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ABSTRACT

Ant Colony Optimization (ACO) has become a popular meta-
heuristic approach for solving hard combinatorial optimiza-
tion problems. However, most existing ACO software sys-
tems are domain-specific, dedicated to concrete problems
or non-extensible, non-portable and non-scalable solutions
that have been evaluated for problem spaces of limited size.
In this context, we present AntElements (AntE), a portable
Java-based ACO middleware, designed and implemented with
the highest consideration for versatility. The extensibility of
the proposed middleware allows its use in virtually any ACO
deployment, ranging from experimental to commercial. In
this work, the overall object-oriented architecture and the
software design patterns of AntE are explained, alongside
the main concepts behind them. Furthermore, AntE is an-
alyzed with respect to the computational efficiency, paral-
lelization capacities and memory consumption, which allows
to establish its usability and scalability range. In its current
implementation, on an average to mid-high workstation, our
middleware is capable of processing upwards of 10° agents
per second, in graphs of the order of 10° nodes and sustain
a stable, fully logged experiment for over 12 hours. The
proposed middleware has already been deployed in several
research projects that are outlined in this paper, illustrating
the range of possibilities it offers.

Categories and Subject Descriptors

D.2.13 [Software Engineering]: Reusable Software; D.2.2
[Software Engineering]: Design Tools and Techniques—
modules and interfaces
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1. INTRODUCTION

Evolutionary computation is an area of intensive research
that requires, due to the internal complexity of the algo-
rithms and the data structures involved, advanced software
solutions. This is especially true in the case of multiagent,
swarm-related or bio-inspired metaheurisitcs, such as Ant
Colony Optimization (ACO) [6]. In this specific case, non-
trivial software is generally indispensable in order to vali-
date the soundness and effectiveness of the designed ACO
strategies. Such implementations must incorporate, to name
a few: advanced multithreading handling, software design
patterns, software modularity and low level efficiency opti-
mization. Many of these advanced computational techniques
often need to be designed and coded by software engineers,
but writing a specialized piece of software anew for each
iteration of a problem entails considerable workload.

Software Engineering addresses this matter by introducing
the concept of middleware. A middleware is a piece of soft-
ware that provides a set of black-boxed complex algorithms
and encapsulated low-level concepts. It enables researchers
to work with higher-level concepts or even entire algorithms
as atomic entities, significantly shortening the preparation
for the experimental phase and breeching the gap between
the theoretical computer science and the experimentation.
Standardized middlewares also help to make the experimen-
tal results more easily comparable, eliminating the potential
for an implementation-bound bias.

In this work we present AntElements (AntE), an extensi-
ble and highly customizable middleware that facilitates an
Ant Colony Optimization (ACO) testbed. The main ratio-
nale behind the development of AntE was the creation of
a software infrastructure that could be used in three ways.
First, for educational purposes, by enabling easy interac-
tion. Second, for experiment execution, due to the exten-
sive logging and configuration abilities. Finally, for software
deployment, by achieving very strong scalability, portability
and compatibility with mobile devices.

The remainder of this paper is organized as follows. In
Section 2 we provide an overview of existing ACO middle-
wares and simulation environments. In Section 3 we present
the AntE middleware. Section 4 studies the efficiency and
scalability of the proposed software infrastructure and Sec-
tion 5 discusses the specific deployments that have been re-
alized. We summarize our findings in Section 6.



2. RELATED WORKS

ACO has received only a moderate attention with respect
to simulation environments and middlewares. The existing
solutions tend to be devoted to one particular ACO imple-
mentation or even just one classical problem. An example of
this domain-specific implementation trend is ACOTSP [14],
a high performing software with C and Java versions, ded-
icated exclusively to the Traveling Salesman Problem. The
configuration of ACOTSP is restricted to the command line
interface and experimental data are supplied in external files.
On the upside, ACOTSP incorporates a number of ACO
algorithms, while most middlewares are based on a single
ACO strategy. This is the case of another domain-specific
package, hc-mmas-ubgp [3] which is restricted to MAX-MIN
Ant System (MMAS) for Unconstrained Binary Quadratic
Programming (UBQP) in Hypercubes. Similar in nature is
AntClique [13], which was written for maximum clique prob-
lems. The three aforementioned software packages are rea-
sonably efficient implementations of ACO, but offer limited
flexibility, as they focus on one specific problem. In addition,
the C code developed under Linux provides no guarantee to
work in different environments, such as Windows, OSX or
Android. No distributed versions of the packages exist and
adaptation is done mainly on the code-level.

Gui Ant-Miner [11] and Myra [2], are two portable, Java-
based implementations of ACO. According to the authors,
their implementation is reasonably well performing in terms
of CPU time and memory consumption, although only ex-
perimental and educational uses should be considered. Again,
these two packages work exclusively with two concrete ACO
algorithms - Ant Colony-based Data Miners, called Ant-
Miner and cAnt-Miner, used for extracting classification rules.

A more general-purpose middleware is JACSF [4]. The
author presents a centralized, bare-bones ACO middleware
and performs no study of efficiency or scalability. Many
details of the implementation, such as the results logging,
are treated simplistically or are completely absent. On the
other hand JACSF is easily extensible and very versatile,
it can be reprogrammed for any classical problem and it
supports any arbitrary ACO algorithm. The author advises
to use his software for experimental purposes only.

Another generic solution, AntLib v1.0 [5] is a promising
C++ approach to hybrid ACO middlewares. The authors
focus on speed, efficiency and scalability, as well as exten-
sibility, with emphasis on the use of templates and object-
orientation. Their solution is not bound to any algorithm
nor a specific problem. However, the code is for local and
experimental use only. It is reported as a work in progress.

Finally, AntHill [1], is a very advanced ACO middleware,
written in Java, that provides full support for parallel and
distributed execution. It operates with JXTA P2P technol-
ogy and is suited for both: experimental and deployment
applications. Even though the authors fail to comment on
execution times, an experiment of 5 x 10° iterations is re-
ported which indicates a moderately high scalability. This
promising work, however, has not been in development since
2001 and, as a consequence, the structures and technologies
it uses have become obsolete. In addition, the customization
of AntHill is questionable, as it seems to be strongly bound
to the topic of P2P query propagation.

In Table 1 we summarize the results stemming from this
brief discussion. Note that in most cases it is not straightfor-
ward to establish the scalability and the maximum working
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Figure 1: AntE graph family

ranges of a given middleware. If the ranges are not explicitly
specified by the authors we estimate them using the largest
documented and published execution of the software we were
able to find. Some of the presented middlewares have a fixed
number of algorithms incorporated, in such cases a value is
provided in the column Algorithms. In the Problems column
group, Open indicates that a given middleware can be ap-
plied to any problem, rather than just a preestablished one.
Finally, Dynamic is a unique feature of our middleware. It
denotes middlewares that support the modification of the
problem mid-execution.

In general, the middlewares are often not modular nor
extensible and the dominating programming language is C
under Linux, which limits significantly the deployment pos-
sibilities. Thus, the focus tends to be experimental or edu-
cational. The authors hardly ever elaborate on the efficiency
or the scalability of their software and almost always neglect
portability. The efficiency is usually obtained at the cost of
flexibility.

Most importantly, the execution environment is always
static, i.e, the parameters of the execution have to be pro-
vided before it commences and once the algorithm is set in
motion no parameters can be changed. Moreover, the evo-
lution of the problem space is universally not permitted.

3. ANTE OVERVIEW

Our solution, AntElements, permits easy creation of com-
plex and compound testing facilities even with limited knowl-
edge of software engineering. Our primary concern, with
respect to the software design, was to provide a modular ar-
chitecture in which each element could be extended and im-
proved upon. It allows to model virtually all ACO-based al-
gorithms and to apply them to an arbitrary problem. In this
section we will discuss the high-level architecture of AntE,
explain the range of data-logging possibilities, demonstrate
snippets of configuration, as well as reveal some interesting
low-level optimization techniques.

3.1 Architecture

A very common, practical and justifiable constraint of
ACO mathematical models is to represent the contiguous
world, in which the real-life ants operate, with a finite graph.
To model the problem space in terms of graphs and nodes
varies in difficulty. For instance, in the case of the Traveling
Salesman Problem the matching between the domain of the



Table 1: Middleware Comparison
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Figure 2: AntNode class diagram

problem and the graph is straightforward. The nodes would
model cities, while the edges - the possible transitions be-
tween them. Regardless of the complexity of the modeling
process, this approach is considered not to affect the gener-
ality of the solutions obtained.

The main component of our architecture is the problem
graph (problem-space, Figure 1) which is defined in our
model by the AntGraph class. AntGraph provides a basic
interface for manipulating a graph, the graph creation and a
set of useful additional methods. We produced a number of
AntGraph implementations, such as ToroidalAntGraph, Hy-
perCubeAntGraph, RandomAntGraph and more. Further-
more, any custom graph is possible, as well as an extension
of any of the preexisting ones.

As shown in Figure 1 AntGraph is composed of problem
nodes, represented by the AntNode class (Figure 2), which
are the backbone of the system. The AntNode is divided into
the SemanticAntNode and PhysicalAntNode, which corre-
spond to the semantic and the physical levels of the system.

The semantic level is in charge of controlling the phe-
romone values, as well as maintaining local resources and
resolving resource queries. The pheromone manipulation
is performed via the PheromoneCollection interface. We
provide two implementations of the PheromoneCollection:
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Figure 3: Ant architecture

HashMapPheromone and MultiPheromone, which differ in
efficiency, scalability and versatility. The choice of the cor-
rect implementation of the PheromoneCollection is crucial
for the performance of the whole model.

The physical level is responsible for maintaining intra-
node communication and the cost thereof. AntE comes with
two existing implementations: PhysicalAntNode, which is
optimized for local execution and P2PAntNode, which en-
ables deployment in a P2P network. We based our P2P
implementation on the PastryRing middleware. If the cost
of the communication is either not a factor or an invariant
the use of the NeutralCost class is recommended, in other
cases the HashMap Cost is made available. The physical level
must obligatorily enable access to methods for linking and
unlinking nodes and offer the possibility to obtain or modify
the costs of all the links present.

The central piece of any ACO-related middleware is the
concept of an ant. In AntE the abstraction of the ACO-ant is
the Ant interface (see Figure 3), which contains, according to
the strategy software design pattern, three encapsulated and
self-explanatory behaviors: PheromoneUpdate, StateTransi-
tion and QualityMeasure. This approach allows the code
to be hot-pluggable and the behavior to be changed during
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Figure 4: State transition implementations

the algorithm’s execution. All three come with a base null
implementation, as recommended by the nullobject design
pattern.

1 public interface StateTransition

2 {

3 public SemanticId[]
performStateTransition (SemanticId[] links,
float[] ph, float[] cs, RoutelList visited);

Code Snippet 1: State Transition interface

| public SemanticId[] performStateTransition (SemanticId[]
links, float[] ph, float[] cs, RouteList visited)

2 {

3 float[] weights

4 float sum 0;

new float[links.length];

6 float weight;

7 for(imt i 0; i < links.length; i++)

s

9 weight = calculateWeight (ph[il, cs[il, beta);
sum += weight;

weights[i] weight;

double f this.sum * (new Random() .nextFloat());

int i -1;
8 do

o {

20 f
1}

> while (f > 0.00001d);

this.weights [++i];

] return links[i];

Code Snippet 2: Example State Transition (ACS)

The state transition interface (Code Snippet 1) takes in
four parameters: links, an array of links to choose from; ph
and cs, arrays of pheromones and costs corresponding to the
links provided; and an optional visited parameter: the list
of visited nodes, which may or may not influence the state
transition. The method returns an array of links to travel

w v
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to. We chose the return value to be an array, rather than
a single value to preserve maximum generality of the code.
Some algorithms, such as SemAnt [12], permit ant cloning
and splitting, which requires multiple results from a single
state transition step. A family of existing state transition
rules is provided (Figure 4). See Code Snippet 2 for a simple
example of a state transition rule.

public interface PheromoneUpdate
{
float[] performLocalUpdate (float[] ph);
float[] performGlobalUpdate (float[] ph, int
rewardedLink, float solutionQuality);

Code Snippet 3: Pheromone Update interface

The pheromone update interface (Code Snippet 3) defines
two methods: performLocalUpdate and performGlobalUp-
date, which represent pheromone evaporation and deposi-
tion respectively. Both methods take a pheromone array as
input, however the deposition requires an additional specifi-
cation of the link that participates in the deposition process,
as well as the quality of the solution obtained.

public interface QualityMeasure
{

public float getQuality(Ant a);
}

Code Snippet 4: Quality Measure interface

The quality measure interface (Code Snippet 4) is trivial.
It is designed to enable a simplified access to the quality of
the solution the ant created. The quality must be returned
as a float value and should be positive.

3.2 Output and data logging

One of the challenges of every middleware is an efficient
data logging module. A badly designed one can slow down
the system beyond usability, even when it is not in operation.
Due to this reason we paid special attention to it, making
sure that it would not render our middleware non-responsive
under any circumstances.

The most adequate approach for handling a detached pro-
cess, such as the logger, is the short-circuit design pattern.
The short circuit pattern is a multithread software design
pattern, which consists of splitting the threads into two
groups: worker threads wt and handler threads ht. Worker
threads produce results, which are later processed by han-
dler threads. Depending on the computation load, the ratio
of wt/ht must be adjusted. In our case the handler thread
(the logger) is far less CPU-consuming. Thus, we have only
one ht and an adjustable amount of wt. As we empirically
established, in order to maximize CPU usage it is recom-
mended to have ht = 1 and wt = 2 X cores — 1, where cores
is the amount of physical CPU cores available.

The LogWriter interface (Figure 5), alongside its imple-
mentation of AbstractDataLogger, are the base elements of
the logging module. They provide methods for logging all
the primitive values, common Java collections, char strings
and numerals. In the current version of the middleware three
implementations of the LogWriter interface are provided:
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Figure 5: Logger structure

NullLogger (nullobject), ConsoleDataLogger (on-screen data

display) and StreamFileDataLogger (saving data via FileStream).

LogWriter enables to select what data is to be logged,
while the LogFormatter establishes the format of the data.
Three classes of LogFormatter have been made available
by default: TatFormatter, CsvFormatter and XlsFormatter,
which generate data compatible with .tzt files, .csv files and
.xls files respectively. This part of the system is, again, fully
customizable.

Another important aspect of the logging module is the
data post-processing. Raw data from long executions can
attain very large sizes, measured in hundreds of gigabytes.
AntE offers an extensive spectrum of post-processing tools
that include, but are not limited to: data sorting, data com-
pacting by rolling average, merging independent executions,
standard deviation extraction as well as lineal, non-lineal
and arbitrary data bucketing.

In Figure 6 we present some of the possible outputs our
middleware can produce. The linear plots (Figure 6a) are
the most basic form of output. Upon indicating the source
of the x-axis from the raw data file we can plot the evolution
of any of the logged values or a combination thereof. In this
case it is the classic hop per hit (HpH ) measure in function
of algorithm’s iteration.

If data of higher dimensionality need to be visualized, the
use of heatmaps is recommended (Figure 6b and Figure 6c¢).
Our middleware can prepare the data for a visualization
with the TikZ ITEX package for traditional heatmaps (in
the shown case - ant traffic density per pheromone level
in a multi-pheromone implementation as a function of al-
gorithm’s iteration), or it can produce a custom evolving
heatmap, which we called DNA-heatmaps. DNA-heatmaps
are a gray-scale 2D variant of 3D plots, useful for plotting
data comprised of several independent values that evolve in
time. Figure 6¢c shows an evolution of the response quality
(color intensity) per problem (y-axis) in time (x-axis). The
scripts that produce DNA-heatmaps are bundled-in with our
post-processing module.

3.3 Extensibility and Configuration

AntE achieves a high degree of customizability due to the
widespread use of the strategy design pattern. In Code Snip-
pet 5 we present a fragment of a configuration of the algo-
rithm. Note lines (1), (2) and (5), where a class-encapsulated
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behavior is passed as parameter. In line (4) we establish a
numerical parameter and in line (7) a boolean parameter.

antConfig.setParameter (AntBehaviourConfig.ANT_ST,
AcsStateTransition.class);

antConfig.setParameter (AntBehaviourConfig .SOLUTION_QM,
AcsQualityMeasure.class);

antConfig.setParameter (AntBehaviourConfig.TTL_MAX, 8);

phConfig.setParameter(PheromoneConfig.PHERDMDNE_COLLECTIDN,

HashMapPheromone .class) ;

logConfig.setParameter (Logger .LOG_ENABLED, true);

Code Snippet 5: An example of configuration (1)

This configuration technique, coupled with the modular
approach allows defining arbitrary behaviors. Consider the
following example (Code Snippet 6). Our objective is to cre-
ate a quality measure based on the square on the well-known
hop per hit (HpH) metric. First we create a behavior class
(line 1) as an extension of the predefined HpHQuality class,
which encapsulates the calculation of the quality measure.
Next, we introduce it into the configuration as the chosen
behavior of the algorithm (line 12).

class SquareRootHpHQuality extends HpHQuality
implements QualityMeasure
{
@Override
public float getQuality(Ant a)
{
float hphQuality = super.getQuality(a);
float squareRootHphQuality = Math.sqrt(hphQuality);
return squareRootHphQuality;
}
}

antConfig.setParameter (AntBehaviourConfig.SOLUTION_QM,
SquareRootHpHQuality .class) ;

Code Snippet 6: An example of configuration (2) -
behavior class definition

Note that the change of configuration can be done dur-
ing the execution of the algorithm, allowing interesting and
unusual observations and experiments.

3.4 Low Level Optimization Techniques

The choice between the programming languages in which
to write the middleware is a trade-off. The main benefits
of Java are obvious: portability and hardware and software
abstraction. Java, however, produces slower code than the
corresponding solutions in C++. To counteract this we were
forced to design and apply a series of low level optimization
techniques. Here we list some of the most notable ones.

The most basic step is not to permit Java to perform, so
called, boxing and unboxing of numerical values. In Java,
numerical values are both object-based and primitives. Box-
ing and unboxing are the names given to the conversions be-
tween the two types. The conversions are, typically, trans-
parent from the programmer’s point of view and unnotice-
ably quick. However, in our case they were very frequent
and consumed an important portion of the CPU time.

This prompted us to eliminate completely one of the two
types of the numerals. We decided to exclude the object-
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based numerical values from our code, which benefited us
thrice. First, objects are larger in terms of memory than
their primitive counterparts (64 bytes versus 2 - 8 bytes).
Second, as mentioned, the unboxing is avoided completely.
And third, the creation and destruction of objects and, in
consequence, the garbage collector usage are reduced signif-
icantly.

As a result, we were forced to rewrite the generic Java col-
lections, such as ArrayList and HashSet (which use object-
based numerals) into their corresponding, primitive-based
counterparts. This was an opportunity to incorporate in the
newly created classes (PrimitivelntArrayList and Primitive-
FloatArrayList) low-level methods, which accelerated com-
mon operations, such as maz, min, sum etc. This change
alone helped to reduce the memory consumption by a mar-
gin of 75% and the CPU consumption by 90%.

The biggest challenge in ACO related middlewares is the
pheromone container. It is very often accessed and it is
read and updated with similar frequency, which excludes
a write- or read-focus optimization. Our solution, along-
side the aforementioned primitive-based computation, was
to handle the pheromone writes and reads in batches, via
the low level method System.arraycopy (Code Snippet 7,
from HashMapPheromone class). In order to benefit from
this technique, the code must be redesigned with batch op-
erations in mind. The difference of the execution time of the
batch-approach with respect to the value-by-value-approach
is above 71% in favor of the former.

public void setAll(float[] pheromone)

System.arraycopy (pheromone, 0, elementData, O,
pheromone.length) ;
size = pheromone.length;

}

public float[] getAll()
{
float[] pheromone = new float[size];
System.arraycopy (elementData, O, pheromone, 0, size);

return pheromone;

}

Code Snippet 7: Batch operations

Another common efficiency bottleneck is the method that
establishes if a given element is present or absent from a
data collection, typically called .contains. It is, at best, of
O(log(n)) complexity. Quite often however, as in the case
of unsorted lists, it is O(n). We designed a technique which
guarantees a numerical complexity of O(1). Our method is
possible if the elements stored in the collection are labeled
with an index, and it is especially effective if the range of the
values of the indices is known, limited and relatively small.

First we instantiate a bit array of size maz_inder. Each
time an element is inserted into the collection, the field in
the bit array that corresponds to the index of the inserted
element is set to true. The opposite happens when the last
element of a given index is removed. This way the .contains
check is reduced to reading the bit corresponding to the
examined element. The memory increase is modest. For
max_index of 32768 the bit array only uses 4kB of memory.
See Code Snippet 8 for a simplified example. This approach
has reduced the overall execution time by 16.7%. We believe
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3 private BitSet cMonitor =

Table 2: Execution Times, Intel Xeon X3430

Worker Threads 1 2 3 4 5 6 7
Logger Threads 1 1 1 1 1 1 1
Physical Cores 2 2 2 2 2 2 2
Time [s] 84 6.7 64 69 7.0 7.3 8.0

Antsxs™! [x10%] 11.9 14.9 15.6 14.3 14.3 13.6 12.5
Ant-stepsxs™' [x10°] 2.4 29 3.1 28 28 2.7 24

Table 3: Memory Usage, Intel Core i5 540m
256 1024 4096 16384 65536

2.6 9.5 37.1 147.4 588.8
8.9 89

Graph size
Total memory [MB]
Memory per node [kB] 10.2 9.3 9.0

that this technique has a wide range of uses, well beyond our
middleware.

class MonitoredCollection<T> extends Collection<T>
{

new BitSet (max_index) ;

5 (..))

NN NN NN

@Override
public void add(int index, T data)
{
super.add(index, data);
cMonitor.set (index);

}

@0verride

5 public void remove(int index)

{
super .remove (index) ;
cMonitor.clear (index);

}

@0verride
public boolean contains(int index)
{

return cMonitor.get(index);

}
...

Code Snippet 8: contains operation

4. EFFICIENCY AND SCALABILITY

Having described some of the most notable elements of our
implementation we proceed to the analysis of the efficiency
and scalability. We start with, arguably, the most crucial
parameter, which is the overall execution time. We executed
our middleware under the following conditions: a graph with
1024 nodes with 10° ants released simultaneously onto it.
Each ant performs a full search of TT'L = 20 steps and saves
the search results in a file. The hardware configuration is:
Intel Xeon X3430 (8MB Cache, 2.40 GHz), limited to 2 of
the 4 physical cores and 2GB Ram. In Table 2 we present the
execution times in function of processing threads used. We
conclude that in the best case of 3 worker threads, the task is
terminated in under 6.5 seconds. At the peak, the efficiency
of ant processing was about 15.6 x 10* ants per second and
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3.1 x 10° ant-steps per second. By ant-step we understand
a full processing of one ant in one node. It includes: the
resource query, the pheromone read and write as well as the
state transition.

The same experiment on a far slower Intel Core i5 540m
takes roughly 43 seconds. In both cases the CPU resources
consumption reached 98% per core on average, which demon-
strates an above-average effectiveness of our short-circuit ap-
proach. This suggests that the CPU-related scalability of
AntE is high, allowing to benefit from multicore processors
in a satisfying degree.

Another common limitation of other existing middlewares
is the size of the graph they can produce and process. Clas-
sical graph-related problems tend to be rather small, mostly
under 10* nodes. This means that a trivial (non-memory
efficient) implementation would possibly suffice. Still, we
attempted to reduce the memory consumption to a rela-
tive minimum, keeping in mind that the shorter CPU time,
within reasonable bounds, is favored. In Table 3 we summa-
rize the memory consumption in function of graph size. It
can be observed that the property is very weakly sublineal,
and therefore, scalable. On average one node occupies 8.9k B
of memory. Under these conditions, with a 32-bit version of
Java the upper limit of the graph size is situated at around
10° nodes, on a 64-bit version it is virtually unlimited.

The stability of the middleware is also quite important.
In our extensive experiments we were able to sustain a con-
stant, uninterrupted flow of ants during 12 hours, generating
roughly 7GB of log files. We claim that, with AntE, exper-
iments of the order of magnitude of 10'° ants are feasible.

S. EXISTING IMPLEMENTATIONS

We have used our middleware in several experimental se-
tups and one possible commercial deployment.

The early versions of the software have been used to exam-
ine ACO algorithms under the condition of the dynamism
of the problem space [8]. This is a largely unexplored area
of ACO, however, it was essential in our study of the appli-
cability of ACO to P2P networks. The unique property of
supporting modifications of the graph while the algorithm is
under execution allowed us to observe insufficiencies of ACO
in this regard [9].

After having defined and demonstrated the problem, a
proposal of a P2P-compatible ACO was deployed as an ex-
perimental module, formulated completely within AntE [7].
We opted for counteracting the problems associated to the
dynamism of the graph by correcting the pheromone paths
with the help of a new type of ants, the graph structure
diffusion ants. The coding effort involved in the aforemen-
tioned line of research, albeit seemingly complex, was in fact
minimal and could have been completed by researchers with
limited knowledge of programming. In this line of research
the graph sizes ranged between 1024 and 32768 and the ex-
periment lengths were of 10° iterations.

Our middleware has also been used to implement a deploy-
able piece of software that served as a recommendation ser-
vice for rehabilitation tasks for people with Acquired Brain
Injuries [10]. This extensive software can be used as both:
an experimental module and a deployable application. In its
essence it was an example of a practical application of ACO
algorithms. Here, we treated the graph nodes as rehabilita-
tion tasks, the pheromone as a similarity measure between
them, and the ants as a representation of a query issued for



a patient. All of the changes were possible strictly within
what the configuration of our middleware permits.

Our most recent research is centered on the question of
resolving multi-class queries in P2P networks with ACO.
We extended our software with multi-pheromone capacities
in order to experiment with the effects of multiple types of
ants and how they impact the overall efficiency of ACO.
We also increased the length of the experiments to 4 x 10°
iterations. Working with our middleware enabled us to put
the formulated ideas to a test quickly and obtain a very early
experimental validation, which, in turn, was a way to avoid
or abandon unpromising concepts.

6. CONCLUSIONS AND FUTURE WORKS

In this paper we presented a customizable ACO middle-
ware, AntE. We elaborated on the novelty of our software,
as well as outlined some of its more interesting features.
We discussed its performance and scalability, and described
its architectural design alongside some selected optimization
techniques, which, we hope, will benefit the ACO commu-
nity.

In the direct future we will focus on the release of our
software as open source and we will bundle it with a doc-
umentation allowing users to use it to its full potential. In
addition, we continually rework and update our source code,
improving safety, stability, as well as the key aspects: scal-
ability, speed and customizability. In this respect, we are
currently considering new and promising ACO-hibridization
techniques that will be included as optional components of
the next release of the AntE software infrastructure.

We would also like to compare the effectiveness of our ap-
proach with general purpose environments, such as Heuristi-
cLab [15]. HeuristicsLab has been in development since 2002
and it has become a very extensive and configurable environ-
ment for broadly understood algorithmic experimentation,
with a modern GUI, visual algorithm and experiment de-
signers, as well as analytical tools. Due the scope of the
software, HeuristicsLab bares no characteristic of a middle-
ware, but is, in fact, a meta-level environment. Therefore,
we argue that AntE should not be perceived as a competing,
but rather complementary approach.

A possible continuation of our work could focus on the
conversion of AntE into a plug-in of HeuristicsLab. This
would enable us to benefit from the powerful framework
HeuristicsLab is. Such a plug-in, supporting multiple phe-
romone levels, graph structure diffusion ants and resolution
of multi-class queries in P2P networks with ACO, has, to
our best knowledge, not been implemented.
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