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ABSTRACT

The ongoing advances in multi-objective optimisation (MOO)
are improving the way that complex real-world optimisation
problems, mostly characterised by the definition of many
conflicting objectives, are currently addressed. To put it
into practice, developers require flexible implementations of
these algorithms so that they can be adapted to the problem-
specific needs. Here, metaheuristic optimisation frameworks
(MOFs) are essential tools to provide end-user oriented de-
velopment solutions. Even though consolidated MOF's are
continuously evolving, they seem to have paid little atten-
tion to the new trends in MOO. Recently, new frameworks
have emerged with the aim of providing support to these ap-
proaches, but they often offer less variety of basic function-
alities like diversity of encodings and operators than other
general-purpose solutions. In this paper we identify a num-
ber of relevant features serving to satisfy the requirements
demanded by MOO nowadays, and propose a solution, called
JCLEC-MOEA, on the basis of the JCLEC framework. As
a key contribution, its architecture has been designed with
a twofold purpose: reusing all the features already given by
a mature framework like JCLEC, and extending it to enable
new developments more flexibly than current alternatives.

Categories and Subject Descriptors

[Computing methodologies]: Artificial intelligence -Search

methodologies; [Software and its engineering]|: Software
creation and management -Designing software
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1. INTRODUCTION

Multi-objective optimisation problems (MOPs) are likely
to be the most frequently happening problems in real-world
applications. In the last decades, multi-objective evolution-
ary algorithms (MOEAs) [1] have been proposed to effec-
tively deal with a wide range of MOPs like those appearing
in economics [2] or engineering [3] domains. Recently, the
growing interest in the resolution of problems having a large
number of conflicting objectives has caused the appearance
of a new kind of specialised algorithms, the so-called many-
objective approaches. In this context, authors have adapted
some previous ideas and proposed new techniques to pro-
vide solutions that are capable of covering significantly more
complex objective spaces [4].

Thus, in a short space of time, practitioners are being
provided with a wide range of alternatives to support their
specific MOO processes. In this scenario, metaheuristic opti-
misation frameworks (MOFs) [5] play a key role since, even
when they were originally designed for experimental pur-
poses, they provide mechanisms for the existing algorithms
to be more easily adaptable to the complexity of each spe-
cific problem domain. An essential aspect in achieving this
is to provide flexible algorithm implementations as a way
to facilitate the application of recent trends within the evo-
lutionary computation (EC). Improving the modularity of
algorithms and their reusability by making them publicly
available could encourage developers to include these algo-
rithms in their code while decreasing the development ef-
fort, and researchers to perform further empirical studies
using these new techniques while increasing the testing ef-
fectiveness. The MOF extensibility allows taking advantage
of the most modern techniques to address MOPs on differ-
ent application areas, even though such a solution would
require the development of new domain-specific operators
or defining constraints. Additionally, MOFs provide com-
plete and configurable workbenches, where researchers can
easily check diverse configurations on a given MOP, collect
statistical outcomes or analyse the returned solutions.

Because of the large number of MOF's currently support-
ing EC, it can be usual that they all provide some com-
mon facilities, differences among them mostly lying on the
presence of advanced features of interest for specific de-
velopments like genetic programming (GP) or grammatical
evolution (GE). Focusing on multi-objective optimisation
(MOO), many mature frameworks like ECJ [6] have not
yet integrated multi-objective approaches beyond the im-
plementation of some consolidated proposals like NSGA-II.
This has led to the appearance of specific frameworks like



jMetal [7] or MOEA Framework [8], mostly focused on re-
cent advances within MOO. As a counterpart, they lack of
support in terms of the variety of genetic operators or other
advanced EC techniques usually provided by the aforemen-
tioned frameworks.

This paper compiles the set of key features required by a
MOF to properly accomplish the expectations of both devel-
opers and researchers regarding MOO, considering both the
implementation of new multi-objective end-user-oriented ap-
proaches and their experimental support. More specifically,
we present JCLEC-MOEA, an adapted architecture founded
on the basis of JCLEC (Java Class Library for Evolutionary
Computation) [9], with the aim of filling the gap between
this framework and the features of interest for MOO prac-
titioners. The proposed architecture serves as a platform
to develop new MOO-specific techniques, where special em-
phasis has been put on modularity and extensibility, as well
as on the reusability of the currently available utilities in
JCLEC.

Regarding the extensibility mechanisms, JCLEC-MOEA
does not only make a clear distinction between the different
steps of an evolutionary algorithm, not being considered as
a single monolithic piece of code, but it also considers what
stages of the evolution are revisited by the multi-objective
approach and consequently should be clearly differentiated
from the rest of the process. As a result, steps of the search
process can be customised to create specific variants of an
evolutionary approach. Additionally, algorithms also be-
come independent of the type of EC model to be applied,
i.e. genetic algorithm (GA), evolution strategy (ES), genetic
programming or evolutionary programming (EP), allowing
to take advantage of all the facilities of JCLEC in this re-
gard. Some recently proposed algorithms within both cat-
egories, multi- and many-objective algorithms, like HypE,
MOEA /D or NSGA-III, have been implemented in line with
this philosophy. Aspects like providing highly-configurable
implementations or the ease of extension and reuse of a wide
range of well-established EC paradigms, operators and en-
codings make JCLEC-MOEA an interesting alternative in
comparison to other solutions.

The rest of the paper is organised as follows. First, Sec-
tion 2.2 introduces JCLEC, following a brief summary other
currently available MOFs. The architecture of JCLEC-MOEA
is introduced and explained in Section 3, and Section 4 dis-
cusses the different ways in which JCLEC-MOEA can be
extended. Finally, Section 5 outlines some conclusions and
future work.

2. BACKGROUND

2.1 The JCLEC framework

JCLEC is a Java library focused on the development of
evolutionary algorithms, including genetic programming. Its
core provides a variety of encodings and genetic operators
that can be combined to solve a specific optimisation prob-
lem. Experiments are created using a configuration file in
XML format, whose tags and elements can be customised by
researchers in order to include its own parameters'. As a re-
sult, customised operators or new optimisation problems can

!Configuration files are managed using the Apache Com-
mons Configuration software library, http://commons.
apache.org
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Figure 1: Core classes and interfaces in JCLEC

be added easily without requiring the code to be recompiled.
The set of available evolutionary techniques is comprised of
generational schemes, steady-state evolution, niching meth-
ods and evolutionary programming. As for genetic program-
ming, Koza’s style, strongly-based and grammar-based ap-
proaches can be applied. Despite being mostly focused on
single-objective optimisation, JCLEC implements two well-
known multi-objective approaches, SPEA2 and NSGA-II.

Classes and interfaces comprising the core of JCLEC are
shown in Figure 1. RunExperiment is the class in charge
of starting the execution of an algorithm, which is repre-
sented by the TAlgorithm interface. Every algorithm evolves
a set of individuals (IIndividual), i.e. the population,
and makes use of a number of tools that serve to conduct
the different steps of the optimisation process: the initial-
isation (IProvider), the application of genetic operators
(IRecombinator and IMutator), and the selection of indi-
viduals (ISelector).

An algorithm also requires the assignment of an evaluation
mechanism to calculate the fitness of individuals according
to the optimisation problem being solved. In JCLEC, the
interface IEvaluator declares the evaluation method, eval-
uate, and two other additional abstract classes, AbstractE-
valuator and AbstractParallelEvaluator, define how this
evaluation task has to be performed, sequentially or in par-
allel, respectively. In any case, the evaluator is in charge of
assigning a fitness value to each individual using a subclass
of AbstractFitness, an implementation of IFitness.

In JCLEC, PopulationAlgorithm is an abstract class that
implements the IAlgorithm interface, being responsible for
defining the iterative process of an EC algorithm. Figure 2
depicts the control flow performed by this class, where italics
indicate abstract operations. Subclasses of PopulationAl-
gorithm, such as SG (Simple Generational GA), SS (Steady-
State GA) or the current versions of SPEA2 and NSGA-II,
implement the overall search process, comprising the fol-
lowing key methods: doSelection, where a selector creates
the mating pool; doGeneration, where genetic operators like
recombinators and mutators are executed; doReplacement,
where survivors are selected among the current population
and offspring; and doUpdate, responsible for creating the
next population. Several different sets of individuals, refer-
ring to the current population, parents, offspring, and sur-
vivors, are managed by this class along the evolution. Evo-
lution can be stopped in JCLEC when a maximum number
of generations or evaluations is reached. Additionally, the



Initialize population
doInit()

Stopping criteria
are satisfied?

Select parents Generate offspring
doSelection () doGeneration ()
[Update population Select survivors ]

doUpdate () doReplacement ()

Figure 2: Iterative process of PopulationAlgorithm

execution could be interrupted if the best individual in the
population achieves an acceptable value for the problem be-
ing optimised.

Finally, IAlgorithmListener specifies the set of methods
used to report the outcomes and get information about the
algorithm execution during the search process.

2.2 MOFs for multi-objective optimisation

A complete survey of multi-purpose metaheuristic frame-
works, developed in 2011 [5], provided a review of the sup-
ported optimisation techniques by each MOF, as well as an
evaluation of the facilities enabled to adapt the algorithms to
different domains. The authors also revised aspects related
to design issues, licensing and documentation. Because of
the broad scope of this study, multi-objective metaheuristics
were grouped together within a single characteristic mainly
focused on the presence of certain MOEAs. Besides, they
established some assumptions that resulted in the exclusion
of interesting frameworks from the MOO perspective, such
as jMetal, which was considered too specific, or PISA [10],
because of its non-object-oriented nature.

Nevertheless, MOF's have significantly evolved since then,
contributing to the appearance and improvement of software
libraries. Here, a listing of the most representative frame-
works supporting MOO is compiled with the aim of provid-
ing the big picture of the currently available proposals.
ECJ (2014) [6]. Developed in Java, it is likely to be the
most frequently used framework because of its maturity and
successive updates. ECJ has a valuable set of advanced
EC models, including coevolution, GP, islands or GE, as
well as other metaheuristics like particle swarm optimisation
(PSO). However, ECJ only provides two MOEAs, SPEA2
and NSGA-II.

EvA2 (2014) [11]. This Java library implements meta-
heuristics like EC and its variants, PSO or Hill Climbing,
and provides a greater number of MOEAs than ECJ. In
fact, EvA2 can execute MOGA, NSGA, NSGA-II, PESA,
PESA-II, Random Weight GA, SPEA, SPEA2 and VEGA.
HeuristicLab (2014) [12]. Developed for the Microsoft
.NET environment using C#, this framework looks for the
implementation of arbitrary heuristic optimisation algorithms,
leading to an architecture based on plugins developed by a
community of contributors. NSGA-II is the only MOEA
publicly available for developers.

jMetal (2014) [7]. This Java framework provides a wide
range of implemented algorithms, from the well-known IBEA,
MOEA/D, NSGA-II, PAES or SPEA2, to other proposals
like cellular algorithms and PSO. Moreover, jMetal imple-
ments a parallel version of most of them and other additional
experimental utilities like quality indicators, benchmarks
and statistical analysis. On the other hand, this framework
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does not support the variety of EC models, operators and
stopping criteria provided by other frameworks.
MOEA Framework (2015) [8]. A Java framework that
combines native implementations of MOEAs, such as MOEA /D
or NSGA-III, with the execution of other non-native algo-
rithms invoked from the external packages jMetal and PISA.
Like jMetal, MOEA Framework also provides a variety of
benchmarks and quality indicators.
Opt4J (2015) [13]. With this Java framework, optimisa-
tion problems can be solved using EC, PSO and local search
methods. The multi-objective approaches currently avail-
able are MOPSO, NSGA-II, SMSMOEA and SPEA2.
ParadisEO-MOEO (2012) [14]. ParadisEO is an object-
oriented framework developed in C++. It is composed of
four interconnected modules, MOEQO being the module specif-
ically devoted to multi-objective optimisation. Algorithms
currently available are IBEA, MOGA, NSGA, NSGA-II, SEEA
and SPEA2. ParadisEO-MOEO provides a smaller collec-
tion of indicators than jMetal and MOEA Framework. Bench-
marks are included as external contributions.
PISA [10] (2003). It was conceived as a language-independent
platform based on the interchangeability of files, where a
set of optimizers can be applied to a variety of optimisa-
tion problems. The set of MOEASs is comprised of e-MOEA,
FEMO, HypE, IBEA, MSOPS, NSGA-II, SEMO2, SHV,
SPAM and SPEA2. PISA also provides implementations
for most of the quality indicators defined in the literature,
as well as test problems like the DTLZ and the ZDT families
of functions.
PyGMO [15] (2014). A scientific library coded in Python
that is mainly focused on providing the necessary support
to build parallel global optimisation algorithms using the
island model paradigm. The applicable techniques include
PSO, genetic algorithms and differential evolution, among
others. The multi-objective algorithms currently available
are NSGA-II, NPSO, SMS-EMOEA, SPEA2 and VEGA.
On the one hand, frameworks like ECJ, EvA2 or Heuris-
ticLab were conceived to support a great variety of meta-
heuristic techniques. Therefore, they primarily promote mod-
ularity and extensibility, providing a wide range of encod-
ings and operators. On the other hand, more recent frame-
works like jMetal or MOEA Framework are usually more
focused on satisfying MOO-specific requirements, offering
a wide range of algorithms, quality indicators and bench-
marks. With regard to their implementation, it should be
noted that some frameworks, e.g. jMetal or HeuristicLab,
restrict their multi-objective approaches to genetic algorithms.
Even though most of the aforementioned MOF's have launched
their respective updates in the recent years, it is notori-
ous that only jMetal, MOEA Framework and PISA have
included the latest trends in multi-objective algorithms.

3. DESIGN OF JCLEC-MOEA

3.1 JCLEC-MOEA foundations

Compiling the key characteristics provided by other exist-
ing software solutions, as well as the most relevant aspects
required to the resolution of MOPs, has served to identify
the features that will guide the design of JCLEC-MOEA:

Built on top of a multi-purpose MOF. Having a ma-
ture MOF as the starting point is important to make



the most of other basic functionalities like encodings,
genetic operators or experimental support.

Ease of extension. Providing a number of extension points
that properly allow integrating new algorithms, indi-
cators and benchmarks is a key aspect to promote scal-
ability, extensibility and integrability. It makes neces-
sary a precise specification of the architecture, includ-
ing its public interfaces and modules. Decomposition
of the algorithms in different steps may also benefit
extensibility, providing a greater flexibility to change
their behaviour and ensuring a controlled growth.

Availability of generic algorithms. Algorithms should
be abstracted in such a way that it would be possible
to combine each of them with any available, current
or future, EC paradigm looking for the independence
of the evolution steps that are proposed by the MOO
approach.

Flexibility of the MOP definition. Algorithms should
work with the minimal set of restrictions according to
the number of objectives, the nature of the optimisa-
tion problem, e.g. all objectives to be minimised or
maximised or even combining both types, the solution
encoding and the presence of constraints.

Regular updating of algorithms. The rapid advance of
MOO techniques makes necessary to count on the most
recent algorithm variants in order to provide develop-
ers and researchers with competitive tools and bench-
marks.

Experimental support. Utilities for MOO research include
the availability of well-established benchmarks and qual-
ity indicators in order to validate the performance of
algorithms, as well as the generation of reports con-
taining experimental outcomes.

JCLEC-MOEA has been conceived to offer an extensive
catalogue of encodings and operators, including a tree-based
encoding specifically well-suited for GP, making use of the
broad range of assets available in JCLEC. The architecture
proposed below allows creating highly modular algorithms
that can be implemented independently of the underlying
EC model. Furthermore, JCLEC-MOEA is able to deal with
both minimisation and maximisation MOPs, as well as with
constrained problems. It offers most of the latest algorithms
in the field of MOO, including many-objective approaches,
and provides other utilities to researchers like well-known
benchmarks and quality indicators.

3.2 Overview of the architecture

Figure 3 shows an overview of the main classes and inter-
faces that compose JCLEC-MOEA, including those required
to extend JCLEC in order to adapt its functionality to the
specific requirements of MOO. Auxiliary classes and their
relationships have been omitted to save space.

Since JCLEC-MOEA is built to the basis of JCLEC, it has
required an in-depth analysis of the previous structure and
future requirements in order to create a smooth but consis-
tent adaptation between both layers. This process has led
to a number of classes that enable the extensibility and in-
teroperability between both approaches. Those that can be
extended by the external developer to continue expanding
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the JCLEC-MOEA functionalities are identified in Figure 3
as “extension points”. Firstly, MOAlgorithm represents a gen-
eral multi-objective evolutionary algorithm, which inherits
from PopulationAlgorithm. MOAlgorithm is also declared
as an abstract class that is currently refined into four con-
crete classes, each one representing a different EC paradigm:
GA, ES, GP and EP. MOAlgorithm also declares a property
named strategy that is used to delegate some steps of the
evolution to the specific multi-objective approach.

In JCLEC-MOEA, the evaluation of solutions can be per-
formed sequentially or in parallel using MOEvaluator or MOPar-
allelEvaluator, respectively. These classes inherit their
properties and methods from their respective classes in the
JCLEC layer and handle the set of objectives used to eval-
uate solutions. More specifically, the evaluator iteratively
receives the objective value from each objective function ex-
tending the class Objective. The set of objectives can be
easily altered to test different variants of the same MOP. Ad-
ditionally, the class Objective serves as a basis for defining
the necessary information about each objective of the MOP,
i.e. its bounds and a flag indicating whether the objective
should be maximised or minimised. The evaluator makes
use of the objective values in order to generate a fitness ob-
ject, represented by an instance of MOFitness for each indi-
vidual within the population. The IMOEvaluator interface
declares the methods that should be implemented by any
evaluator in JCLEC-MOEA. As for the reporting function-
alities, the abstract class MOReporter provides the facilities
to extract information from the algorithm outcomes during
and after the execution of any MOAlgorithm. Three specific
reporters are initially provided, though it could be easily
extended. A further description will be presented later in
Section 3.4.

3.3 Algorithms and strategies

An important feature of JCLEC-MOEA lies on the inde-
pendence between the different stages of the evolutionary
process. Frequently, MOEAs contain procedures for select-
ing and replacing individuals, known as mating selection and
environmental selection, respectively. These methods can
be reinforced by some kind of evaluation method and the
use of an external archive of solutions. Hence, implemen-
tations of MOEAs should not include either the initialisa-
tion process or the generation of offspring, which are actu-
ally defined by the optimisation problem and the EC model.
JCLEC-MOEA adopts this schema, and delegates the con-
trol of these specific steps to a class named MOStrategy, an
adapted implementation of the Strategy design pattern. Af-
terwards, each MOEA is implemented in terms of a different
strategy that can be interchanged, i.e. each is declared as
a subclass of MOStrategy. More precisely, MOAlgorithm is
responsible for invoking the multi-objective strategy at cer-
tain stages of the evolution, hiding the specific procedures
to be applied by the algorithm. Developers can configure
the strategy by simply adapting the configuration file given
by JCLEC.

The iterative process shown in Figure 2 is done in JCLEC-
MOEA by combining the two aforementioned classes, MOAL-
gorithm and MOStrategy. In this way, a given MOO ap-
proach can be applied to any EC model, not only GAs. More
in detail, MOAlgorithm inherits its properties and methods
from PopulationAlgorithm, what gives the possibility of
reusing generic functionalities like the creation of the initial
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MOAlgorithm MOStrategy

population (method doInit) and the checking of the stop-
ping criteria (method doControl). The abstract methods of
PopulationAlgorithm are properly implemented by MOAl-
gorithm, with the exception of the doGeneration method.
As a result, specifying how the genetic operators will be
used to generate offspring is the only point that its sub-
classes need to care about. For example, while MOGenet-
icAlgorithm requires the configuration of a recombinator
and a mutator, EPAlgorithm just triggers a mutator. In any
case, these elements can be selected from the set of operators
available in JCLEC. Regarding the methods for selection,
replacement and update, Figure 4 shows how MOAlgorithm
delegates these steps to MOStrategy. Having that MOAlgo-
rithm already manages the entire set of individuals required
along the search process, MOStrategy will request the cor-
responding sets required by each procedure. Next, it will
return output sets to MOAlgorithm, including parents, sur-
vivors and the archive.

On the other hand, MOStrategy specifies four abstract
methods: matingSelection for selecting parents from the
current population and from the archive, environmentalS-
election for the replacement, updateArchive for managing
individuals within the external population, and fitnessAs-
signment for the execution of a specific evaluation process.
Notice that the latter is not really invoked by MOAlgorithm,
but this step is internally run by the strategy under certain
circumstances. For example, SPEA2 evaluates individuals in
terms of the strength and density values before updating the
archive, whereas MOEA /D uses the evaluation method to
decide whether an offspring will replace some individuals in
the next generation. Two additional methods, initialize
and update, can be used to implement auxiliary procedures
at the beginning of the search process or after every gen-
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eration, respectively. Finally, MOStrategy implements the
interface IConfigure from JCLEC, which declares the nec-
essary methods to set and retrieve the parameters from the
configuration file. Splitting and modularising the different
elements of a MOEA makes drastically quicker the develop-
ment of variants if only the fewest number of methods need
to be overridden.

As a starting point to promote flexibility, JCLEC-MOEA
offers a number of highly-configurable strategies for different
types of multi-objective evolutionary approaches [1, 4, 16]:

e MOFEAs based on the Pareto dominance. The most
representative algorithms within this category, SPEA2
and NSGA-II, which were implemented as GAs extend-
ing directly from PopulationAlgorithmin JCLEC, have
been adapted to their respective strategies in JCLEC-
MOEA.

e Decomposition approaches. MOEA /D is probably the



Table 1: List of parameters of an experiment in JCLEC-MOEA

Multi-objective evolutionary algorithm

algorithm-type
mo-strategy

The evolutionary algorithm
The multi-objective strategy and its parameters

Encoding and creation of individuals

species The selected encoding and the genotype length

provider The process to create the initial population
Evaluation of individuals

evaluator The type of evaluator

objective Every objective of the MOP and its parameters

Generation of offspring

recombinator

The crossover operator and its probability (if required)

mutator The mutation operator and its probability (if required)
Listeners
type The type of reporter
pareto-front The file containing the true Pareto front (only for MOIndicatorsReporter)
indicator Every quality indicator to be calculated (only for MOIndicatorsReporter)

best-known algorithm whithin this category. It was
proposed as a general approach, where different eval-
uation mechanisms and specialised operators could be
applied. Therefore, JCLEC-MOEA defines the strat-
egy MOEAD as an abstract class where only the general
behaviour is implemented. MOEADws and MOEADte rep-
resent two concrete implementations of MOEAD using
the weighted sum (ws) and the Tchebycheff (te) ap-
proach, respectively.

e Algorithms based on the landscape partition. The steady-
state algorithm e-MOEA (SSeMOEA), and the grid-based
evolutionary algorithm for many-objective optimisa-
tion, GrEA, are provided by JCLEC-MOEA. They use
common functionalities to compare individuals accord-
ing to the hypercubes they belong to.

e Fuolution strategies. PAES proposes a multi-objective
approach for evolution strategies. JCLEC-MOEA in-
cludes the (1+1), (14+X) and (u+\) variants.

e [ndicator-based algorithms. The inclusion of a quality
indicator to guide the search is the key aspect of these
algorithms. JCLEC-MOEA includes two well-known
approaches: HypE, which is based on the estimation of
the hypervolume, and IBEA, which was presented as a
generic framework where any binary indicator can be
applied. For this reason, IBEA has been defined as an
abstract strategy, and its two subclasses, IBEAhv and
IBEAe make use the hypervolume and the e-indicator
in the fitness evaluation, respectively. Other concrete
subclasses might be incorporated as other indicators
are developed.

e Reference-point based approaches. This type of algo-
rithms emphasise the search of those non-dominated
solutions that are close to one or more reference points.
JCLEC-MOEA provides an implementation of the new
NSGA-III.

JCLEC has never included any specific constraint-handling
technique assuming that domain knowledge would be usu-
ally required to deal with constraints. Nevertheless, for
multi-objective approaches, it is a common practice to define
a specific constraint-handling mechanism. With this aim,
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JCLEC-MOEA provides a variant of each strategy, where
some steps of the evolution like the evaluation of solutions
or the comparison between them have been properly adapted
to deal with constrained problems.

More specifically, when the strategy defines some kind of
fitness function, it is overridden in order to assign poor fit-
ness values to infeasible individuals. On the contrary, other
strategies are modified according to the way in which com-
parisons between individuals are made, promoting the selec-
tion of feasible solutions. Other constraint-handling tech-
niques can be implemented and combined with the existing
strategies in order to build additional variants, allowing the
flexible adaptation of these algorithms to real-world prob-
lems. JCLEC-MOEA defines the interface IConstrained,
which declares two methods, isFeasible and degree0fIn-
feasibility, serving to provide information about the sort
of solution encoded. This interface should be only imple-
mented by those individuals representing solutions of a con-
strained MOP.

3.4 Utilities in JCLEC-MOEA

A set of supplementary features have been incorporated
into JCLEC-MOEA to provide support to both researchers
and developers. Firstly, a number of quality indicators com-
prised of both unary and binary measures is provided. Ad-
ditionally, some classes to visualise the outcomes of the ex-
periments, originally named reporters in JCLEC, have been
implemented to show information about different aspects of
the occurring evolutionary process. More specifically, three
different reporters have been designed: MOPopulationRe-
porter, which reports the population state; MOParetoRe-
porter, which collects the set of non-dominated solutions;
and MOIndicatorsReporter, which calculates the quality of
the Pareto front approximation by using one or more in-
dicators. Finally, JCLEC-MOEA includes well-known test
problems, considering all the types of encodings previously
supported by JCLEC, including the Knapsack problem, the
TSP, the DTLZ and ZDT families of continuous optimisa-
tion functions, and a symbolic regression problem.

4. EXTENDING JCLEC-MOEA

This section describes the extension mechanisms provided
by JCLEC-MOEA to those developers interested in the cre-



ation of new strategies and in their adaptation, or in the
resolution of some MOP. In all these cases, it is necessary to
code some additional classes and prepare the corresponding
XML configuration file in order to define the experiment.
The set of elements to be determined in the configuration
consists of the algorithm (EC model), the multi-objective
strategy, the selected encoding, the genetic operators, the
reporters and other general parameters like the population
size or the random seed. Due to space limitations, Ta-
ble 1 is focused on the most relevant parameters required
by JCLEC-MOEA, in addition to those items that are part
of the regular set-up of JCLEC.

4.1 Adding new strategies

To add a new multi-objective approach, the class MOStrat-
egy has to be specialised to implement the mating selection
and the environmental selection procedures. Additionally,
it should be decided whether a solution archive is required.
Developers can specify new additional parameters, repre-
sented by their own labels. Their respective values should
be retrieved by the configure method of the proposed strat-
egy, which is automatically invoked during the experiment
building process. Specific values can be obtained or set us-
ing the Configuration declared by the Apache Commons
Configuration library.

public class myMOStrategy extends MOStrategy {
// Parameters of the strategy
private double paramil;
private int param2; // default value is 10
public void configure(Configuration settings) {
paraml = settings.getDouble("myParameteri");
param2 = settings.getInt("myParameter2", 10);

Then the strategy can be executed by invoking a new ex-
periment with the proper configuration, that is, by setting
the path as the value of its mo-strategy parameter. Compil-
ing again is not required to add new functionalities.

4.2 Changing the currently existing strategies

Developers usually need to make changes in some steps
of an existing algorithm for a variety of reasons. A case
in point are the several improvements made to NSGA-II in
the search of alternatives that can deal with complex Pareto
fronts. Under these circumstances, current strategies can
be simply extended and overridden. In the example below,
a new variant of NSGA-II would consider a new diversity
preservation technique in order to replace the original crowd-
ing distance. Only the environmentalSelection method need
to be reimplemented:

public class myNSGA2Variant extends NSGA2 {
public List<IIndividual> environmentalSelection(List<

IIndividual> population, List<IIndividual>
offspring, List<IIndividual> archive) {

// Fast non-dominated sorting

survivors = new ArrayList<IIndividual>();

survivors.addAll (population) ;

survivors.addAll (offspring) ;

fronts = super.fastNonDominatedSort (survivors) ;

// New selection of survivors

// Return survivors
return survivors;
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When the source strategy is defined as a general approach,
the development of new variants becomes simpler. This is
the case of MOEA/D and IBEA in JCLEC-MOEA, where
the corresponding strategies include the definition of the ab-
stract methods to specify those parts of the approach that
can vary from one implementation to another. On the one
hand, MOEA /D can define different evaluation mechanisms,
all of them being characterised by the use of the objective
values of the individual (ind) and the set of weight vectors
(lambda). Thus, the fitness function should be implemented
as follows:

public class myMOEADVariant extends MOEAD {
protected double fitnessFunction(IIndividual ind,
double [] lambda){
// New evaluation mechanism

return fitnessValue;
}
}

On the other hand, IBEA sets the fitness value to every
individual (ind0) depending on the comparison against the
rest of population members (ind!) according to the policies
determined by a binary indicator, so that each new variant
should only implement the indicator as follows:

public class myIBEAVariant extends IBEA {
protected double computeIndicator(IIndividual indO,
IIndividual ind1) {
// New binary indicator

return indicatorValue;
}
}

A further possibility is that a solution requires combin-
ing procedures of different algorithms with other proposals
or even a self-implemented approach. This is the case of
GrEA and NSGA-III, since both of them make use of the
fast non-dominated sorting approach defined by NSGA-II.
In JCLEC-MOEA, a strategy is allowed to call the selection
mechanisms of other strategies, promoting the creation of
hybridised approaches.

4.3 Addressing real-world problems

Irrespective of whether the chosen strategy is already pro-
vided or a new one, at least the set of objectives to be opti-
mised needs to be implemented to solve any MOP. Firstly,
each objective function is determined by a class that inher-
its from Objective. Here, the evaluation process for this
particular objective should be coded as follows:

public class myObjectiveFunction extends Objective {
public IFitness evaluate(IIndividual individual) {
// Evaluate this objective in the given individual
double objectiveValue = ...
return (new SimpleValueFitness(objectiveValue));
}
}

The resulting class has to be added to the list of objectives
specified inside the configuration file. Other aspects, such as
the objective bound or if they are expected to be minimised
or maximised, are set in this file too. Then, the evaluator
parameter is determined by MOEvaluator or MOParallelE-
valuator.

In case of a constrained MOP, consideration must be given
to other additional domain-specific aspects related to the




problem. For instance, ConstrainedNSGA2 could be set as
the multi-objective strategy to be used. Notice that it would
not affect the selection of the EC paradigm, which is deter-
mined by the parameter algorithm-type. As for the definition
of constraints, the mechanisms to distinguish between feasi-
ble and infeasible solutions have to be clearly specified. With
this purpose, a new encoding should be created by imple-
menting the interfaces IIndividual and IConstrained. The
selected encoding will be internally used by the species mod-
ule, which is in charge of defining and creating individuals.

5. CONCLUDING REMARKS

This paper presents JCLEC-MOEA, an adapted extension
of JCLEC for the resolution of MOPs. The proposed archi-
tecture captures and maintains the capabilities of JCLEC,
providing different EC models and a wide range of valuable
encodings and operators, at the same time that it expands
its functionality in order to incorporate new specific tools for
MOO practitioners. The overall idea is founded on promot-
ing important features like scalability, adaptability and ease
of extension, among others. In fact, as a result, a highly con-
figurable system has been developed, putting special empha-
sis on the flexibility to make use of different multi-objective
approaches or just some particular parts of them.

JCLEC-MOEA implements a great variety of algorithms,
all under the guidance of the Strategy design pattern rec-
ommendations, leading to highly modular and reusable im-
plementations that make complex solutions like hybridisa-
tion easier to produce. JCLEC-MOEA also provides further
utilities, including benchmarks, configuration facilities and
quality indicators that can assist the developer to perform
an accurate validation and comparison of new algorithms.

In the future we plan to keep JCLEC-MOEA up to date
with the most recent MOO proposals and include other dif-
ferent multi-objective metaheuristics, as well as integrate
this library with Visual JCLEC [17], a visual experimental
environment for JCLEC.
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