, Rong Qu, and Edmund K Burke.
Analyzing the landscape of a graph based
hyper-heuristic for timetabling problems. In
Proceedings of the 11th Annual conference on Genetic
and evolutionary computation, pages 341–348. ACM,
2009.

[34] Mihai Oltean and Crina Groşan. Evolving
evolutionary algorithms using multi expression
programming. In Advances in Artificial Life, pages
651–658. Springer, 2003.

[35] Gisele L Pappa, Gabriela Ochoa, Matthew R Hyde,
Alex A Freitas, John Woodward, and Jerry Swan.
Contrasting meta-learning and hyper-heuristic
research: the role of evolutionary algorithms. Genetic
Programming and Evolvable Machines, 15(1):3–35,
2014.

[36] Riccardo Poli and Mario Graff. There is a free lunch
for hyper-heuristics, genetic programming and
computer scientists. In Genetic Programming, pages
195–207. Springer, 2009.

[37] César Rego, Dorabela Gamboa, Fred Glover, and
Colin Osterman. Traveling salesman problem
heuristics: leading methods, implementations and
latest advances. European Journal of Operational
Research, 211(3):427–441, 2011.

[38] Peter Ross. Hyper-heuristics. In Search Methodologies,
pages 611–638. Springer, 2014.

[39] Patricia Ryser-Welch and Julian F Miller. A review of
hyper-heuristic frameworks.

[40] Andrew James Turner and Julian Francis Miller.
Recurrent cartesian genetic programming. In Thomas
Bartz-Beielstein, Jürgen Branke, Bogdan Filipič, and
Jim Smith, editors, Parallel Problem Solving from
Nature – PPSN XIII, volume 8672 of Lecture Notes in
Computer Science, pages 476–486. Springer
International Publishing, 2014.

1074

