
Simplifying Problem Definitions in the HeuristicLab
Optimization Environment

Andreas Scheibenpflug1,2, Andreas Beham1,2,Michael Kommenda1,2,
Johannes Karder1, Stefan Wagner1, Michael Affenzeller1,2

1University of Applied Sciences Upper Austria
Heuristic and Evolutionary Algorithms Laboratory

Softwarepark 11, 4232 Hagenberg, Austria

2Johannes Kepler University Linz
Institute for Formal Models and Verification
Altenberger Strasse 69, 4040 Linz, Austria

{ascheibe, abeham, mkommend,
jkarder, swagner, maffenze}@heuristiclab.com

ABSTRACT
Software frameworks for metaheuristic optimization take the
burden off researchers and practitioners to start from scratch
and implement their own algorithms and problems. One
such framework is HeuristicLab. While it allows using ex-
isting, already implemented algorithms and problems com-
fortably and provides an extensive range of tools for ana-
lyzing results, it lacks an easy to use programming interface
for adding new problems. As implementing new problems
is a common task, an improved and simpler problem defini-
tion interface has been created. Besides giving an overview
of the implementation, we also show examples of problems
built using this new interface. Additionally, we compare
the new approach to three other metaheuristic frameworks.
This is done by analyzing the source code of the OneMax
problem implemented in each framework and comparing the
resulting lines of code with previous works.

Categories and Subject Descriptors
I.2.5 [Artificial Intelligence]: Programming Languages
and Software

Keywords
HeuristicLab; Evolutionary Computation Frameworks; Meta-
heuristic Optimization Frameworks; Scripting

1. INTRODUCTION
Defining and implementing new problems is a frequent

task for researchers and practitioners in the field of optimiza-
tion and metaheuristics. HeuristicLab (HL)1 [9] is a software
environment primarily used for heuristic optimization and
data analysis. Because of its graphical user interface (GUI)

1http://dev.heuristiclab.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11 - 15, 2015, Madrid, Spain
c⃝ 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3488-4/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739482.2768463

and analysis functionality it is a convenient tool for research
and education. Besides that, HeuristicLab is not only used
in scientific projects, but also in projects where real-world
problems of business and industry are tackled. For such of-
ten time critical tasks, it would be beneficial to provide an
easy way to design and develop new problems.

Implementing problems in HeuristicLab requires a deep
understanding of its architecture as well as conventions and
patterns used throughout the framework. HeuristicLab is
focused on providing a rich user experience. For example,
a user working with HeuristicLab can configure most of the
data and objects that one sees in the UI, including problems.
Therefore, code has to be written that reacts to such user
interactions.

Problems are constructed of various different operators
and components to ensure flexibility and modularity. How-
ever, this requires boiler plate code to be written that hin-
ders quick implementation of new problems or ideas [7].
Therefore, a new and improved application programming
interface (API) has been designed and integrated into Heu-
risticLab that allows to define problems more easily without
any previous knowledge about HL.

In the following, we first show a survey of three different
metaheuristic frameworks. Section 3 describes the standard
application programming interface for implementing prob-
lems in HeuristicLab. We then describe how the new prob-
lem definition API works and how creating new problems is
simplified. The usage of the new API is shown with two ex-
ample implementations of popular benchmark problems. In
the last part we compare our new approach to other meta-
heuristic and optimization frameworks and show its viability.

2. SURVEY
This section gives an overview of how other metaheuristic

software frameworks, namely ECJ, ParadisEO and DEAP,
allow to add new problem implementations. For each frame-
work, we show the code necessary to implement the OneMax
problem. OneMax is a simple binary benchmark problem
where the goal is to generate a bit string filled with only ones.
Additionally, the steps required to execute a Genetic Algo-
rithm with the newly implemented problem are described.
Because each framework already includes the OneMax prob-
lem, the listings show these implementations.

1101

ECJ
ECJ2 [10] is a metaheuristic software framework developed
at George Mason University’s Evolutionary Computation
Laboratory and written in the Java programming language.
It supports a range of different vector-based solution rep-
resentations as well as tree structures for genetic program-
ming. ECJ implements mainly evolutionary metaheuristics
like evolution strategies, genetic algorithms, coevolution and
multi-objective algorithms like NSGA-II and SPEA2 but
also includes an implementation of particle swarm optimiza-
tion. Additionally, ECJ provides some already implemented
problems like the SAT, lawnmower, NK landscapes, HIFF,
regression and artificial ant. One of the biggest differences
between ECJ and HeuristicLab is that, while configuration
in HL is done mainly in the graphical user interface, algo-
rithms and problems in ECJ are solely configured through a
parameter file. This file is loaded at runtime and then used
to instantiate and configure the desired components.
ECJ comes with various samples. Listing 1 shows the

source code of the OneMax problem as implemented in ECJ.

1 public class MaxOnes extends Problem
2 implements SimpleProblemForm
3 {
4 public void evaluate(final EvolutionState

state , final Individual ind , final int
subpopulation , final int threadnum) {

5 if (ind.evaluated) return;
6 if (!(ind instanceof BitVectorIndividual)

)
7 state.output.fatal("Whoa! It’s not a

BitVectorIndividual !!!",null);
8

9 int sum=0;
10 BitVectorIndividual ind2 = (

BitVectorIndividual)ind;
11 for(int x=0; x<ind2.genome.length; x++)
12 sum += (ind2.genome[x] ? 1 : 0);
13

14 if (!(ind2.fitness instanceof
SimpleFitness))

15 state.output.fatal("Whoa! It’s not a
SimpleFitness !!!",null);

16 ((SimpleFitness)ind2.fitness).setFitness(
state , (float)(((double)sum)/ind2.
genome.length), sum == ind2.genome.
length);

17 ind2.evaluated = true;
18 }
19 }

Listing 1: Code for the OneMax problem from the
ECJ tutorial section (for brevity without imports
and package declaration)

Problems in ECJ have to inherit from Problem which
states that problems have to implement a cloning and an
evaluation mechanism. How evaluation is specified concretely
is defined by problem forms. Therefore the OneMax prob-
lem in ECJ implements SimpleProblemForm that defines an
evaluation method which gets a state (containing current
generation, the current population, the breeder,. . .), the in-
dividual to evaluate, the index of the subpopulation from
where the individual was taken and the id of the thread
where the evaluation takes place. The reason for the last
two parameters is that there may be multiple populations
(for example in an island model) that can be spread over

2http://cs.gmu.edu/˜eclab/projects/ecj/

multiple processes or computers. In the evaluation function
the quality is calculated and the result stored in the individ-
ual.

This problem can now be used with e.g., a genetic algo-
rithm. Configuration is done in the parameter file, which
gets loaded by ECJ. Listing 2 shows an excerpt where parts
of the algorithm configuration and the selection of the prob-
lem type is displayed.

1 breedthreads = 1
2 evalthreads = 1
3 state = ec.simple.SimpleEvolutionState
4 pop = ec.Population
5 init = ec.simple.SimpleInitializer
6 finish = ec.simple.SimpleFinisher
7 breed = ec.simple.SimpleBreeder
8 eval = ec.simple.SimpleEvaluator
9 stat = ec.simple.SimpleStatistics

10 exch = ec.simple.SimpleExchanger
11 generations = 200
12 quit -on-run -complete = true
13 checkpoint = false
14 prefix = ec
15 pop.subpops = 1
16 pop.subpop .0 = ec.Subpopulation
17 pop.subpop .0. size = 10
18 pop.subpop .0. duplicate -retries = 0
19 pop.subpop .0. species = ec.vector.

VectorSpecies
20 pop.subpop .0. species.fitness = ec.simple.

SimpleFitness
21 pop.subpop .0. species.ind = ec.vector.

BitVectorIndividual
22 pop.subpop .0. species.genome -size = 20
23 pop.subpop .0. species.crossover -type = one
24 pop.subpop .0. species.crossover -prob = 1.0
25 pop.subpop .0. species.mutation -prob = 0.01
26 pop.subpop .0. species.pipe = ec.vector.

breed.VectorMutationPipeline
27 pop.subpop .0. species.pipe.source .0 = ec.

vector.breed.VectorCrossoverPipeline
28 pop.subpop .0. species.pipe.source .0. source .0

= ec.select.TournamentSelection
29 pop.subpop .0. species.pipe.source .0. source .1

= ec.select.TournamentSelection
30 select.tournament.size = 2
31 eval.problem = ec.app.tutorial1.MaxOnes

Listing 2: Parameter file for the configuration of the
ECJ OneMax problem

ParadisEO
ParadisEO3 [2] is a C++ software framework based on the
EO [6] framework. While EO provides population-based
metaheuristics (mainly EAs and GAs), ParadisEO adds sup-
port for trajectory-based metaheuristics (e.g., Tabu Search,
Simulated Annealing and tools for fitness landscape anal-
ysis), multi-objective optimization (e.g., NSGA-II, IBEA,
SPEA2) as well as hybrid, parallel and distributed meta-
heuristics. ParadisEO also comes with a wide range of dif-
ferent vector-based solution representations and also tree-
based representations. There are some concrete problem im-
plementations shipped with ParadisEO, like NK landscapes,
QAP, SAT or Royal Road.

While HeuristicLab is mainly configured through its user
interface and ECJ through its parameter file, ParadisEO
takes more of a white-box approach where it mainly pro-
vides building blocks for constructing algorithms. Problem

3http://paradiseo.gforge.inria.fr/

1102

implementation and configuration is done in C++ as Listing
3 shows. First the type of solution representation (eoBit)
is defined. Evaluation of the individual is done with a func-
tion that takes such an individual, evaluates it and returns
its quality value. In the main method the initial popula-
tion is constructed by generating POP_SIZE individuals and
randomly initializing each individual. Afterwards, all pa-
rameters and operators are configured and a new genetic
algorithm is initialized and run on the population and prob-
lem as specified before.

1

2 typedef eoBit <double > Indi;
3

4 double binary_value(const Indi& _indi) {
5 double sum = 0;
6 for (int i = 0; i < _indi.size(); i++)
7 sum += _indi[i];
8 return sum;
9 }

10

11 int main()
12 {
13 const unsigned int VEC_SIZE = 8;
14 const unsigned int POP_SIZE = 20;
15 const unsigned int MAX_GEN = 500;
16 const float CROSS_RATE = 0.8;
17 const double P_MUT_PER_BIT = 0.01;
18 const float MUT_RATE = 1.0;
19

20 eoEvalFuncPtr <Indi > eval(binary_value);
21

22 eoPop <Indi > pop;
23 for (int igeno =0;igeno <POP_SIZE;igeno ++)

{
24 Indi v;
25 for (int ivar =0;ivar <VEC_SIZE;ivar ++) {
26 bool r = rng.flip();
27 v.push_back(r);
28 }
29 eval(v);
30 pop.push_back(v);
31 }
32

33 eoDetTournamentSelect <Indi > select (3);
34 eoGenContinue <Indi > continuator(MAX_GEN);
35 eoBitMutation <Indi > mutation(

P_MUT_PER_BIT);
36 eo1PtBitXover <Indi > xover;
37

38 eoSGA <Indi > gga(select , xover , CROSS_RATE
, mutation , MUT_RATE ,

39 eval , continuator);
40 gga(pop);
41

42 pop.sort();
43 cout << "FINAL Population\n" << pop <<

endl;
44 }

Listing 3: ParadisEOs’ OneMax problem and
algorithm configuration (taken from ParadisEOs
tutorial section, without includes for brevity)

DEAP
DEAP4 [3] is a metaheuristic software framework imple-
mented in the Python programming language. It has a
strong focus on simplicity and the ability to be used as a
tool for rapid prototyping and testing of new ideas. The
goal of DEAP is to provide a simple platform for creating

4https://github.com/deap

custom algorithms and constructing EC systems. Neverthe-
less, DEAP comes with a range of already implemented algo-
rithms like EA variants, CMA-ES, GP and multi-objective
algorithms like NSGA-II and SPEA2. It also comes with
examples of already implemented problems like the TSP,
Knapsack, symbolic regression or artificial ant. Listing 4
shows an implementation for the OneMax problem [8]. The
first two lines define the representation of a solution can-
didate. In contrast to the other frameworks, DEAP has
no pre-defined implementations for solution representations.
Instead, the representation is defined with the help of the
creator class. This is possible due to the dynamic typing of
the Python programming language and can be done based
on any data structure such as arrays, lists, dictionaries etc.
The toolbox is used as a configuration repository where key
value pairs of operators and settings can be stored. This
toolbox is then used to parameterize a new EA.

1 creator.create("FitnessMax", base.Fitness ,
weights =(1.0 ,))

2 creator.create("Individual", array.array ,
typecode=’b’, fitness=creator.
FitnessMax)

3

4 toolbox = base.Toolbox ()
5 toolbox.register("attr_bool", random.

randint , 0, 1)
6 toolbox.register("individual", tools.

initRepeat , creator.Individual , toolbox
.attr_bool , 10)

7 toolbox.register("population", tools.
initRepeat , list , toolbox.individual)

8

9 def evalOneMax(individual):
10 return sum(individual)
11

12 toolbox.register("evaluate", evalOneMax)
13 toolbox.register("mate", tools.cxTwoPoint)
14 toolbox.register("mutate", tools.mutFlipBit

, indpb =0.05)
15 toolbox.register("select", tools.

selTournament , tournsize =3)
16

17 def main():
18 pop = toolbox.population(n=300)
19 hof = tools.HallOfFame (1)
20 stats = tools.Statistics(lambda ind:

ind.fitness.values)
21 stats.register("avg", numpy.mean)
22 stats.register("std", numpy.std)
23 stats.register("min", numpy.min)
24 stats.register("max", numpy.max)
25

26 pop , log = algorithms.eaSimple(pop ,
toolbox , cxpb =0.5, mutpb =0.2, ngen
=40, stats=stats , halloffame=hof ,
verbose=True)

27

28 return pop , log , hof

Listing 4: Excerpt from DEAP’s OneMax problem
and algorithm configuration (without imports)

Besides different ways to configure problems and algo-
rithms as well as running them, there is also a difference
in the output the frameworks provide. HeuristicLab usually
generates a chart that shows quality curves over generations
and saves the best found solution in the results. ECJ on
the other hand prints out the best found solution by default
while in ParadisEO, no information is shown by default be-
sides the last generation which had to be manually coded.

1103

DEAP is configured in the code to show the last generation
as well as the best found solution and some statistics that
have also been configured explicitly.

3. STANDARD PROBLEM DEFINITION
INTERFACE IN HEURISTICLAB

Metaheuristics are problem-independent optimization meth-
ods. HeuristicLab follows this principle by defining an inter-
face between algorithms and problems which allows coupling
of almost all implemented algorithms with all problems.
Problems require a representation for solution candidates.

HeuristicLab offers a range of predefined representations for
solutions such as binary vectors, real vectors or permuta-
tions. This is called an encoding which is the representation
of the solution candidates and the operators that work on
these representations. Such operators are crossover and mu-
tation operators used by evolutionary algorithms or move
operators for trajectory-based metaheuristics. Furthermore,
HeuristicLab supports algorithms that need other, more spe-
cialized operators, e.g., tabu-criteria for tabu search or parti-
cle creators for particle swarm optimization. If the encoding
should be used with these algorithms, it has to provide such
operators.
An operator that every encoding has to implement is a

solution creator. Every algorithm needs an operator for
creating solution candidates and therefore offering such an
operator is mandatory. Similarly, a problem has to imple-
ment an evaluator which assigns a quality value to solution
candidates. As fitness functions are problem-specific, it is
mandatory for a problem to provide one.
A problem in HeuristicLab is defined with a solution cre-

ator and an evaluator which couples the encoding with the
problem. A problem can additionally define problem-specific
operators that make use of properties of the problem when
manipulating solutions. An example of such an operator
would be a specific path-relinker operator for the traveling
salesman problem. Figure 1 gives an overview of how prob-
lems and encodings are organized in HeuristicLab.
Besides defining the used encoding and fitness function, prob-
lems also define if their objective function should be maxi-
mized or minimized, if it is a single- or multi-objective prob-
lem and how problem data can be loaded. HL usually offers
benchmark instances for problems and supports loading of
problem data from files. While this is quite a useful feature,
it is optional as there are problem types that do not need to
load data.

A problem is also responsible for discovering and configur-
ing operators. Algorithms usually include placeholders that
can be filled with encoding- or problem-specific operators
(e.g., crossovers or mutators) that the user can select in the
GUI. The problem offers an operator repository where algo-
rithms can retrieve configured operators. These operators
are typically all the operators from the encoding as well as
the problem-specific operators. The problem can also ex-
clude operators, e.g. when an encoding-specific operator
may not work for a certain problem.
A problem has to react to user interaction. Because users

can configure problems, the developer of the problem has to
check and react to possible changes in configuration and also
recover from possible faulty states. The code that has to be
written to support user interaction is one of the disadvan-

Problem

e.g. Vehicle Routing, Quadratic Assignment, Symbolic Regression,...

Encoding

e.g. Permutation, RealVector, Binary,...

Operators

Creators, Crossover, Manipulators, Move Generators,

Move Makers, Particle Operators

Operators

Evaluators, Move Evaluators, Creators, Crossover, Manipulators,

Move Generators, Move Makers, Particle Operators

Figure 1: Architecture of problems, encodings and
operators in HeuristicLab

tages of the standard way of creating new problems in HL
because it has to be implemented for every problem. Besides
requiring developers to have a deep knowledge of HL, this
also leads to code duplication. The next section shows how
this disadvantage is overcome with the new API.

4. NEW PROBLEM DEFINITION
INTERFACE FOR HEURISTICLAB

The goal in creating a new API for problem definitions
is to reduce the size of the source code required for creat-
ing a new problem. The API should be minimal and clear.
Additionally, it should be easier for new developers to get
started with HeuristicLab. HeuristicLab is a project with
a large code base and many concepts and patterns imple-
mented throughout the framework that one has to be famil-
iar with to understand how HeuristicLab works. New de-
velopers are often overwhelmed by the size of the code base
and the used concepts. Thus the new API should lower the
burden for programmers new to HL.

In the following the changes and improvements that form
the basis for the new API are described. They can be
grouped into two categories:

• Removal of unnecessary code: This is achieved by re-
moving most of the configuration code from the prob-
lems and moving them to the encodings where it can be
used by multiple problems without code duplication.

• Hiding of framework concepts: HL uses various useful
concepts like operators and scopes, but such concepts
have the downside of increasing the learning curve of
the framework. Therefore, specific concepts are con-
cealed from the user and replaced by common known
language features (e.g. interfaces that can be imple-
mented instead of operators).

1104

Automatically Configuring Encodings
One disadvantage of the standard problem definition is the
duplication of code for configuring encoding-specific opera-
tors in every new problem.
An encoding in HeuristicLab is the implementation of a so-

lution representation (e.g., binary vector, permutation vec-
tor, expression tree encoding,. . .) and operators that work
on it. Solutions normally have a name which is used to
store and retrieve them. Solutions also often have a length
and bounds for the values that they contain. A problem is
responsible to set and configure these values. It discovers
all types of operators that an encoding offers and then sets
these values. The problem is also responsible for reacting to
changes that a user makes, e.g., if a user selects a different
instance of a problem, it may require a different length of
solution. The problem would react to this change and con-
figure all operators accordingly. Code and functionality like
this has to be implemented for all properties that can be
configured by the user. Additionally, because this function-
ality is contained in the problem, it is implemented multiple
times with only little variation for every problem that uses
the same encoding.
Encodings can do most of the configuration by themselves

and can offer an interface to problems which they can use for
additional configuration. Hence, with the new problem def-
inition API, a new interface for encodings has been created
and most of this functionality was moved to the new encod-
ing components. Problems therefore do not need to discover
operators themselves and it is not necessary anymore to con-
figure the solution representation and the operators. In the
simplest case, a problem just instantiates a new encoding,
defines its properties and gets the correctly configured op-
erators resulting in nearly no configuration code.
Table 1 shows achievable code reduction by comparing

lines of code (LOC) for two problems in HL which have been
rewritten with the new API. The first one is the OneMax
test problem and the second one is a problem which allows
to use other applications for solution evaluation.

Problem LOC Old API LOC New API Ratio
One Max 201 40 5.0
External Eval. 274 130 2.1

Table 1: Lines of code (LOC) compared between the
old and new problem API. Measured with Visual
Studio 2013 code metrics

The table shows that the new API allows to significantly
reduce the amount of code that needs to be written.
Besides removing the need to configure encodings, the new

API also removes the need to write operators for solution
evaluation, analyzers and neighborhood operators. Writ-
ing operators is a task where the developer has to know a
lot about the HeuristicLab API and its internal structure.
Therefore, this has been abstracted in the new API to allow
developers to more easily develop code for this functionality
as described in the next section.

Wrapping operators
HeuristicLab algorithms are constructed by chaining opera-
tors together [9]. Operators are building blocks of code that
can be reused. Crossovers, selectors, mutators, evaluators,
and so on, are all implemented as operators that work on

Scopes

S

GS

Sn0 Sn1 Sn2 Sn3

Algorithm

Operator

Operator

Operator

process

process

process

Problem

Operator

Repository

retrieves
operators

calls methods

Figure 2: Operator Model

scopes. Scopes are hierarchical data structures that contain
variables. Operators assume a certain structure of the scopes
they are applied to. Because there is no direct binding be-
tween scope configuration and operators, a lot of knowledge
and experience is necessary to configure and apply operators
correctly.

In the new problem definition API, this issue has been
eliminated by replacing operators with abstract methods
that can be implemented by the developer and represent
a familiar setting for them. Internally, there is still a set of
operators that execute these methods and prepare the data
for them. Figure 2 shows how algorithms are composed of
a set of operators that manipulate scopes. Operators that
are specific to a problem or encoding are typically retrieved
from the problem. With the new API there are now oper-
ators that wrap methods from the problem. These opera-
tors, when executed by the algorithm, retrieve data from the
scope (e.g., an individual) and then call a method with the
retrieved data implemented in the problem.

5. EXAMPLES
In this section two examples of problems implemented

with HeuristicLab are shown. These two examples show im-
plementations of two different problems, the first one being
the OneMax problem and the second one a real-valued test
function. HeuristicLab provides two different possibilities
for implementing problems: The OneMax problem is im-
plemented by inheriting from SingleObjectiveBasicProb-

lem. This is the preferred way of implementing new prob-
lems when developing plugins for HeuristicLab. The other
possibility, as shown with the second example, is a more
prototyping-oriented way. New problems are defined in Heu-
risticLab using the “Programmable Problem“ and does not
require setting up a development environment or creating
new plugins. This is based on the scripting functionality
(as described in [1]) where C# code can be written, com-
piled and executed within HeuristicLab. In contrast to Sin-

gleObjectiveBasicProblems, Programmable Problems re-
quire that the problem class inherits from CompiledProb-

lemDefinition.
In both cases, the problem to be defined has to imple-

1105

ment ISingleObjectiveProblemDefinition or IMultiOb-

jectiveProblemDefinition, depending on whether there
are one or multiple objectives. This means that the fol-
lowing properties and methods have to be implemented in
every problem:

• Maximization: A property that should return true if
it is a maximization problem, otherwise false. With
a multi-objective problem, this is an array containing
a value for each objective.

• Encoding

– For the BasicProblem the type of encoding is de-
fined by its generic type parameter.

– For the Programmable Problems the Initialize
method has to be used to instantiate a new en-
coding.

• Evaluate: This is the objective function of the prob-
lem. It receives an individual and returns its quality
value. In the multi-objective case it returns an array
of double values which represent the quality values for
each objective.

• GetNeighbors: This is an optional method that can be
implemented if the problem should be used for trajectory-
based metaheuristics. It receives an individual and re-
turns its neighborhood, e.g., a list of individuals.

• Analyze: An optional method that receives a list of
individuals and quality values. If implemented, it is
called by the algorithm every generation/iteration and
can be used to calculate statistics and store them in
the result collection.

OneMax Problem
Listing 5 shows the implementation of the OneMax prob-
lem in HeuristicLab as a basic problem. Because OneMax
is a problem with a binary vector as solution representa-
tion, the OneMax problem inherits from SingleObjective-

BasicProblem <BinaryVectorEncoding>. Having set the
encoding type, the constructor defines the length of the solu-
tion candidates. The Maximization property is set to true
as OneMax is a maximization problem. In the Evaluate

function the binary vector from a solution candidate is re-
trieved, evaluated and its quality returned. The rest of the
methods and constructors ensure that objects of this class
can be cloned and stored in a file. The Item attribute on the
class contains the name and description of the class which
is used in the GUI when the class is displayed. If a class has
a Creatable attribute, HeuristicLab automatically displays
it in the New Item dialog in the Problems category.

Rastrigin Problem
The Rastrigin function is a real-valued problem where the
goal is to minimize parameters of the function so that the
result evaluates to zero:

f(x) = 10n+

n∑
i=1

[x2
i − 10 cos(2πxi)]

In Listing 6 this test function is implemented as described
in [4]. In contrast to the OneMax problem, RastriginProb-
lem inherits from CompiledProblemDefinition and defines

1 [Item("One Max Problem",
2 "Represents a problem ...")]
3 [Creatable("Problems")]
4 [StorableClass]
5 public class OneMaxProblem :

SingleObjectiveBasicProblem <
BinaryVectorEncoding > {

6 public override bool Maximization {
7 get { return true; }
8 }
9

10 public OneMaxProblem ()
11 : base() {
12 Encoding.Length = 10;
13 }
14

15 [StorableConstructor]
16 protected OneMaxProblem(bool deserializing

)
17 : base(deserializing) {}
18 protected OneMaxProblem(OneMaxProblem

original , Cloner cloner) : base(
original , cloner){}

19 public override IDeepCloneable Clone(
Cloner cloner) {

20 return new OneMaxProblem(this , cloner);
21 }
22

23 public override double Evaluate(Individual
individual , IRandom random) {

24 return individual.BinaryVector ().Count(b
=> b);

25 }
26 }

Listing 5: Code for the OneMax problem (for
brevity without usings and namespace declaration)

the encoding to be used in the Initialize method. Like
OneMax it has an evaluate method where the real vector is
retrieved from the individual and its quality is computed and
returned. Additionally, while leaving the Analyze method
empty, the GetNeighbors method is implemented so that
this problem can also be used for trajectory-based meta-
heuristics such as tabu search.

To solve a problem in HeuristicLab, it has to be assigned
to an algorithm. In the user interface, this can be done
by creating a new algorithm and using the New problem
button or dragging an already open problem on an algo-
rithm. Figure 3 shows a screenshot of an algorithm with a
programmable problem containing the source code for the
Rastrigin problem. When implementing an application or
plugin, a problem can also be assigned to an algorithm as
shown in Listing 7. It instantiates a new problem and a new
algorithm and assigns the problem to the algorithm. Algo-
rithms in HeuristicLab normally choose a reasonable default
parameter configuration. Nevertheless, if desired, this can
be changed as shown in line five. In line six, the parallel
engine is chosen which automatically parallelizes solution
evaluations and afterwards the algorithm is started.

6. EVALUATION
In [5] the authors compare the amount of lines of code

required to implement the OneMax problem in different
metaheuristic software frameworks. Table 6 shows an ex-
cerpt from their results with a new row for HeuristicLab.
The columns show lines of code counts required to achieve
the implementation of the OneMax problem. The Type col-

1106

Figure 3: CMA-ES with a programmable problem

umn contains the lines of code required for implementing
the solution representation, Config shows the configuration
of the operators and algorithms and Ex. the number of lines
needed for implementing the example.

Framework Type Config Example
ECJ 202 35 26
ParadisEO 43 n/a 68
DEAP n/a n/a 59
HeuristicLab 40 5 31

Table 2: Comparison of number of lines of code
for creating the OneMax problem between differ-
ent frameworks (counted with cloc). Table (excerpt)
taken from [5] with the addition of HeuristicLab.

The table shows that, thanks to the new API, HL is now
very similar to the other frameworks concerning the amount
of lines of code, sometimes needing significantly less code to
implement a certain task.

Discussion
While lines of code is a good indicator of how much effort
is required to achieve a certain task, it is not such a good
measure for the complexity and difficulty. From our point
of view, additional points of consideration would be:

• Knowledge of the framework: A framework can offer
an high-level or a low-level API where more interaction
with the framework is needed. Having a high-level API
is more user-friendly as it hides much of the complexity
of the framework. Such an API could hide framework-
specific data types and allow the usage of data types
of the host programming language and library.

• Usage of the host programming language: A frame-
work may require different levels of knowledge of the
host programming language. If a framework requires
programming-language specific techniques to make use
of it, the framework is more difficult to use than if it
would only make use of general concepts. For exam-
ple, if a framework written in C++ requires the user
to know template meta-programming it has a steeper
learning curve than if it would only require the user to
know general concepts like classes and methods which
are present in other programming languages.

A possible direction for future research would be to in-
vestigate such topics and try to find measures that can be
calculated from the examples to better quantify how hard
or easy a software framework is to learn.

7. CONCLUSION
In this paper we presented HeuristicLab’s new API for

defining single- and multi-objective problems. We showed
its usage by implementing two sample problems and com-
pared it to three other metaheuristic software frameworks.
We showed that, when comparing the number of lines of code
required for implementing different components, Heuristic-
Lab sometimes requires more code to be written, though the
resulting implementation may also provide more functional-
ity for the user (e.g., better options for configuration and
visualization of the implemented problem).

In the category where the code for the example is mea-
sured, HeuristicLab actually does not require much code to
be written. This shows that the new API for problem defini-
tions in HeuristicLab compares well to the other frameworks.

Additionally, having the possibility to not only use the

1107

1 public class RastriginProblem :
CompiledProblemDefinition ,
ISingleObjectiveProblemDefinition {

2 public bool Maximization { get { return
false; } }

3 double min , max , a;
4

5 public override void Initialize () {
6 min = -5.12; max = 5.12;
7 a = 10.0;
8 Encoding = new RealVectorEncoding("rv",

length: 5, min: min , max: max);
9 }

10

11 public double Evaluate(Individual
individual , IRandom random) {

12 double result;
13 RealVector point = individual.RealVector

();
14 result = a * point.Length;
15 for (int i = 0; i < point.Length; i++) {
16 result += point[i] * point[i];
17 result -= a * Math.Cos(2 * Math.PI *

point[i]);
18 }
19 return result;
20 }
21

22 public IEnumerable <Individual >
GetNeighbors(Individual individual ,
IRandom random) {

23 while (true) {
24 var rand = rand.NextDouble () * (max -min)

/ 2.0;
25 var neighbor = individual.Copy();
26 var index = random.Next(neighbor.

RealVector("rv").Length);
27 if (random.NextDouble () < 0.5) rand=-

rand;
28 neighbor[index] = Math.Min(max , Math.Max

(min , rand + neighbor[index]));
29 yield return neighbor;
30 }
31 }
32 }

Listing 6: Code for the Rastrigin test function (for
brevity without usings, namespace declaration and
Analyze method)

new API in plugins but also in scripts that are executed
from within HL allows to easily write new problems and try
new ideas without having to set up a development environ-
ment. This means that HL can now also be used in a more
prototyping-oriented way similar to DEAP.

8. ACKNOWLEDGMENTS
The work described in this paper was done within the Sus-

tainable Production Steering (NPS, #843638) project and
the COMET project Heuristic Optimization in Production
and Logistics (HOPL, #843532), both funded by the Aus-
trian Research Promotion Agency (FFG).

9. REFERENCES
[1] A. Beham, J. Karder, G. Kronberger, S. Wagner,

M. Kommenda, and A. Scheibenpflug. Scripting and
framework integration in heuristic optimization
environments. In Proceedings of the 2014 Conference
Companion on Genetic and Evolutionary Computation
Companion, GECCO Comp ’14, pages 1109–1116.
ACM, 2014.

1 OneMaxProblem oneMax = new
OneMaxProblem ();

2

3 GeneticAlgorithm ga = new
GeneticAlgorithm ();

4 ga.Problem = oneMax;
5 ga.MaximumGenerations.Value = 200;
6 ga.Engine = new ParallelEngine ();
7 ga.Start();

Listing 7: Code for creating and starting an
algorithm

[2] S. Cahon, N. Melab, and E.-G. Talbi. ParadisEO: A
framework for reusable design of parallel and
distributed metaheuristics. Journal of Heuristics,
10(3):357–380, 2004.

[3] F.-M. De Rainville, F.-A. Fortin, M.-A. Gardner,
M. Parizeau, and C. Gagné. Deap: A python
framework for evolutionary algorithms. In Proceedings
of the 14th Annual Conference Companion on Genetic
and Evolutionary Computation, pages 85–92. ACM,
2012.

[4] A. E. Eiben and J. E. Smith. Introduction to
Evolutionary Computation. Natural Computing Series.
Springer-Verlag, 2003.

[5] F.-A. Fortin, F.-M. D. Rainville, M.-A. Gardner,

M. Parizeau, and C. GagnÃl’. Deap: Evolutionary
algorithms made easy. Journal of Machine Learning
Research, 2171–2175(13), 2012.

[6] M. Keijzer, J. J. Merelo, G. Romero, and
M. Schoenauer. Evolving Objects: A general purpose
evolutionary computation library. In 5th International
Concerence in Evolutionary Algorithms, pages
231–242, 2001.

[7] G. Kronberger, M. Kommenda, S. Wagner, and
H. Dobler. Gpdl: A framework-independent problem
definition language for grammar-guided genetic
programming. In Proceedings of the 15th Annual
Conference Companion on Genetic and Evolutionary
Computation, GECCO ’13 Companion, pages
1333–1340. ACM, 2013.

[8] F.-M. D. Rainville, F.-A. Fortin, M.-A. Gardner,

M. Parizeau, and C. GagnÃl’. Deap – enabling nimbler
evolutions. SIGEVOlution, 6(2):17–26, 2014.

[9] S. Wagner, G. Kronberger, A. Beham, M. Kommenda,
A. Scheibenpflug, E. Pitzer, S. Vonolfen, M. Kofler,
S. Winkler, V. Dorfer, and M. Affenzeller. Advanced
Methods and Applications in Computational
Intelligence, volume 6 of Topics in Intelligent
Engineering and Informatics, chapter Architecture
and Design of the HeuristicLab Optimization
Environment, pages 197–261. Springer, 2014.

[10] D. White. Software review: the ecj toolkit. Genetic
Programming and Evolvable Machines, 13(1):65–67,
2012.

1108

